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Renormalization of viscosity in wavelet-based model of turbulence
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Statistical theory of turbulence in viscid incompressible fluid, described by the Navier-Stokes equation driven
by random force, is reformulated in terms of scale-dependent fields ua (x ), defined as wavelet-coefficients of the
velocity field u taken at point x with the resolution a. Applying quantum field theory approach of stochastic
hydrodynamics to the generating functional of random fields ua (x ), we have shown the velocity field correlators
〈ua1 (x1) . . . uan

(xn)〉 to be finite by construction for the random stirring force acting at prescribed large scale L.
The study is performed in d = 3 dimension. Since there are no divergences, regularization is not required, and
the renormalization group invariance becomes merely a symmetry that relates velocity fluctuations of different
scales in terms of the Kolmogorov-Richardson picture of turbulence development. The integration over the scale
arguments is performed from the external scale L down to the observation scale A, which lies in Kolmogorov
range l � A � L. Our oversimplified model is full dissipative: interaction between scales is provided only
locally by the gradient vertex (u∇)u, neglecting any effects or parity violation that might be responsible for
energy backscatter. The corrections to viscosity and the pair velocity correlator are calculated in one-loop
approximation. This gives the dependence of turbulent viscosity on observation scale and describes the scale
dependence of the velocity field correlations.
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I. INTRODUCTION

Statistical theory of hydrodynamic turbulence has a long
history, which stems from the work of Osborne Reynolds
[1], which suggested that turbulence should be described
statistically rather than by the equations of laminar hydro-
dynamics. This practically implies statistical averaging over
all possible trajectories, same as the Feynman’s functional
integral does in quantum field theory. There is a standard
list of topics in turbulence theory: the stability of solutions
of hydrodynamic equations, the instability of laminar flow,
the origin of intermittency, and so on. This paper deals with
only one of these topics—the description of fully developed
homogeneous isotropic turbulence in an incompressible fluid.
The detailed description of the problem can be found in
classical monographs [2–4].

Turbulent flows occurring in various liquids and gasses
at high Reynolds numbers reveal a number of general as-
pects: cascade of energy, scaling behavior of correlation func-
tions, statistical correlation laws. However, the prediction of

*altaisky@rssi.ru
†hnatic@saske.sk
‡nataly@misis.ru

characteristic features of turbulent flow using basic equations
of fluid dynamics still remains a challenge.

Starting from phenomenological theory of Kolmogorov-
Obukhov [5–8], derived from simple dimensional considera-
tion, it is well known that the probability distribution function
of the velocity field fluctuations in fully developed turbulence
is determined by two basic scales: the microscopic energy
dissipation scale l and the macroscopic integral scale L,
where the energy is injected into the fluid; and also by the
energy dissipation rate per unit of mass ε. The experimental
measurements show systematic deviations from Kolmogorov
scaling for higher-order velocity correlation functions [3,4,9].
This should be explained from microscopic principles.

In this paper we consider the Navier-Stokes equation,

∂u
∂t

+ (u · ∇)u = ν0�u − ∇p + f (t, x), (1)

where u(t, x) is velocity field, ν0 is the kinematic viscosity of
the fluid, and p is the pressure, describing an incompressible
fluid stirred by random force f (t, x).

The observation scale a is not present in the micromodel
Eq. (1) explicitly: the fields u and p are square-integrable
functions formally defined in each point (t, x). However, we
know that the Eulerian velocity u(t, x) is meaningful only
in case it is the velocity of fluid averaged over a volume
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δd , where δ is not less than a mean free path, to allow for
hydrodynamic approximation. So, to introduce the resolution
into mathematical consideration of a fluid dynamics problem
as an extra coordinate x → (a, x) we extend the space of
square-integrable functions L2(Rd+1) by means of continuous
wavelet transform performed in a spatial variable x. This
trick is quite common in the numerical studies of turbulence
[10–12].

The new feature of this paper is that we combine wavelet
transform with the methods of quantum field theory, including
the method of renormalization group, to study the statistical
momenta of turbulent velocity fields at different scales.

