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We numerically examine solutal convection in porous media, driven by the dissolution of carbon dioxide
(CO2) into water—an effective mechanism for CO2 storage in saline aquifers. Dissolution is associated with slow
diffusion of free-phase CO2 into the underlying aqueous phase followed by density-driven convective mixing of
CO2 throughout the water-saturated layer. We study the fluid dynamics of CO2 convection in the single aqueous-
phase region. A comparison is made between two different boundary conditions in the top of the formation:
(i) a constant, maximum aqueous-phase concentration of CO2, and (ii) a constant, low injection-rate of CO2,
such that all CO2 dissolves instantly and the system remains in single phase. The latter model is found to
involve a nonlinear evolution of CO2 composition and associated aqueous-phase density, which depend on the
formation permeability. We model the full nonlinear phase behavior of water-CO2 mixtures in a confined domain,
consider dissolution and fluid compressibility, and relax the common Boussinesq approximation. We discover
new flow regimes and present quantitative scaling relations for global characteristics of spreading, mixing, and
a dissolution flux in two- and three-dimensional media for both boundary conditions. We also revisit the scaling
behavior of Sherwood number (Sh) with Rayleigh number (Ra), which has been under debate for porous-media
convection. Our measurements from the solutal convection in the range 1 500 � Ra � 135 000 show that the
classical linear scaling Sh ∼ Ra is attained asymptotically for the constant-concentration case. Similarly, linear
scaling is recovered for the constant-flux model problem. The results provide a new perspective into how
boundary conditions may affect the predictive powers of numerical models, e.g., for both the short-term and
long-term dynamics of convective mixing rate and dissolution flux in porous media at a wide range of Rayleigh
numbers.
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I. INTRODUCTION

Convection driven by density contrast in fluids is ubiq-
uitous in nature and can significantly enhance the transport
of mass, heat, and energy. Examples include (thermal) con-
vection in the Earth’s mantle and atmosphere [1,2], (com-
positional) haline convection in sea water and groundwa-
ter aquifers [3,4], and (thermal and compositional) double-
diffusive convection in oceanic waters [5]. The latter con-
tributes to oceanic mixing and circulation with impact on
global climate. The convection process, moreover, is crucial
for successful carbon capture and storage (CCS) as one of
the most promising options to stabilize atmospheric CO2

concentrations and hence alleviate the global climate change
[6]. Deep saline aquifers have been recognized as a primary
target amongst geological formations for CO2 storage beneath
the Earth’s surface, where the dissolution of injected CO2 into
underlying water can generate convection that could help the
long-term and efficient trapping of CO2 [7,8]. How effectively
convection can mix salt and thermal energy is analogous to
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how effectively “solutal convection” in porous aquifers can
mix CO2.

Following injection of CO2 into saline formations, buoy-
ant (supercritical) CO2 rises upward until it is confined by
impermeable caprocks above the saline layer [9]—known as
structural trapping mechanism [Figs. 1(a) and 1(b)]. As CO2

spreads laterally beneath the caprock, buoyancy poses the risk
of releasing injected CO2 back to the atmosphere through
high-permeability pathways (e.g., faults and fractures). How-
ever, free-phase CO2 gradually dissolves in the aqueous phase
through diffusion, which is referred to as dissolution trapping
[Figs. 1(c) and 1(d)]. Over time, this mechanism can increase
the storage capacity and permanence because CO2 will remain
in solution (even in case of caprock failure) and may eventu-
ally bind chemically to solid phases [10–12].

Dissolution of CO2 into the aqueous phase creates a diffu-
sive boundary layer that contains a fluid mixture of a higher
density than the underlying fresh water. Such a density profile
is gravitationally unstable and may lead to the formation of
fingerlike structures (or plumes) that drive convective mixing
of CO2 throughout the aquifer. Fingering is associated with
the fast transport of the dissolved CO2 away from the CO2-
water interface towards greater depths. Therefore, convection
involves both diffusion of CO2 from the source into the
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FIG. 1. Overview of structural, residual, and dissolution trapping mechanisms for geological storage of CO2 and their relation to fluid
dynamics processes such as buoyancy-driven spreading and convective mixing of CO2-rich water (a). CO2 rises until buoyant forces are
balanced by the capillary entry pressure of the caprock (b). The aqueous (wetting) phase displaced by CO2 imbibes into pore spaces, leading to
the formation of trapped CO2 blobs (ganglia)—known as residual trapping [53]. The single-aqueous phase in the subdomain where convection
of dissolved CO2 takes place is modeled under two different boundary conditions in the top: a constant concentration (c), and a constant flux
(d). All domain boundaries are closed to flow. Snapshots in (c) and (d) are for 2D cases with k = 5 000 mDarcy.

aqueous phase and the advective flow of the gravity-driven
currents that carry the CO2-laden water downwards. These
currents simultaneously drive an upwelling flow of fresh
water, thus maintaining contact between fresh water and
source. Together, gravitational instability enhances mixing as
compared to pure diffusion [13] and reduces the timescale
required for effective dissolution trapping [14].

The convective mixing of CO2 dissolved in the aqueous
phase is challenging to study within the full-scale system
that may consist of a two-phase (free-phase CO2 and water)
capillary transition zone (CTZ) between an overlying gas
cap and underlying water-saturated layer [15,16]. Instead, the
configuration is typically simplified to a one-phase system
through one of the following assumptions:

(1) Analogue fluid systems: in this set-up (often used in
Hele-Shaw experiments), the two-phase CO2-water system
is replaced with a two-layer fluid system typically including
water and a suitable fluid that is miscible with water. Fingering

can be studied, but the real CO2-water partial miscibility,
density and viscosity profiles, and instability strength are only
approximated [17–19].

(2) Constant-concentration (C = const) boundary condi-
tion (BC): the CO2-rich layer atop the aqueous phase is re-
placed by a fixed impervious boundary where the solute con-
centration is kept at the maximum CO2 solubility in water at
the initial pressure (p)-temperature (T ) condition [e.g., [20]].
This model represents a canonical Rayleigh-Bénard-Darcy
(RBD) problem [18], analogous to the well-studied Rayleigh-
Bénard (RB) thermal convection in free-fluid systems [21,22].
Multiphase processes that could affect the interface dynamics,
CO2 solubility, and associated density increases are neglected.
These include the effect of interfacial tension and capillary
forces within the CTZ, saturation-dependent flow constitutive
relationships (e.g., relative permeability), upward penetration
of water into the two-phase zone, aqueous phase volume
swelling upon dissolution and the associated interface motion,
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pressure increases due to subsurface injection, and a drop
in partial pressure of the supercritical CO2 phase in closed
systems [13,15,16,23,24].

(3) Constant-injection (F = const, or interchangeably
constant-flux) BC: at a low enough injection rate (across a
large interface), all CO2 can dissolve into the aqueous phase
without forming a gas cap [25–27]. The CO2 concentration in
the aqueous phase and its associated density increase slowly in
the top and then compete with the fast downward transport of
CO2 in the gravitationally unstable regime. The water density
evolution is further complicated by allowing for compressibil-
ity and volume swelling of the aqueous phase (manifested by
the pressure response in a confined domain) and by not adopt-
ing the Boussinesq approximation. By relaxing these limiting
assumptions, interesting competitions between thermo- and
hydrodynamic processes emerge [26].

The primary objective in studying dissolution trapping
via natural convection is to predict the rate of CO2 mixing
over time. Previous experimental [17,28–30] and numerical
[18,20,31–35] studies using analog systems and constant-
concentration BC have observed a quasi-steady-state regime
for both the convective flux and a mean dissipation rate.
Scaling laws have been proposed for the long-term mass
transport behavior in terms of Sherwood number (Sh) and
Rayleigh number (Ra) (to be discussed in Sec. VI). A Sh-Ra
relationship determines the ability of convection to mix the
solute with ambient fluid relative to that of diffusion alone
for a given buoyancy force [13]. Whether the dependence of
Sh on Ra is linear (classical) or sublinear (anomalous) is still
under debate [36].