The remainder of this paper is organized as follows. In
Sec. II we review the quantum field theory approach to fully
developed homogeneous isotropic turbulence. In Sec. III we
reformulate the quantum field theory approach in terms of
scale-dependent velocity fields ua (t, x). The dependence of
turbulent viscosity νa (k), which affects the scale components
ua (k), calculated in the developed framework, is presented
in Sec. IV. Having calculated the second order statistical
momenta 〈ua (ω, k)ua′ (ω′, k′)〉 in one-loop approximation,
in Sec. V we present the energy spectrum of the turbulent
velocity field fluctuations as a function of dimensionless
observation scale ξ = A/L. In Sec. VI we summarize the
applicability of our theoretical results to the studies of tur-
bulence. Technical details of calculations are presented in the
Appendices.

II. QUANTUM FIELD THEORY APPROACH
TO STATISTICAL HYDRODYNAMICS

Similarity between hydrodynamic turbulence and critical
phenomena [13,14] made different authors cast the turbulent
velocity field generating functional in a form of quantum
field theory, and then apply renormalization group technique,
see, e.g., Refs. [15–19]. This approach is valid for the
stirred Navier-Stokes description of hydrodynamic turbulence
Eq. (1), supplied by the equality condition between the energy
injection by random force and the viscous energy dissipation.

The generating functional of the velocity field can be
written in the form

G[A] = eW [A] =
∫

exp

(
S[�] +

∫
ddxdtA�

)
D�, (2)

where the field � = (u, u′) is the doublet of the Eulerian
velocity field u(t, x) and the Martin-Sigia-Rose auxiliary
field u′(t, x), introduced to exponentiate the delta-function
of the equations of motion [20] (with functional Jacobian
of the equations of motion with respect to velocity field
being dropped due to appropriate redefinition of the Green
functions [16], or using ghost fields [21]). The argument
A(t, x) ≡ (Au,Au′ ) is an arbitrary functional source. The
“action” functional itself takes the form

S[�] = 1

2

∫
u′D̂0u

′ +
∫

u′[−∂tu + ν0�u − (u · ∇)u],

(3)

where D̂0(x − x ′) = 〈f (x)f (x ′)〉 is the random force cor-
relator. Integration over the space-time arguments x ≡ (t, x)
is tacitly assumed. The pressure term is eliminated from the

field theory Eqs. (2) and (3) by the imposed incompressibility
conditions ∇ · u = ∇ · u′ = ∇ · f = 0. The incompressibility
is ensured by multiplication of all lines of the Feynman graphs
of the field theory Eq. (2) by the orthogonal projector

Pij (k) = δij − kikj

k2
,

where k is the momentum of the line.
The perturbation expansion is performed by separating the

action Eq. (3) into a free quadratic part S0[�] and the cubic
interaction term V [�]:

S0[�] = �K�

2
, K =

(
0 ∂t + L̂

−∂t + L̂ D̂0

)
,

L̂ = ν0�, V [�] = −1

2
ui

′[δik∇j + δij∇k]ujuk.

The inverse of the matrix K is the matrix of bare propagators.
The potential V [�] gives the interaction vertex

vijk = − 1
2 [δik∇j + δij∇k].

Within the model Eq. (1) the pumping power is related
to the spectral power of the stirring force dF (k). For the
stationary isotropic turbulence, stirred by random force f ,
assumed to be δ-correlated in time,

〈fi (t, x)fj (t ′, x′)〉 = δ(t − t ′)
∫

dk
(2π )d

Pij (k)dF (k)eık(x−x′ ),

(4)

the equality of energy injection by random force f to the
viscous energy dissipation per unit of mass ε, according to
Kolmogorov hypotheses [5,6,22], gives

ε = d − 1

2(2π )d

∫
dkdF (k).

In this paper we are concerned with the dimension d =3 for
isotropic homogeneous hydrodynamic turbulence.

The field theory of fields �(x) ∈ L2(Rd+1) determined
by the action functional Eq. (3) is UV divergent [14,17]. To
derive quantitative predictions for correlation functions the
theory should be renormalized using the standard method of
ε-expansion, used in quantum field theory, and the theory
of phase transitions [13,23]. The difference from standard
quantum field theory renormalization consists in the role of ε:
in hydrodynamic theory it turns to be the spectral parameter of
the stirring force rather than the deviation from the dimension
of the space-time. The choice of the correlator D̂0(x − x ′)
for the stirring force f in the Navier-Stokes Eq. (1) is a
long-standing problem, having been discussed at least since
Ref. [15]. Most of the papers exploiting quantum field theory
approach to turbulence use stirring force of IR-type, i.e., that
concentrated on large scales. This corresponds to shaking
the “container with turbulence” as a whole [15], although a
UV-type noise can be also introduced by “statistical filtering”
procedure of Eyink [24], which separates fluctuations into
large-scale and small-scale parts in a way somehow similar
to the discrete wavelet transform.