In this work, we comparatively study the evolution of
CO2 mixing as well as vertical spreading for both constant-
concentration and constant-injection boundary conditions,
and also for both two-dimensional (2D) and three-dimensional
(3D) homogeneous media. We review previous experimental
and numerical studies of the long-term behavior of natural
convection, and obtain robust Sh-Ra scaling results for both
model problems through higher-order, thermodynamically
consistent numerical simulations that account for compress-
ibility and non-Boussinesq effects. Our results provide new
insights into the fundamental roles that phase behavior, non-
Boussinesq effect, dimensionality, and boundary conditions
play on solutal convection in porous media.

II. FORMULATION

We consider inert Cartesian (vertical) 2D and 3D domains
with homogeneous and isotropic permeability k [m2], poros-
ity φ fields, and height H [m]. A binary mixture of CO2

and H2O is considered at isothermal conditions. To strictly
enforce mass balance at the grid cell level, we explicitly solve
the molar-based conservation equations, governing transport
within the aqueous phase, for both species by

φ
∂CW

∂t
+ ∇ · (CW �v + �JW ) = 0, (1)

φ
∂CCO2

∂t
+ ∇ · (CCO2 �v + �JCO2 ) = FCO2 , (2)

where CCO2 ≡ czCO2 and CW ≡ czW are each component’s
molar density with c[mol/m3] = CCO2 + CW the total molar
density of the mixture and zCO2 and zW = 1 − zCO2 the molar
fraction of CO2 and water components, respectively. In a
single phase, the phase composition of CO2 in the aqueous
phase, denoted by x, equals zCO2 , and short-hand notation
C = CCO2 will be used. FCO2 [mol/m3/s] is a source term for
the CO2 component (note that FW = 0 since there is no water
injection or production), t is time, �JCO2 is the Fickian diffusive
flux of CO2, driven by compositional gradients [37]

�JCO2 = −cφD∇zCO2 ,
�JW = − �JCO2 , (3)

with D = 1.33 × 10−8 m2 s−1 the constant diffusion coeffi-
cient, and �v is the Darcy flux

�v = − k

μ
(∇p − ρ �g), (4)

with �g [m/s2] the gravitational acceleration, μ [kg/m/s] the
phase viscosity, and ρ [kg/m3] the water mass density related
to the total molar density through the component molecu-
lar weights (M), as ρ = CWMW + CCO2MCO2 . The density
depends nonlinearly on not only pressure (p) and tempera-
ture (T ) but also the CO2 concentration, as determined by
the equation of state (EOS) discussed below (see Fig. 2).
The aqueous phase viscosity is insensitive to pressure and
CO2 compositions and is assumed to only depend on tem-
perature T (K). We use the correlation μ(cP) = 0.02141 ×
10247.8/(T (K)−140) ∼ 0.3654 [25].

The Boussinesq approximation originally expresses that (i)
density fluctuations result principally from thermal effects—
analogous to dissolution here—rather than pressure effects,
and (ii) density variations are neglected except when they
are coupled to gravity (i.e., in the buoyancy force, −ρ �g)
[38,39]. Under this approximation, density variations are
small compared to velocity gradients and a divergence-free
flow (∇ · �v = 0) can be assumed. Furthermore, following an
incompressible flow assumption, only a linear dependence of
density on dissolved CO2 concentration is typically consid-
ered (used in −ρ �g). In our simulations, we adopt the the full
compressible and non-Boussinesq formulation by employing
the cubic-plus-association (CPA) EOS—suitable for mixtures
containing polar molecules—to describe the nonlinear depen-
dence of density on both pressure and composition; density
variations are also fully accounted for in both flow and trans-
port, and the velocity field is not divergence-free (∇ · C�v �=
�v∇ · C). We use the same formulation as in Moortgat et al.
[25], following Li and Firoozabadi [40]; for completeness,
the general nonlinear expressions for the EOS are provided in
Appendix A. We also illustrate the dependence of the aqueous
phase mass density on in situ pressure and CO2 composition
in Fig. 2.

Finally, to close the system of equations, we adopt an
explicit pressure equation for compressible flow based on the
Acs et al. [41] and Watts [42] volume-balance approach:

φCf

∂p

∂t
+ ν̄W∇ · (CW �v + �JW )

+ ν̄CO2 [∇ · (CCO2 �v + �JCO2 ) − FCO2 ] = 0, (5)
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FIG. 2. Variation of aqueous-phase mass density as a function of pressure and molar fraction of dissolved CO2. Three sample pressures
(100, 200, and 300 bar) are shown. Density difference with respect to ρw,0, the pure water density at initial pressure (100 bar), is shown in
(a). It is clear that the maximum solubility increases with pressure. The minimum (ρw,min) and maximum density of aqueous phase (ρw,max),
corresponding, respectively, to zero and maximum dissolved CO2 composition, are plotted in (b) as a function of pressure; the difference
between the two (�ρw,max), as the main driving force to convection, is plotted in (c) at each pressure. These results show that the density
change due to dissolution is a nonlinear function of the in situ pressure, and this should be honored.

where Cf [Pa−1] is the mixture compressibility and
ν̄i[m3/mol] is the partial molar volume of each component in
the mixture; both variables are computed from the CPA-EOS.

We adopt the higher-order combination of mixed hybrid
finite element and discontinuous Galerkin methods that were
presented in earlier works [25,43–51] for high-resolution sim-
ulations of flow and transport in porous media; more details on
the numerical methods and solvers are provided in Ref. [52].

III. MODEL PROBLEMS

We perform 2D and 3D simulations of solutal convection
in porous media. The base case 2D domain has dimensions of
30 × 40 m2, discretized by a fine 400 × 400 element mesh,
and a base case 30 × 30 × 40 m3 domain discretized by
902 × 100 grid is used for 3D convection. The domain size
was chosen such that larger fingers are encompassed, and that
the influence of boundaries on numerical solutions are mini-
mized. To guarantee converged results, higher grid resolutions
were used for larger permeabilities (see Table I in Ref. [52]
for details). The temperature is 77◦C (170.6◦F). The pressure
is initialized at vertical hydrostatic pressure equilibrium with
100 bar at the bottom. At these conditions, the aqueous-phase
density is ρw = 977.71 kg/m3, which increases by ∼0.9%
(8.45 kg/m3) to ρ = 986.16 kg/m3 when fully saturated with
maximum ∼1.6 mol % CO2. The constant aquifer porosity is
10%. Homogeneous (but perturbed by a few %) permeability
fields of 250, 500, 1 000, 2 500, and 5 000 mDarcy are used
in base cases. We consider bounded domains with no-flow
Neumann conditions for all boundaries. The choice of no-
flow, open-flow, or periodic conditions on the vertical (side)
boundaries did not affect the results as long as the domains
are sufficiently wide and there is no net flux of CO2 through
the lateral boundaries (consistent with Juanes et al. [23] and
Scovazzi et al. [54]).

The domain is initially saturated with fresh water (i.e., C =
zCO2 = 0). For the constant-injection BC, CO2 is introduced
into the formation uniformly from top (surface in 3D) at a
constant rate. This inflow is treated as source terms specified

in the top-most grid cells. The injection rate is sufficiently low
(0.1% pore volume injection, or PVI, per year), ensuring the
CO2 immediately goes into solution following the injection.
That is, the CO2-in-water solution thermodynamically re-
mains under the saturation limit, maintaining a single-aqueous
phase. To numerically treat the constant-concentration BC in
the same framework, we compute a source term from the
diffusive flux due to the compositional gradient between the
constant composition on the top edge or face and the evolving
concentration at the grid center. Therefore, both BC types are
represented by source terms that are defined in the top-most
grid cells (constant for constant-injection and variable for
constant-concentration BC), as indicated in Eq. (2). It should
be noted that we honor mass balance by allowing a diffusive
water flux to exit the domain to satisfy the constraint �JW +
�JCO2 = 0 [24,55]. We confirmed that this implementation is

robust and gives similar results to another approach obtained
by Elenius et al. [56], where the top-most boundary elements
are initialized as the maximum molar composition and are
maintained at such condition through specifying a large pore
volume (×10 000) in the top elements while reducing the
permeability by the same order (to maintain a no-flow con-
dition across the top boundary). However, the latter approach
is not as robust at high permeabilities, and the maximum
concentration may still drop below the prescribed value.