The main requirements for the stirring force f are the ade-
quate description of the large-scale behavior of the turbulence
and the compatibility with the renormalization procedure.
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A simple power-law choice,

dF (k) = D0|k|4−d−2ε,

in Ref. (4) will suffice these requirements at “realistic” value
of ε = 2, which makes the dimension of the constant D0 equal
to that of the mean energy dissipation per unit of mass ε.
The correlator dF (k) can be generalized to |k|4−d−2εh(m/k),
where h is a certain fairly smooth function with h(0) = 1 [19]:

〈f̃i (t, k)f̃j (t ′, k′)〉 = δ(t − t ′)Pij (k)(2π )dδd (k + k′)

× D0|k|4−d−2εh(m/k).

For convenience of ε-expansion the formal expansion
parameter g0 = D0/ν

3
0 is introduced. The renormalization

procedure looks as follows. The original action Eq. (3), which
depends on two parameters (g0, ν0), is declared a “bare”
action, which yields divergences in the perturbation series
for the velocity correlators. For realistic value of the space
dimension d = 3, the new renormalized action,

SR[�] = 1

2

∫
u′D̂u′ +

∫
u′[−∂tu + Zνν�u − (u · ∇)u],

(5)

is derived from the bare action by means of multiplicative
renormalization,

ν0 = νZν, D = D0.

The renormalization constant Zν , which might be formally
infinite, is chosen so that it adsorbs the divergences, emerging
as poles in ε in the perturbation expansion of the velocity field
correlator. The renormalized parameters (g, ν) are declared
the actual parameters of the perturbation expansion, so that
all poles in ε are subtracted from the perturbation expansion
keeping its finite part intact.

The goal of renormalization procedure is to eliminate the
divergences appearing in the velocity field correlators. The
finite part of the renormalization constant Zν is not fixed by
this procedure and therefore may be scheme-dependent. The
most convenient is the minimal subtraction (MS) scheme [25].
To keep the renormalized coupling constant g dimensionless
for an arbitrary value of ε an extra parameter μ of the
dimension of inverse length is introduced:

g0 = Zggμ2ε,

with the formal coupling constant renormalization defined
as Zg := Z−3

ν to keep the force correlator invariant under
renormalization:

ν3
0g0 = ν3gμ2ε . (6)

In the space of point-defined functions [L2(Rd+1)] the only
way to reveal the scale dependence of 〈u(x)u(x ′)〉 is to study
the dependence of observed velocity correlators on |x − x′|,
or alternatively on |k| in Fourier space. The dependence
on the extra parameter of the dimension of length (1/μ) is
an artifact of quantum field theoretic averaging procedure
supplied with subtraction of divergences. The parameter 1/μ

can be qualitatively understood as the size of the domain over
which the averaging is performed. But this is a qualitative
consideration based on similarity of the roles played by the

noise dispersion in chaotic systems and the Planck constant in
quantum field theory models [14].

To get more physical insight into the problem, we need
to use the Kolmogorov self-similarity ideas: the turbulence
measured at different scales looks more or less similar. The
space of square-integrable point-defined functions is too weak
to encompass enough details required for more rigorous math-
ematical consideration of self-similarity properties.

At the assumptions on the stirring force mentioned above,
the renormalized action Eq. (5) is constructed using a single
counterterm, resulting in viscosity renormalization Zν . The
hydrodynamic field theory SR thus has two “charges,” g and
ν, the evolution of which with the normalization scale μ is
determined by a single renormalization constant Zν . In one
loop approximation its value is [16]

Zν = 1 − ag

2ε
+ O(g2), (7)

with a = 1
20π2 in d = 3 dimension. The β-function, which

determines the evolution of the coupling g with the change
of scale μ, is derived from the equality Eq. (6),

β(g) = μ
∂

∂μ

∣∣∣∣
ν0,g0

g = g(−2ε + 3γν ), (8)

where γν := μ ∂
∂μ

ln Zν . In one-loop approximation Eq. (7) the
β-function,

β(g) = −2εg + 3ag2, (9)

has a IR-stable fixed point g∗ = 2ε
3a

, which determines the
properties of turbulence in large-scale asymptotics.

Since the fields (u, u′) are not renormalized, any renormal-
ized n-point correlator of velocity field Wn

R is invariant under
RG transform:[

μ
∂

∂μ
+ β(g)

∂

∂g
− γν (g)ν

∂

∂ν

]
Wn

R = 0. (10)

This means, the statistical momenta can depend only on
invariant charges ḡ, ν̄ – the first integrals of the RG Eq. (10)
normalized so that ḡ(s = 1, g) = g at the normalization scale,
s = k/μ.

The dependence of the invariant charge ḡ on the invariant
scale s = k/μ is implicitly given by the integral of the inverse
β-function:

ln s =
∫ ḡ

g

dx

β(x)
. (11)

The invariant viscosity ν̄ = ν̄(s, g) is the second invariant of
RG Eq. (10):

ν̄ = ν exp

[∫ g

ḡ

γν (x)
dx

β(x)

]
=

(
gν3

ḡs2ε

)1/3

=
(

g0ν
3
0

ḡk2ε

)1/3

.

At the presence of the IR-stable fixed point β(g∗) = 0 in
Eq. (9), the turbulence behavior at large scales is determined
by the value of invariant viscosity at fixed point g∗:

ν̄∗(k) = ν0

(
g0

g∗

)1/3

k− 2ε
3 . (12)
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The pair correlator of velocity field C = 〈uu〉 that satisfies RG
Eq. (10) has the form,

C = ν̄2k−dR(ḡ, z̄),

where R(·) is some function of the invariant coupling constant
ḡ and the invariant frequency z̄ = ω

ν̄k2 . (More details and
the incorporation of IR scale parameter m into consideration
can be found in Ref. [19].) The equal-time pair correlator is
obtained by integrating C over the frequency argument:

Cst =
∫

C
dω

2π
= ν̄2k2−dR(ḡ). (13)

The substitution of the viscosity Eq. (12) into Eq. (13) at ε =
2, d = 3 yields the IR asymptotics of the Kolmogorov type:
Cst ∝ k− 11

3 . Further discussion on anomalous scaling, differ-
ent from the Kolmogorov regime, the effects of anisotropy,
compressibility, and finite correlation time effects can be
found, e.g., in Ref. [26].

III. MULTISCALE THEORY OF TURBULENCE
IN WAVELET BASIS

Kolmogorov (K41) hypotheses [5] assume statistically ho-
mogeneous and isotropic turbulence. This justifies the eval-
uation of velocity field correlations in wave-number space,
but does not provide any rigorous mathematical definition of
the “fluctuation of scale a.” They are tacitly assumed in the
literature as Fourier components of velocity field with wave
numbers equal to the inverse scale: |k|≈ 2π

a
. Such nonlocal

definition meets global characteristics of the homogeneous
isotropic turbulence, but is hardly applicable to nonlinear
phenomena such as coherent structure formation.

To analyze the local properties of turbulent velocity field at
a given scale a, same as in quantum field theory [27,28], the
wavelet decomposition u(t, x, ·) → ua (t, x, ·) was performed
by many authors, see, e.g., Refs. [11,29–33]. Among those,
the wavelet transform was applied to the iterative solution of
the stochastic Navier-Stokes equation [34].

To perform wavelet decomposition of the velocity field we
need some aperture function g(x) ∈ L2(Rd ), called a basic
wavelet, which satisfies an admissibility condition,

Cg =
∫ ∞

0
|g̃(a)|2 da

a
< ∞, (14)

so that the original (“no-scale”) field u(t, x, ·) can be recon-
structed from the set of its wavelet coefficients ua (b, ·):

u(x, ·) = 1

Cg

∫ ∞

0

da

a

∫
Rd

1

ad
g

(
x − b

a

)
ua (b, ·)ddb,

(15)

ua (b, ·) =
∫
Rd

1

ad
ḡ

(
x − b

a

)
u(x, ·)ddx.

The wavelet coefficients ua (b, ·) can be considered as the
scale components of the velocity field u measured with the
aperture function g. To keep the fields u and ua the same
physical dimension the L1 norm is used in wavelet transform
Eq. (15) instead of the traditional L2 norm [27,35].