IV. GLOBAL CHARACTERISTIC MEASURES

To study the general characteristics of spreading and
mixing for convection, we define several quantitative global
measures including (i) dispersion-width (σz), (ii) variance of
concentration field (σ 2

C ) and individual contributions to its
temporal rate, and (iii) dissolution flux (F). Each measure is
defined next.

(i) Spreading describes the average width of a spatial
distribution in the mean direction of flow, and is characterized
here as a longitudinal dispersion-width by the square root of
the second-centered spatial variance of the CO2 molar density
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(C) in the vertical (z) direction [57,58]

σz(t ) =
√

〈Cz2〉
〈C〉 −

( 〈Cz〉
〈C〉

)2

≡
√〈 C

〈C〉 (z − zc )2

〉
, (6)

where zc = 〈Cz〉/〈C〉 represents the longitudinal position of
the plume center. The notation 〈·〉 is used for the domain
averaging operator

〈(·)〉 ≡
∫
�

(·)d�∫
�

d�
=

∑
k∈�(·)|k|∑
k∈� |k| , (7)

where k is the index of a discrete finite element (grid cell)
with volume of |k| in medium �. Equation (6) involves the
mean square distance from the plume centroid in z-direction
weighted by the local probability of the CO2 distribution (i.e.,
C/〈C〉) [59]. The dispersion-width in the transverse directions
is nearly constant, due to the predominantly vertical flow.

(ii) The global variance of the CO2 concentration (or molar
density) field directly characterizes the mixing state of the
fluid system and is defined as

σ 2
C (t ) = 〈C2〉 − 〈C〉2. (8)

The individual components that contribute to the time evolu-
tion of the domain-averaged CO2 variance are linked to the
fundamental character of convective mixing and its growth
rate [48]. In this work, we investigate mixing for miscible,
two-component, compressible transport in porous media with
impermeable boundaries but subject to a CO2 influx (source
terms or dissolution flux) from the top boundary. There is no
mixture removal from the system, and no background flow.
The goal is to derive the theoretical expressions that govern
the temporal rate evolution of σ 2

C , i.e., dσ 2
C /dt ≡ σ̇ 2

C . The
details of the derivations are provided in Appendix B for both
BCs. For the F = const BC, we find

−φ
dσ 2

C
dt

= −2
〈 �J · ∇C

〉︸ ︷︷ ︸
2φε

+ 〈
C2∇ · �v〉︸ ︷︷ ︸

2φP

+ 2
(〈C〉〈F 〉 − 〈CF 〉)︸ ︷︷ ︸

φ�

.

(9)
Equation (9) expresses the time evolution of the CO2 global
variance, and reveals the individual contributions of the mean
scalar dissipation (ε) and production (P) rates as well as
the CO2 source terms at the top boundary (�). The ε and
P are analogous to those for kinetic energy dissipation and
production, respectively, in turbulent flow [60].

For the C = const BC, where CO2 is added to the domain
through a dissolution flux along the boundary driven by diffu-
sion, we find

−φ
dσ 2

C
dt

= −2
〈 �J · ∇C

〉︸ ︷︷ ︸
2φε

+ 〈
C2∇ · �v〉︸ ︷︷ ︸

2φP

+ 2F (〈C〉 − C0)︸ ︷︷ ︸
φ�

, (10)

with F the integrated diffusive dissolution flux across the
top boundary per domain height H , and C0 the constant CO2

concentration prescribed at the upper boundary.
(iii) The dissolution flux is a useful measure to character-

ize a convection process with the C = const BC, because it
defines the rate of change in the total moles of dissolved CO2

within the aqueous phase per unit area. The dissolution flux is

defined as

FH = φH
d〈C〉
dt

= H

V

∫
�top

φDc∇zCO2 · �nd�

− H

V

∫
S

C�v · �ndS + H 〈F 〉. (11)

Equation (11) incorporates a convective flux with respect to
the vertical diffusive flux across that interface (∼φDc∇zCO2 ),
the interface (∼C�v—applicable in two-layer or two-phase
convective systems), and an injection or source term of CO2

(〈F 〉).

V. SCALING CHARACTERISTICS OF SPREADING
AND MIXING DYNAMICS

A. F = const

In this section we investigate the dynamical regimes of
spreading and mixing of dissolved CO2 in the aqueous phase
for the constant-injection BC (illustrated in Fig. 3 as well as
Fig. 4 for the 3D case with k = 5 000 mDarcy) in terms of (i)
dispersion-width σz [Fig. 5(a)], (ii) maximum density differ-
ence between the CO2-laden water and fresh water �ρw,max,
and maximum molar fraction of CO2 within the aqueous
phase xmax [Fig. 5(b)], and (iii) mean scalar dissipation rate
ε [Fig. 5(c)].

1. Diffusive regime

The dispersion-width of the downward migrating plume,
which is a measure of spreading, initially increases slowly at
a diffusive rate as CO2 is injected into the domain and thickens
a diffusive boundary layer. This first period exhibits classical
Fickian scaling of σz ∼ t0.5, and the penetration depth scales
as ∼(Dt )0.5 [61] [Fig. 5(a)]. Because the concentration at
the top is not kept constant, the maximum density difference
evolves nontrivially upon CO2 dissolution [Fig. 5(b)]. The
temporal evolution of �ρw,max and xmax are also Fickian, even
though CO2 is injected at a constant rate resulting in the linear
increase of the total amount of dissolved CO2 with time. Con-
sistent with diffusive behavior, the time evolution of �ρw,max

and xmax in this regime are insensitive to permeability.
The time evolution of the global variance rate (σ̇ 2

C ), in
addition to that of �, P , and mean scalar dissipation rate from
local (grid cell) divergence values denoted now by εl [given
in Eq. (9)] are presented for the k = 1 000 mDarcy 2D case
in Fig. 6(a) and 3D case in Fig. 6(b). The local dissipation
rate εl is more noisy in 2D than 3D, due to larger quantity of
fingers overall, more surface area, and hence better numerical
averaging for the integral measures in 3D, but otherwise the
2D and 3D scaling behavior is remarkably similar. We find
that the production term is negligible, and the dynamical
behavior of the variance rate is predominantly governed by the
source of CO2 (�) and its scalar dissipation rate throughout
the domain.

An implication of P ∼ 0 is that 2εl ∼ −σ̇ 2
C − �, where

−σ̇ 2
C − � is simply denoted by 2ε for distinction in Fig. 6.

In other words, the local dissipation rate (derived from local
divergence) closely follows the indirectly computed, global
one (derived by an averaging operator), but the latter (i.e., 2ε)
is obviously smoother as shown in Fig. 6(a) and in Fig. 5(c)
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FIG. 3. Constant-injection BC. Time evolution of the molar fraction of CO2 (zCO2 ) and the vertical Darcy velocity (vw,z) for 5 000
(left panels) and 500 mDarcy (right panels). Different qualitative phenomena can be observed: downward advective flow of dense water
(blue regions); reinitiation of new protoplume fingers (more pronounced in the higher permeability case) that merge with more developed
megaplumes and generate mushroomlike spikes that descend; and retreating fingers that lag behind due to the upward flow generated by their
faster neighbors, and subsequent root zipping. For a roughly equal front propagation in the convective regime, the lower permeability (k1)
case requires ∼√

k2/k1× the time needed for the higher permeability (k2) case. Following the advective velocity, the time for a given distance
scales as φμ/kg�ρ ∼ k−0.5.
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FIG. 4. Snapshots of the time evolution of CO2 molar fraction in 3D convection with a constant-injection boundary condition (0.1 % pore
volume injection, or PVI, rate per year) and 5 000 mDarcy permeability.

for all the cases. The absolute magnitude of these variables,
given in Fig. 6(c), demonstrate that all the |�|, 2ε, and |−σ̇ 2

C |
variables scale diffusively in this first regime but with higher
absolute values for � than for 2ε. This leads to a diffusive
increase in the variance rate (i.e., positive σ̇ 2

C ).
Note that ε (and �ρw,max and xmax) diffusively increases

rather than decaying as t−0.5. The latter is the characteristic
behavior for the constant-concentration BC discussed in the
next section. This new behavior emerges because the diffusive
decay of the concentration gradients is superimposed by a
linear (in time) addition of CO2, leading to the ∼t−0.5+1=0.5

scaling behavior.

2. Early convection

Density contrasts are the driving force for advective buoy-
ant flow. For the F = const BC, �ρw,max increases slowly
(diffusively) until buoyancy exceeds the diffusive restoring
force and triggers a gravitational instability. This marks the
onset of a flow regime where mixing eventually becomes
convection dominated. All flow regimes are best captured by
the evolution of ε [Fig. 5(c)] and the snapshots in Fig. 5:

(i) The departure from the diffusive scaling of ε occurs
at the onset of first instabilities at a critical time tc, which
exhibits a scaling relation of k−1 for this BC [Fig. 5(a), inset].
This scaling of tc can be explained by the nonlinear evolution

of densities. Linear stability analyses suggest an equation for
the critical onset time as

tc = c0

(
φμ

kg�ρ

)2

D = c0
1

Ra2 · H 2

D
, (12)

where c0 is stated to be a (numerically derived) constant
and all other variables are independent from each other [e.g.,
[20,35,62–64]]. However, we find numerically that the maxi-
mum density increase by dissolution at the onset of instability
itself is proportional to k−0.5 [Fig. 5(b)], in line with [26].
More specifically, we can fit the density contrast at the critical

times by �ρw,max(tc ) ≈ �ρ( k
k0

)
−0.5

with k0 ≈ 252 [mDarcy]
and �ρ ≈ 8.45 [kg/m3] being the maximum density increase
at the initial pressure-temperature condition. Interestingly,
while tc ∼ k−1 and �ρw,max(tc ) ∼ k−0.5 follow independently
from our simulations, they still satisfy Eq. (12), even though
the stability analyses assumed a constant density contrast.

Alternatively, we can incorporate our scaling form of den-
sity difference �ρw,max(tc ) ∼ k−0.5 into Eq. (12), and rewrite
the latter in terms of independent variables but with a perme-
ability (or Rayleigh number) dependent prefactor as

tc = k

k0
· c0

(
φμ

kg�ρ

)2

D = c̃0

(
φμ

kg�ρ

)2

D. (13)
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FIG. 5. Quantitative characterization of CO2 spreading and mixing dynamics in 2D (short-dash) and 3D (solid lines) homogeneous porous
media for constant-injection or F =const (a–c) and constant-concentration or C=const (d–f) BC. Dispersion-width σz is shown in (a) for
F =const, and in (d) for C=const. The time evolution of maximum density change �ρw,max and maximum solute molar fraction xmax for the
F =const BC are shown in (b) and its inset, respectively. Mean scalar dissipation rate from global calculations, ε, are shown in (c) and (f). The
dissolution flux per domain height for C=const is given in (e). Results of 2D simulations with the same grid resolution as that of a vertical
2D slice through the 3D domain are plotted in dotted lines in (a), showing converged results for the 2D and 3D convection. The key events of
convective mixing from instability onset to when fingers reach the bottom are illustrated in snapshots for k=500 mDarcy in correlation with
the ε dynamics.
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FIG. 6. Evolution of temporal rate in global variance of CO2 molar density, −σ̇ 2
C (with negative sign, as a proxy to global mixing rate)

and the individual contributions from the mean scalar production P and dissipation εl rate, obtained from local (grid cell) divergence values,
as well as the contribution from the mass influx �. The results for 2D and 3D media with k = 1 000 mDarcy and F =const (respectively,
C=const) are reported in (a) and (b) (respectively, (d) and (e)). P ∼ 0 implies that a less noisy dissipation rate can be estimated from global
average measures (denoted here as ε). The early evolution of absolute values for dissipation and variance rate as well as � term are compared
in (c) and (f) for both boundary conditions.

This expression is interesting because it reveals consistency
with new findings from a recent experiment [65] in which a
sodium chloride (NaCl) brine solution was placed on top of
and allowed to penetrate into a water-saturated silica sand box.
For experimental reasons (concern of NaCl reactivity with a
metal mesh at the salt-water interface), measurements were
performed some distance below the actual interface, i.e., in
only a subdomain inside the box unlike other studies. In this
subdomain, tc was found to scale as Ra−1.14 rather than Ra−2

and Rasmusson et al. [65] proposed a varying prefactor of
c0 ∼ Ra0.86 in relation to Eq. (12) as opposed to a commonly
constant prefactor. This scaling behavior is remarkably similar
to our numerical findings that suggest a linear dependence.

The reason for this different scaling in both cases is the
boundary condition. In the Rasmusson et al. [65] measure-
ments, the top of this subdomain is no longer a no-flow
boundary given the dissolved NaCl is continuously passing
through it, while neither the concentration nor the concen-
tration gradient are strictly constant across this boundary.
In fact, their system of interest seems to essentially present
a Robin or Dankwerts boundary condition for transport at
the top boundary [66,67], where the sum of advective and
diffusive fluxes just below the boundary is likely constant
and supplied by the stream of solute entering the subdomain
via advection. This implies a decrease in concentration of
solute from its original (saturation) limit when entering the
subdomain as it undergoes the action of diffusion combined
with advection. Similarly, the source term in our constant-
injection BC simulations, which is simply moles per second

of CO2 entering the top grid cells, can be considered either
purely advective or a sum of advective and diffusive CO2

fluxes (although we do not consider a diffusive flux of water
exiting the domain). The important implication is that CO2

concentrations may never reach saturation levels anywhere
inside the domain (e.g., when advective velocities are fast at
high permeabilities). This results in the different scaling with
permeabilities.

Following the onset of the first instabilities, fingering gen-
erates large interfacial areas between sinking and upwelling
plumes. Plume stretching simultaneously steepens the con-
centration gradients in the direction perpendicular to the finger
[68]. These mechanisms enhance mixing, and hence increase
ε up to a global maximum. This “ε-growth” regime corre-
sponds to the first increase in dispersion-width with growing
spreading rate.

(ii) The aforementioned stretching of the CO2-enriched
fingers lowers the peak CO2 composition [Fig. 5(b), inset] at
a higher rate than the replenishment of CO2 from top. This
causes a decrease in �ρw,max [Fig. 5(b)] and ε [Fig. 5(c)]
and an inflection point in σz. A third flow regime commences
in which the σz growth rate starts to decrease [Fig. 5(a)].
Diffusion across the large interface between downward and
upwelling plumes further decays concentration gradients. The
negative feedback of depleting sinking fingers of CO2, and
the associated �ρw,max reduction, results in a stagnation of
downward flow and stretching.

(iii) This stagnation is the start of a fourth flow regime
that is restorative. Similar to the first regime, scaling (of
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ε, �ρw,max, etc.) is again approximately diffusive (∼t0.5) in
Figs. 5(a)–5(c), while the plumes become replenished by the
continuous addition of CO2 from the top. Coalescence and
merging of slowly growing fingers lead to self-organization
of fingers that cluster together to form larger-scale coherent
structures. These coarsened plumes transition into a fully
developed late-convective regime once the convection driving
force, �ρw,max, is restored to exceed its value at the onset of
the first instabilities.

3. Late convection

The fifth regime is again advection (or buoyancy) domi-
nated and displays a sharp increase in σz whose growth rate
is almost constant while the scaling exponents are smaller
for the higher than for the lower permeability cases in this
regime. The exponents are also smaller than that in the
early-convection regime, consistent with findings by Soltanian
et al. [26,27]. Interestingly, we discover a quasi constant-
dissipation regime for this BC, in analogy to the constant-flux
regime that is observed for the constant-concentration BC
(Sec. V B 3). We discuss the universality of the scaling in
this regime in Sec. VI D.

4. Transient convection shutdown

Once the first fingers arrive at the bottom boundary, the
dissipation rate is immediately enhanced by the mixing of
laterally spreading CO2-rich plume with upwelling water
[Fig. 5(c)]. As the lower boundary becomes increasingly
saturated with CO2, ε displays a late-time reduction, which
characterizes a convection-shutdown regime. However, once
the majority of fingers reach the bottom and undergo mixing
ε plateaus and the shutdown regime is not persistent. This
nonmonotonic behavior is caused by the continuous pressure
increase, and the associated increase in maximum CO2 solu-
bility in water (Fig. 5(b), inset; [69]), as CO2 is injected into a
confined domain. Both volume swelling and fluid compress-
ibility are taken into account in these thermodynamics effects.
Following the shutdown regime, the σz growth rate deterio-
rates until σz approaches an asymptotic value of ∼H/

√
12 in

the limit of a spatially homogenized concentration field.