In contrast to “statistical filtering” procedure of Ref. [24],
which is also given by convolution with a filtering func-
tion Gl (x) := l−dG(x/l), the continuous wavelet transform

Eq. (15) is invertible. Usage of basic wavelet that satisfies
the admissibility condition Eq. (14) makes our theory signif-
icantly different from “statistical filtering.” The difference is
briefly as follows. The statistical filtering operator Gl projects
the velocity field onto the space of functions Fk with wave
vectors less or equal to a given value k ∼ 1/l. Thus, Gl is a
low-pass filter:

vl (x) := Gl ∗ v(x).

The projection L2(Rd )
Gl→ Fk is a homomorphism. The details

lost by this projection are given by the high-pass filter Hl , so
that

Ĝl (k) + Ĥl (k) = 1.

Statistical filtering applies the low-pass and high-pass filters
only once, and then treat large-scale and small-scale modes
[24]. The Kadanoff blocking procedure [36] applies it sequen-
tially to coarser and coarser scale, each time increasing the
size of the block by an integer factor and loosing some details
on each step. The renormalization group can do it gradually,
integrating over the difference space,

Dk,�k := Fk \ Fk−�k, (16)

on each step. Since . . .Fk−2�k ⊂ Fk−�k ⊂ Fk , the spaces
Eq. (16) allow for an evident decomposition,

Fk = Dk,�k ⊕ Dk−�k,�k ⊕ Dk−2�k,�k ⊕ . . . . (17)

To study the behavior of a function on a ladder of scales
k, k − �k, k − 2�k, . . . it is sufficient to project it onto a set
of the difference subspaces Eq. (17), with no need to keep the
whole set {Fk}k . The decomposition Eq. (17) is exactly what
wavelet transform does, if discretized in an orthogonal basis;
see, e.g, Ref. [37]. So, in our approach we separately treat
the fluctuations concentrated near each given scale {ul (x)}l ,
rather than all fluctuations concentrated above the given scale
l, as G.Eyink does. Thus integrating from external size of the
system L down to the observation scale A we can reconstruct
velocity field in the sense of Eq. (17). No need to say that the
Gaussian filtering cannot be used for wavelet decomposition
for it does not satisfy the admissibility condition Eq. (14),
and therefore the original function v(x) cannot be uniquely
reconstructed from the set of its coefficients vl (x).

Referring the reader to general textbooks in wavelet anal-
ysis [37,38] for more details on the continuous wavelet trans-
form Eq. (15), we assume for simplicity the basic wavelet g(x)
to be isotropic function of x, having fairly good localization
properties; it may be a derivative of Gaussian, for instance,
Refs. [4,11]. In Fourier space the convolution becomes a
product: ũa (k) = ¯̃g(ak)ũ(k).

The stirring force can be represented by its scale compo-
nents fa , Gaussian random functions with zero mean, con-
centrated at a fixed large scale L. The correlator of the stirring
force scale components can be taken in the form

〈f̃ai (t, k)f̃a′j (t ′, k′)〉 = δ(t − t ′)Pij (k)g0ν
3
0Cg (2π )d

× δd (k + k′)aδ(a − a′)δ(a − L),

(18)
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where g0 is formal dimensionless strength of forcing. The ran-
dom force Eq. (18) in our approach simulates random initial
and boundary conditions, and also the effect of external forces
injecting energy from large scales comparable to the size of
the turbulent domain. The delta-function-type correlator is of
course an approximation that enables analytical calculations
of the diagram expansion. A random force concentrated on a
narrow range of gross scales would be more realistic, but is
hard for analytical calculations. We follow the Kolmogorov-
Richardson scenario of turbulence development: the kinetic
energy injected at large scale by external forcing is transferred
to smaller and smaller scales until it reaches the scale l, where
it is dissipated by viscosity. We do not consider the effect of
small scales close to Kolmogorov dissipative length l on the
dynamics of larger eddies. In this respect there is a difference
from the approach [24], where the random force is split into
a large-scale part f̄ and the high-frequency noise acting on
molecular scales.