B. C = const

In this section, we analyze the distinct regimes in the
spreading and mixing dynamics of non-Boussinesq CO2

transport in the constant-concentration BC model (illustrated
in Fig. 7), in terms of σz [Fig. 5(d)], dissolution flux F
[Fig. 5(e)], and ε [Fig. 5(f)].

1. Diffusive regime

Similar to the constant-injection BC, spreading and mixing
are driven initially by diffusion in a growing diffusive bound-
ary layer and σz again increases with classical Fickian scaling
(σz ∼ t0.5). However, with the diffusive transport of CO2 away
from the dissolution boundary, F and ε decay with time as
t−0.5 before the onset of instabilities, as do all the |�|, 2ε, and
|−σ̇ 2

C | variables. However, we still find |�| > 2ε and P ∼ 0
[Figs. 6(d)–6(f)]. Given the step variation in the initial solute
concentration (maximum at top and zero everywhere else) and

assuming that the bottom boundary is sufficiently far from
the top boundary during the diffusive regime, Riaz et al. [63]
derived a 1D solution of the transport equation to describe the
evolution of concentration field within a penetrating diffusive
boundary layer. The gradient of this concentration field at the
top boundary, and thus the dissolution flux [see Eq. (B5) in
Appendix B], follow a characteristic t−0.5 temporal behavior
[16,35,63,70].

2. Early convection

Once the thickness of the diffusive layer exceeds a critical
value it becomes gravitationally unstable and σz, F , and ε

increase sharply in an early convection regime as compared
to the diffusive regime [Figs. 5(d)–5(f)]. For this BC (only),
�ρw,max is constant and the onset time of the instability scales
as tc ∼ k−2 ∼ Ra−2 (in dimensional form) [13,36]. The early
convection can be further divided into two distinct subregimes
(also illustrated in snapshots in Fig. 5).

(i) As the dense plumes accelerate downward and fresh wa-
ter is brought close to the interface, steep concentration gradi-
ents develop below the constant-concentration top boundary.
In this layer, F and ε increase in a flux-growth regime in
analogy to the ε-growth regime for the constant-injection BC
(discussed earlier). Densely spaced fingers continue to move
downward with limited lateral spreading [35].

(ii) This regime of increasing F-ε continues up to a local
maximum, beyond which merging and shielding between
adjacent elongated fingers begin [71]. These interactions are
promoted by diffusive spreading and the upwelling water
exterior to neighboring fingers. The surviving downward
“megaplumes” are more widely spaced. Concentration gradi-
ents in the boundary layer, and thus F and ε, predominantly
decrease during this merging regime [more pronounced in
2D in Figs. 5(e) and 5(f)]. Nonmonotonic variations are
caused by consecutive coalescence and growth of fingers
[17,20,29,63,64].

3. Late convection

While the CO2 front may move faster for higher Ra cases
[63], we find a linear growth of the global dispersion width,
i.e., with ballistic ∼t1 scaling throughout the (late-time) con-
vective regimes for all cases.

Finger merging continues until a quasi constant-flux (and
constant-ε) regime develops [Figs. 5(e) and 5(f)], analogous
to the quasi constant-ε regime found for the constant-injection
BC. While the history of events prior to this regime is different
for the two different boundary conditions, the mechanisms
behind the late-time behavior of convection are similar and
universal. In the following, we describe the long-term fate of
gravitational fingers for both BC types.

After the first fingers have merged and coarsened into
megaplumes, and with the generation of concentration gradi-
ents below the interface due to upwelling flow of fresh water,
the diffusive boundary layer thickens enough to reinitiate new
small-scale fingers. These features first emerge as a growing
bulge on the boundary layer between the megaplumes [29]
(Figs. 3 and 7) and are sometimes referred to as “proto-
plumes.”
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FIG. 7. Constant-concentration BC. Time evolution of zCO2 and vw,z for permeabilities of 5 000 (left panels) and 500 mDarcy (right
panels). Different qualitative phenomena can be observed analogous to Fig. 3 (more pronounced here), in addition to tip-splitting in the higher
permeability case. For a roughly equal front propagation in the convective regime, the lower permeability (k1) case requires k2/k1× (5 000/500
here) the time needed for the higher permeability (k2) case, because the advective timescale for a given distance is proportional to φμ/kg�ρ,
or ∼k−1 for C = const BC (with constant �ρ).

The protoplumes experience three subsequent coarsen-
ing mechanisms irrespective of BC type. (i) Given the
impermeable top boundary, upwelling water eventually has
to spread laterally and will drive nascent fingers towards
the megaplumes. The protoplumes merge with the persistent

megaplumes and form Rayleigh-Taylor-type mushroom
spikes. These spikes can advance fast but may detach from
the protoplume roots, analogous to the so-called “droplet
breakup” regime in fluid mechanics [72]. Eventually the
detached CO2 diffuses into the downwelling plumes (Figs. 3
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and 7). (ii) Some new fingers survive and descend between
the megaplumes. These features may eventually disappear
either when they intersect megaplumes or through diffusive
smearing. (iii) Some small fingers are dragged upward by
fresh water that is upwelling to accommodate the dominant
megaplumes, and hence retreat as the fingers ultimately zip
together from the root (see Fig. 3 and the animations provided
in Ref. [52]).

The consecutive events of protoplume reinitiation and
coarsening establish a quasi-steady-state regime during which
the boundary layer remains in a stabilizing loop: a too thin
layer thickens by diffusion, while a too thick layer is stripped
by the emergence and subsequent subsumption of dense pro-
toplumes.

Furthermore, vigorous interactions between closely spaced
fingers, especially at high-Ra conditions and C = const BC,
lead to some megaplumes advancing further than others.
Upwelling flow in between impacts the trailing plumes and
may cause tip-splitting in the megaplumes. When tip-splitting
is followed by coarsening of those branched fingers, this can
reorganize the large-scale plume structures in the interior
of the domain (see Fig. 7). Our observations suggest that
megaplumes are not as independent from each other or per-
sistent as previously thought [e.g., [35]].

The fingering interactions described above are more pro-
nounced in higher permeability (or Ra) cases due to the denser
finger population (smaller critical wavelengths). Fingering
is generally more pronounced for the constant-concentration
than for the constant-flux BC, because of the smaller driving
force ∼�ρw,max ∼ k−0.5 in the latter case. As such, the differ-
ence in fingering behavior between the two BC types becomes
more pronounced as permeability increases.

4. Convection shutdown

Finally, megaplumes impact the impermeable bottom
boundary, shortly after which the finite domain starts to
saturate with dissolved CO2—featuring again a convective
shutdown regime [73]. F and ε decrease in this regime as
the density (and concentration) gradients decay in the entire
domain. The shutdown regime is persistent, unlike in the
constant-injection BC, because no further CO2 will be added
into the domain, but σz behaves asymptotically similar.

VI. SHERWOOD-RAYLEIGH SCALING

Characterization of the quasi-steady-state regime is crucial
to our prediction capabilities for the long-term fate and trans-
port of CO2 within saline aquifers [74]. In this section, we
seek evidence of self-similar or scaling behavior, defined as a
power-law dependence, for the evolution of the stabilized F
and ε across different media. F is used to obtain a Sherwood
number that characterizes the degree of convection for a given
Rayleigh number.

Sh characterizes a dimensionless convective solute flux,
defined as the ratio of total dissolution flux (due to advective
and diffusive effects) to the purely diffusive flux:

Sh = FH

Dφ�C/H
= FH

Dφcs
w,maxx

s
max/H

, (14)

where �C = cs
w,maxx

s
max with respect to solute-free ambient

fluid, with the maximum molar density cs
w,max approximated

as ρs
w,max/[xs

maxMCO2 + (1 − xs
max)MW ] and the superscript s

denoting the stabilized values. Note from Eq. (11) that (FH )
is actually the dissolution flux across the top boundary. Ra
is a dimensionless measure that compares the timescales of
buoyancy (or natural convection) with respect to diffusive
processes:

Ra = kg�ρ/μ

φD/H
. (15)

Equation (15) is equivalent to the Péclet number in purely
buoyancy-driven flow. �C and �ρ are constant for the
constant-concentration BC, with the values determined
by CO2-saturated water at the initial conditions: �C =
cs
w,maxx

s
max ≈ 855.87 [mol/m3], and �ρ ≈ 8.45 [kg/m3].

A classical argument requires that Sh, or the equivalent
Nusselt number (Nu) for thermal convection, scale linearly
with Ra in porous-media solutal or thermal convection. The
theoretical interpretation is that the flux and thus Sh in natural
convection are controlled by the diffusive boundary layer, not
the interior nor any external length scale. Only for an exponent
of one (Sh ∼ Ra) does this relation become independent of H

[75,76].
We first review the recent experimental and numerical

investigations on the Sh-Ra scaling in general convection and
then discuss our own analyses.

A. Experimental studies

Tsai et al. [30] experimentally studied the Sh-Ra relation
using water and propylene glycol (PPG) in both Hele-Shaw
cells of aspect ratio one and porous media of packed glass
beads in the parameter range of 104 � Ra � 105. PPG is
more dense than water and hence represents brine while the
water mimics CO2 in subsurface conditions. They obtained
a scaling law of Sh ≈ 0.037Ra0.84. Backhaus et al. [17]
performed experiments on the convective mass transfer with
water and PPG in vertical Hele-Shaw cells of different geo-
metric aspect ratios. A power-law relation of Sh ≈ (0.045 ±
0.025)Ra0.76±0.06 best fitted their data for the quasisteady
regime in the parameter range of 6 × 103 � Ra � 9 × 104.
Earlier, Neufeld et al. [28] developed an analog system of
methanol and ethylene-glycol (MEG) solution and water in
a porous medium (of beads). MEG is lighter than water and
hence mimics the subsurface CO2. By means of a series of
numerical simulations confirming their experimental results,
Neufeld et al. [28] reported a power-law relationship of
Sh ≈ (0.12 ± 0.03)Ra(0.84±0.02) for 2 × 103 � Ra � 6 × 105.
Based on the mixing zone model of Castaing et al. [77],
Neufeld et al. [28] theoretically argued that the lateral com-
positional diffusion from the downward into the upwelling
plumes causes the reduction of concentration as well as
the driving density difference. This reduces the flux (and
Sh power-law) away from the classical scaling. While the
above studies are limited to 2D convection, Wang et al. [78]
performed 3D experiments of convection in a packed bed of
melamine resin particles using x-ray computed tomography.
A miscible system of fluid pairs—MEG doped with sodium
iodide and a sodium chloride solution—with nonlinear profile
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for mixture density was considered. A Sh ≈ 0.13Ra0.93 scal-
ing was reported for a small range of 103 � Ra � 1.6 × 104.

Similar non-“classical” scaling relationships have been
reported in various experiments on thermal porous and free-
fluid Rayleigh-Bénard convection. For instance, Cherkaoui
and Wilcock [2] performed Hele-Shaw cell heat convection
experiments, and determined that Nu ∼ Ra0.91 for 200 �
Ra � 2 000. High-Ra experiments on helium gas by Heslot
et al. [79] revealed a regime of “hard turbulence” signified
as Nu ≈ 0.23Raβ=2/7 with β differing from the classical 1/3
law of natural convection in free fluids (see discussion in
Otero et al. [80]). Subclassical results have also been found
for different fluids [81] and phenomenologically supported by
mechanistic scaling theories such as the Castaing et al. [77]
mixing zone model and the Shraiman and Siggia [82] nested
thermal boundary layer theory.

Recently, [83] investigated porous-media convection in
Hele-Shaw cells using potassium permanganate (KMnO4)
powder (as CO2) and water. This system of working fluids
exhibits similar behavior to the CO2-water system with lin-
ear increase of the mixture density due to dissolution. The
experimental setup is similar to a constant-concentration top
BC with dissolution from the top and a linear dependence
(increase) of mixture density on dissolved KMnO4, unlike
the previous analog fluid systems with nonlinear density
stratification and a diffused interface between two miscible
fluids shifting vertically due to volume change. They reported
a linear scaling Sh ∼ Ra for 104 � Ra � 106.

B. Numerical studies

Several numerical studies consider convection but only a
few explicitly discuss the late-time behavior. The majority of
those have reported a classical linear scaling relation for the
mass flux. For instance, the 2D simulations by Pau et al. [20]
and Hesse [84] suggest that Sh ≈ 0.017Ra for the constant-
concentration BC. Similar results have been obtained by Slim
[35] for 2 × 103 � Ra � 5 × 105, and also recovered later,
in the limit of miscible convection in finite homogeneous
media, using different configurations by De Paoli et al. [70],
Green and Ennis-King [85] (anisotropic heterogeneous me-
dia), Szulczewski et al. [34] (laterally semi-infinite domain
with constant-concentration prescribed only at a finite width
of the top), and Elenius et al. [86] and Martinez and Hesse
[16] (two-phase condition with CTZ).

While all the above studies replicate the classical
scaling, only two numerical studies have reported a sublinear
scaling: Farajzadeh et al. [32] obtained Sh ≈ 0.0794Ra0.832,
though for a relatively limited range of Ra (103–8 × 103)
using a constant-concentration boundary and a linear density-
concentration profile; Neufeld et al. [28] numerically deter-
mined Sh ≈ 0.12Ra0.84 (also supported by experiments) for
2 × 103 � Ra � 6 × 105 but using a mixture of two miscible
fluids involving interface movement and a nonmonotonic
density-concentration profile. Emami-Meybodi et al. [36]
concluded that the method of measuring the convective flux
cannot be the source of different reported scaling behaviors.
One could argue that the sublinear result of Farajzadeh et al.
[32] is due to the small parameter range of experiments, which
includes less than one decade of Ra. Perhaps the combination

of boundary set-up and density-concentration profile shape
determines the Sh-Ra scaling behavior, such that a constant-
concentration BC with linear density-concentration profile
results in linear scaling while an analog two-layer fluid sys-
tem with a nonmonotonic density profile results in sublinear
scaling. Hidalgo et al. [18] demonstrated computationally
that such an interpretation is insufficient by investigating the
scaling behavior of ε as a proxy to the dissolution flux for the
two types of models. For 5 × 103 � Ra � 3 × 104 and under
the Boussinesq, incompressible fluid and miscible conditions,
they showed that the stabilized ε exhibits no nonlinearity on
Ra irrespective of the model type.

Similar to the reviewed experiments, the nonlinear scaling
behavior of heat flux (Nu) has been confirmed via numerical
simulations of RB thermal porous convection. Otero et al. [80]
found a reduced exponent of Nu ≈ 0.0174 Ra0.9 for 1, 300 �
Ra � 104. Hewitt et al. [87] reported a Nu ∼ Ra0.95 for
1, 300 � Ra � 4 × 104 but suggested that the classical linear
scaling is attained asymptotically (beyond Ra ∼10, 000). In
parallel, the 2/7 scaling for free-fluid RB convection has been
also obtained via direct simulations [88–90].

In the following, we present the Sherwood-Rayleigh scal-
ing behavior for the problems considered in this work.

C. Scaling for C = const

We present the results of our high-resolution numerical
simulations for 2D and 3D RBD convection in porous media.
Both dissolution flux and scalar mean dissipation rate are in-
vestigated, and Sh-Ra scaling for a relatively wide range of Ra
is reported. We extend the range of medium permeability to a
maximum k = 20 000 mDarcy (in 2D), which provides a high
maximum Ra of ∼135 000 for porous media at subsurface
conditions. High Rayleigh numbers increase computational
costs (higher fluxes decrease the stable time-step size) and
comparison between 2D and 3D simulations was only per-
formed up to k = 10 000 mDarcy (i.e., Ra ≈ 67 000). Note
that the physical properties of CO2 and water, and typical
aquifer temperatures, pressures, porosity, and permeability
limit the range in Ra that is meaningful in the context of CO2

sequestration (e.g., k = 5 000 mDarcy is already higher than
typical aquifer permeabilities).