In our model the molecular noise and the subgrid effects
below the observation scale A are neglected for they do not
seriously affect the large-scale motion. The reason is that our
consideration is concerned with a homogeneous isotropic sta-
tionary turbulence with no parity violation, i.e., with the mean
helicity assumed to be zero 〈u · curl u〉 = 0. We have only
two inviscid invariants: the kinetic energy and the helicity.
The inverse energy cascade can be induced by the presence
of extra topological invariant—the conservation of enstrophy
the Z = 1

2

∫
curl2u [2,4]. In a fully three-dimensional turbu-

lence the enstrophy is not conserved and the inverse energy
cascade is not significant in the inertial range of scales. In
our simple model we consider isotropic basic wavelets. The
quasi-two-dimensional turbulence, with one dimension being
much less than the others, causing inverse energy cascade
[39], can be hardly handled analytically in our framework.
Our consideration may be not true for helical turbulence, but
this is not the subject of this paper, keeping it for future
research.

The basic objects of our model are the correlation
functions of the of the velocity field scale components
〈�a1 (x1) . . . �an

(xn)〉. They can be evaluated from the gen-
erating functional,

G[A] = eW [A] =
∫

D�a (x)eS[�a ]+∫
dxda

a
Aa (x)�a (x), (19)

which is different from its classical counterpart Eq. (2) only
by making the integration measure dx ≡ dtddx into dt dd xda

a

for each space-time argument, and substituting the interac-
tion vertex vijk by its wavelet transform. The substitution of
wavelet transform Eq. (15) into the action functional Eq. (3)
yields the action functional of the scale-dependent fields,

S[�a] = 1

2

∫
dxda

a

dx ′da′

a′ u′
a (x)Daa′ (x − x ′)u′

a′ (x ′)

+
∫

dxda

a
u′

a (x)[−∂tua (x) + ν0�ua (x) + Va[u]],

(20)

where Va[u] is an integral nonlinear operator, obtained by
wavelet transform of the cubic interaction term u′u∇u.

We use the first derivative of the Gaussian as a basic
wavelet g. The equality between the energy injection and the
energy dissipation then defines the bare coupling constant g0:

ε = g0ν
3
0

L4

3

8π3/2
. (21)

See Appendix A for details.
The functional derivatives are taken with respect to the

formal source Aa (t, x):

〈�a1 (x1) . . . �an
(xn)〉c = δnW [A]

δAa1 (x1) . . . δAan
(xn)

∣∣∣∣
A=0

.

Integration over all scale arguments
∫ ∞

0
dai

ai
would certainly

drive us back to the known divergent description of fully
developed turbulence, in case we substitute the force corre-
lator Eq. (18) by wavelet image of a wide-band correlator
power-law correlator [40].

Taking into account that statistical properties of fully de-
veloped turbulence are determined by the energy flux from
large scales to small scales, we apply the following rule for
the calculation of any Feynman graph for the correlation func-
tions 〈�a1 (x1) . . . �an

(xn)〉. Let A = min(a1, . . . , an), then
the integration in all internal lines is to be performed within
the range

∫ ∞
A

dai

ai
. The theory defined in this way is finite

by construction [27,28,41]. In contrast to standard means of
regularization, such as introduction of cutoff momenta, our
method provides an exact conservation of momentum in each
vertex.

IV. ONE-LOOP CORRECTIONS TO VISCOSITY

Bare Green functions of the field theory Eq. (2) are de-
termined by the linear part of the Navier-Stokes operator.
In multiscale theory the bare response function between the
scales α and β is obtained by multiplication of ordinary one
by the wavelet factors:

G
(0)
α,i,β,j (k) = g̃(αk)g̃(βk)

−ık0 + ν0k2
Pij (k).

One loop contribution to this Green function is graphically
shown in Fig. 1. For the simplicity of calculations, same as in
Ref. [27], we have chosen the first derivative of the Gaussian
as the basic wavelet. Its shape naturally resembles a localized

wave. Its Fourier transform is g̃1(k) = −ıke− k2

2 , with Cg1 = 1
2 .

k
a

k
s

b l

k/2+q

k/2−q

α β

k/2

c f

FIG. 1. One-loop contribution to the Green function. Primed
lines denote the u′ fields incident to the vertices. Crossed line denotes
the stirring force correlators. Latin letters indicate vector indices,
Greek letters stand for the scale arguments of external lines.
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Due to the limited range of integration over the scale variables∫ ∞
A

dai

ai
, bounded from below, all internal lines will contribute

a cutoff factor f 2
g (Ak), where k is the momentum of the line,

and fg (x) = 1
Cg

∫ ∞
x

|g̃(a)|2
a

da; for g1 wavelet cutoff factor is

fg1 (x) = e−x2
; see Refs. [27,28] for details.