A quasisteady regime is established in terms of both F
and ε for all Ra, as shown in Figs. 8(a)–8(c) for F [as well
as in Figs. 5(e) and 5(f) for F and ε in base cases]. The
3D results exhibit less oscillations with smaller amplitude of
fluctuations, which is due to the smoother global averaging
as a reflection of the additional spatial dimension over which
these measures are computed. Following the moving average
method employed by Pau et al. [20], stabilized values of F
are obtained. The latter is used to determine the strength of
natural convection via Sh. We plot Sh as a function of Ra
for both 2D and 3D convection in Fig. 9(a) with the least-
squares power law, and plot that for 2D convection together
with linear (i.e., first-order polynomial) fits to the measured
data in the Fig. 9(a) inset. The best-fit power-law scaling
for the well-validated 2D convection is Sh ≈ (0.3570 ±
0.0012)Ra0.931±0.001 in the range 1 500 � Ra � 135 000 with
a coefficient of determination (R2) of 0.997. However, we
find that the data are slightly better described by the linear
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FIG. 8. Temporal dynamics of F , dissolution flux per domain
height, in 2D convection subject to constant-concentration condition
in the top boundary (a). Time can be rescaled by the convective
timescale φμH/kg�ρ, or simply k/H provided other parameters
are constant (b). This rescaling results in approximately equal onset
time of the shutdown regime following the convection regimes for
different permeabilities and domains. Finally, F rescaled by per-
meability (alternatively Rayleigh number) as a function of rescaled
time shows an almost collapse of all curves in the (late) convection
and shutdown periods (c). This suggests a linear Sherwood-Rayleigh
scaling behavior for solutal convection is attainable.

fit, which takes the form

Sh = αRa + β; α ≈ 0.165, β ≈ 181.02, (16)

with a R2 of greater than 0.999 over the range considered.
Such scaling is suggested by Fig. 8(c), which presents a better
collapse of curves in the late-convective regime for the higher
permeability cases after rescaling the fluxes by k. Interest-
ingly, similar scaling relations of the same form have been
reported previously for 2D and 3D Rayleigh-Bénard thermal
convection in a porous medium saturated with Boussinesq
fluid [87,91], where there is convective transport away from
both the upper and lower boundaries and a statistically steady
state is attained with no shutdown period.

We find nearly the same scaling behavior in 3D convection
(for Ra � 30 000). Similar scaling behavior is also found for
the stabilized dissipation rate in both 2D and 3D convection
over the Ra range considered here (not shown), in agreement
with the results of Hidalgo et al. [18]. This is in contrast with
the findings of Pau et al. [20] (respectively, Hewitt et al. [91])
who suggest that the 3D stabilized mass (respectively, heat)
flux is typically ∼25% (respectively, ∼40%) larger than in
2D. In our simulations, the 3D scaling starts to deviate for
very high Ra > 30 000, which could theoretically be related
to increasing and more complex interactions among fingers in
three dimensions, but is most likely due to numerical disper-
sion even when using higher-order methods on exceedingly
fine grids. For all practical purposes, though, in the context of
geological carbon storage, Rayleigh numbers are well below
30 000 and 2D simulations provide (surprisingly) excellent
predictions for the dynamical behavior of 3D convection.

To shed light on the differences between the two scaling
relation types (power law and linear fits) and their applica-
bility domains, we show Sh(Ra) compensated with Ra for
2D convection in Fig. 9(b), together with the relationship in
Eq. (16) and the power-law curve reported above. Although
both scaling relations appeared to fit the data well over the full
range of Ra, Fig. 9(b) reveals that a sublinear power law tends
to describe the date better at lower Rayleigh numbers, while
there is a clear trend in Sh/Ra toward a plateau as Ra increases
beyond a transitional Rayleigh number Ra ≈ 40 000 [marked
by a gray arrow in Fig. 9(a)]. This suggests that the classical
linear scaling Sh ∼ Ra is attained asymptotically. Next, to
appreciate such distinction we show the same simulation
data but rescaled by Ra0.9 in the inset to Fig. 9(b). A more
noticeably sublinear power law Sh ∼ Ra0.9 best fits the date
before the aforesaid transition, while a linear fit clearly better
represents the scaling behavior beyond that.

D. Scaling for F = const

The simulations for a constant-flux BC also develop
a quasi-steady-state regime and through similar governing
mechanisms. Figures 5(b) and 5(c) show that �ρ, �C, and
the scalar dissipation rate ε all increase in the first convec-
tive flow regime, but then reduce and ultimately stabilize at
approximately the same values as at the first onset of fin-
gering. However, the dissolution flux F is now constant by
definition (it is the boundary condition) and does not scale
with Ra. The steady-state (stabilized) values of �ρ and �C
scale as k−0.5 [Fig. 5(b)] [26]. Therefore, Sh ∼(�C)−1 ∼ k0.5
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FIG. 9. Variation of the Sherwood number Sh, a dimensionless measure of the convective flux associated with long-term convection as a
function of Rayleigh number Ra. For the constant-concentration BC, Sh-Ra data for both 2D and 3D convection together with the best-fit power
law scaling are shown in (a), while the 2D data together with the best linear fit of the form Sh=αRa + β with α ≈ 0.165 and β ≈ 181.02 are
shown in the inset. Sh compensated with Ra is plotted for 2D convection in (b), together with both power-law and linear fits showing a a clear
trend in Sh/Ra toward a constant as Ra increases. Sh compensated with Ra0.9 is shown in the inset, suggesting a sublinear scaling behavior
as a better fit below Ra ≈ 40 000 [marked by gray arrow in (a)]. However, an asymptotically linear behavior Sh ∼ Ra in porous-media RBD
convection is concluded from (b). Linear Sh-Ra scaling recovered for 2D and 3D convection with constant-injection BC is shown in (c) and
the scaling for the stabilized dissipation rate εs in (d) (inset: εs-k scaling).

and Ra ∼ k�ρ ∼ k0.5 and thus Sh ∼ Ra. Specifically, Sh
≈ 0.14 Ra − 86.9 in 2D and Sh ≈ 0.15 Ra − 66.5 in 3D,
both with a coefficient of determination of ∼0.999 [Fig. 9(c)].
Similar to �ρ, �C, the stabilized dissipation rate (εs) approxi-
mately scales as εs ∼ k−0.52, as shown in the inset to Fig. 9(d).
This is consistent with the observations that ε ∼ t0.5 in the
first diffusive regime, and tc ∼ k−1 [Fig. 5(a), inset], and thus
εs ∼ k−0.5 ∼ Ra−1 [as observed in Fig. 9(d)].

The physical reason that the Sh-Ra scaling for the constant-
composition BC shows more complex behavior could be a
feedback loop between the supply of new CO2 (F) and the
flow dynamics inside the domain. Conversely, for a constant-
flux BC, convection is fully determined by the properties
inside the domain (e.g., permeability). We also point out
that the driving force for convection (�ρw,max) is stronger in
the constant-composition BC, which shows more pronounced
fingering. This may explain why the constant-flux BC simula-
tions, where the maximum driving force is inversely propor-
tional to permeability, do not show an increase in tip-splitting
and transverse finger interactions at high Ra.

VII. DISCUSSION AND CONCLUDING REMARKS

We analyze detailed simulations in 2D and 3D of gravity-
driven natural convection of a solute, specifically CO2 dis-
solved in water, in deep subsurface porous aquifers. Our
results are an improvement over earlier studies both in terms
of numerical methods and physical assumptions. Higher-order
finite element methods and fine grids are used to fully resolve
the small-scale fingering and tip-splitting. The commonly
used Boussinesq approximation is relaxed, and we allow for
(molar) density gradients in flow and transport equations, in
addition to fluid compressibility, volume swelling, and other
thermodynamic phase behavior effects through an accurate
equation of state (CPA-EOS). Other novel findings follow
from a detailed comparison between different boundary con-
ditions in the top of the domain: the common constant-
composition BC and a constant-flux BC in which CO2 is
injected at a low rate such that the water remains under-
saturated.

For both BC, we study the global evolution of spreading
(dispersion-width) and mixing (mean scalar dissipation rate)
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of CO2. We also compare this to the evolution of the locally
derived individual contributions to the mixing rate. The latter
analysis suggests that compressibility and non-Boussinesq
effects do not significantly impact spreading and mixing.

Both BC models develop a quasi-steady-state following
the early-time convection and before the shutdown regime
in response to new plume nucleation balancing the merger
between earlier plumes. For the constant-concentration BC,
the quasi-steady-state is usually expressed as a plateau in the
dissolution flux, but this definition is not applicable in the con-
stant (dissolution) flux BC. Instead, one can use the plateau in
mean scalar dissipation rate to define the quasi-steady-state
regime, as it can be applied to both BC for characterizing the
dynamical behavior of convective mixing.

Particular attention is paid to how the Sherwood number
in the quasi-steady-state regime scales with the Rayleigh
number. For the constant-concentration BC model, the nature
of such relationship has been the subject of recent debate.
Our scaling analyses reveal that the measurements of the
convective flux over the range 1 500 � Ra � 135 000 are best
fitted by an expression of the form Sh = αRa + β with
α ≈ 0.165 and β ≈ 181.02. Particularly, such linear fit per-
forms better than the best-fitted power law Sh ≈ (0.3570 ±
0.0012)Ra0.931±0.001 beyond Ra ≈ 40 000. This suggests that
the classical linear scaling is attained asymptotically, even in
non-Boussinesq, compressible model of convective mixing,
and that the previously reported sublinear relations could
be in part a result of relatively limited parameter range of
experiments below an asymptotic limit.

For the case of a constant-injection BC, the dissolution
flux is constant by definition. However, we show that the
maximum density and concentration change evolve dynami-
cally in time, rather than being imposed as constants, against
the rate at which the dissolved CO2 migrates downwards.
Furthermore, they become stabilized in correlation with the
dynamics of mixing rate, while all scaling as ∼k−0.5. These
relations recover the classical linear Sh-Ra scaling for this
boundary condition.

The scaling relations and analyses of convection dynam-
ics developed in this work have a broad applicability to
other density-driven problems such as mantle convection [1],
oceanic circulations, atmospheric convection [2], and haline
convection in sea water [3] and groundwater aquifers [4].
Convection dynamics for the constant-injection BC can be
applied to examples of constant-flux water infiltration into
a porous medium resulting in gravity-driven fingering [92],
thermal convection with a constant heat flux at top and
bottom boundaries [89], the saltwater bucket problem [24],
and the proposed injection of CO2-saturated water into saline
aquifers [93].
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APPENDIX A: CUBIC-PLUS-ASSOCIATION
EQUATION OF STATE

Phase behavior is obtained from the CPA-EOS, which
honors the thermophysical aspects of CO2-water mixtures and
is able to accurately reproduce measured densities as well
as partial molar volumes (for the swelling effect). This is
unlike most previous studies that relied on simplified linear
or empirical correlations for mixture density and Henry’s law
for CO2 solubilities [e.g., [32]]. CPA-EOS is an improvement
over cubic EOS for fluid mixtures that contain polar molecules
such as water. Through thermodynamic perturbation theory,
it takes into account all the polar-polar interactions includ-
ing the self-association of water molecules and (polarity-
induced) cross-association between water and CO2 molecules
[25,40,94]. We use the same CPA formulation as in Moortgat
et al. [25], following Li and Firoozabadi [40].

Similar to the ideal gas law, molar density is related to
pressure as c = p/ZRT with R the universal gas constant.
Z is the compressibility factor, that accounts for the non-
ideal behavior of fluid, i.e., all the polar-polar interactions. Z

primarily depends on T , p, and zCO2 as well as the critical
properties and binary interaction coefficients (BICs) of water
and CO2, expressed as follows:

Z = Z

Z − B
− AZ

Z2 + 2BZ − B2︸ ︷︷ ︸
physical

+ 4 + 4η − 2η2

2 − 3η + η2
[zW (yW − 1) + zCO2 (yCO2 − 1)]︸ ︷︷ ︸

association

,

with η = B

4Z
, yW = Z

Z + 2zWyWδ + 2zCO2yCO2sδ
,

yCO2 = Z

Z + 2zWyWsδ
,

where δ = 1 − 0.5η

(1 − η)3

ξp

RT

[
exp

(
ε

kBT

)
− 1

]
,

s = 0.0529T 2
r + 0.0404Tr − 0.0693. (A1)

A and B (respectively, ε and ξ ) are, respectively, bonding
energy and volume parameters of physical interactions (re-
spectively, association). The A and B can be estimated by
applying the van der Waals quadratic mixing rules and proper
BICs. kB is the Boltzmann constant. yW and yCO2 denote,
respectively, the mole fractions of water and CO2 molecules
that are not bonded at one of the association sites. δ represents
the association strength between water molecules while sδ is
the association between water and CO2 molecules with s the
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cross association factor. Tr = T/Tc is the reduced temperature
of CO2 with Tc the critical temperature of CO2.

APPENDIX B: DETAILED DERIVATION OF EQUATIONS
FOR GLOBAL VARIANCE EVOLUTION

We derive the theoretical expressions that govern the tem-
poral rate evolution of σ 2

C (t ) = 〈C2〉 − 〈C〉2, i.e., dσ 2
C /dt ≡

σ̇ 2
C , following previous analyses of mixing in viscously un-

stable flows [48,95–97]. Multiplying Eq. (2) by C, we obtain

φC ∂C
∂t

+ C∇ · (C�v + �J ) = CF, (B1)

where C∇ · (C�v) and C∇ · �J can be, respectively, expanded as
1
2C2∇ · �v + 1

2∇ · (C2�v) and ∇ · (C �J ) − �J · ∇C. Depending on
the top BC, F = const or C = const, the derivation of dσ 2

C /dt

is different.
For the F = const BC: Applying the Gauss divergence

theorem to the bounded domain, one obtains 〈∇ · (C2�v)〉 =
〈∇ · (C �J )〉 = 0 (injection term appears as source term F ).
Therefore, volume averaging Eq. (B1) yields

φ
d〈C2〉

dt
= 2〈 �J · ∇C〉 − 〈C2∇ · �v〉 + 2〈CF 〉. (B2)

Similarly, by integrating Eq. (2) over the domain and then
applying the divergence theorem, we find d〈C〉/dt = 〈F 〉/φ.
Writing the rate of change in Eq. (8) as

dσ 2
C

dt
= d〈C2〉

dt
− 2〈C〉d〈C〉

dt
, (B3)

and combining all the above terms, we finally find

−φ
dσ 2

C
dt

= −2
〈 �J · ∇C

〉︸ ︷︷ ︸
2φε

+ 〈
C2∇ · �v〉︸ ︷︷ ︸

2φP

+ 2
(〈C〉〈F 〉 − 〈CF 〉)︸ ︷︷ ︸

φ�

.

(B4)

For the C = const BC: CO2 is added to the domain through
a dissolution flux along the boundary driven by diffusion.
Therefore, 〈∇ · (C �J )〉 �= 0, while 〈∇ · (C2�v)〉 = F = 0. The
equation for the mean concentration is obtained by integrat-
ing Eq. (2), which yields d〈C〉/dt = −〈∇ · �J 〉/φ. Using the
Gauss divergence theorem gives

〈∇ · �J 〉 = 1

V

∫
S

�J · �ndS = 1

V

∫
�top

�J · �nd�

= − 1

V

∫
�top

φDc∇zCO2 · �nd�︸ ︷︷ ︸
F

⇒ d〈C〉
dt

= F
φ

,

(B5)

with S denoting the full surface (and dS its increment) of
the domain with volume V , and �top (with increment d�)
is the surface of the top boundary, with �n the corresponding
outward-pointing normal (z increases downward from z = 0
in the top). F is the integrated diffusive dissolution flux across
the top boundary (i.e., − 1

A

∫
�top φDc

∂zCO2
∂z

d�) per domain

height H . We also have 〈∇ · (C �J )〉 = −C0F , because the CO2

concentration is a constant C0 at the upper boundary. Finally,
we obtain an expression analogous to Eq. (B4) but now for the
constant-concentration BC:

−φ
dσ 2

C
dt

= −2
〈 �J · ∇C

〉︸ ︷︷ ︸
2φε

+ 〈
C2∇ · �v〉︸ ︷︷ ︸

2φP

+ 2F (〈C〉 − C0)︸ ︷︷ ︸
φ�

.

(B6)
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