To calculate one-loop contribution to viscosity coming
from large-scale turbulent pulsations we consider 1PI dia-
grams for the two-point vertex function �(2):

�(2) = �
(2)
bare + �αβ, (22)

where −�αβ is the value of the diagram shown in Fig. 1. The
explicit equation for the “self-energy” �αβ (k) is (the details
are presented in the Appendix C):

�as = − ν0g0kL

∫ ∞

0

y2dy

(2π )2
e−(kL)2(1+4ξ 2 )( 1

4 +y2 )

×
∫ π

0
dθ sin θLas (k, p+, p−)

e−(kL)2y cos θ

1
4 + y2 − ı ω

2ν0k2

, (23)

where we have introduced a dimensionless scale ξ = A
L

and
the dimensionless momentum y = q

|k| for integration in R3.
The one-loop tensor structure of the diagram shown in Fig. 1
is

Las (k, p+, p−) = δas

4

[
(p+k)(p+p−)

p+2 − (kp−)

]

+ p+
a p−

s

2

[
(p+k)

p+2 − (p−k)(p+p−)

p−2p+2

]

+p−
a p−

s

[
(kp−)

p−2 − (p+k)(p+p−)

2p−2p+2

]

− kap
−
s

2
+ p+

a ks

p+p−

4p+2 − p−
a ks

4
, (24)

with p± = k
2 ± q, and all scalar products taken in R3. For the

isotropic turbulence, the tensor structure of the “self-energy”
diagram Eq. (23) may depend only on the direction of vector
k. It can be written in the form

�as = ν0g0�
δk2

(
δas − kaks

k2

)
+ ν0g0�

λkaks. (25)

After standard algebraic manipulations this gives

�δ = kL

128Cg

∫ ∞

0

y2dy

(2π )2

e−(kL)2(1+4ξ 2 )( 1
4 +y2 )

1
4 + y2 − ı ω

2ν0k2

∫ 1

−1
dμ

× (1 − μ2)(8μ2y2 + μ(8y3 − 10y) + 4y2 + 1)(
1

4y
+ y − μ

)(
1

4y
+ y + μ

)
× e−(kL)2yμ,

where μ = cos θ , with θ being the polar angle between k
and q.

In our model the “self-energy” contribution to viscosity is
finite by construction. It determines the relation between the
viscosity measured at certain reference scale, and the viscos-
ity at the observation scale A. Following the Kolmogorov-
Richardson scenario of turbulence development [42], we sum
up all fluctuations from the large stirring scale L up to the

measuring scale A, where ξ = A/L � 1, but still much above
the Kolmogorov scale A � l = (ν3/ε)1/4. Similar settings
were used for renormalization group studies of the general
case of helical turbulence, where the dependence of energy
spectra on observation scale was shown to be significant only
on the edges of of the energy-containing range by means of
affecting the stability of RG fixed points [43,44].

Measuring all lengths in units of L we rewrite renormal-
ization of viscosity in the form

ν(ξ ) = νLZν, Zν = 1 − gL�δ (ξ ). (26)

Equation (26) works fairly well if the difference between the
observation scale A and the stirring scale L is not too big,
otherwise we need to solve RG equations to determine gL and
νL as functions of the microscopic parameters g0 and ν0.

The RG equations may be obtained by iterating Eq. (26)
over the set of scales,

1 = ξL > ξL−1 > ξL−2 > . . . > ξ0 = l

L
,

ξk = ξ0δ
k, δ > 1.

In continuous limit this leads to the RG equation,

d ln ν

d ln ξ
= g(ξ )

�(ξ )

ln δ
, (27)

see Appendix E 1 for the derivation.
Evolution of the formal coupling constant g(ξ ) is deter-

mined by the scale corrections to the stirring force correlator,

D(ξ ) = g(ξ )ν3(ξ )

L
.

In one-loop approximation, the renormalization of stirring
force correlator is given by

d ln D

d ln ξ
= −K (ξ )

ln δ
, (28)

where K (ξ ) is one-loop contribution to the stirring force
correlator, see Appendix D for details. Making use of RG
Eqs. (27) and (28), and since ln g(ξ ) = ln D(ξ ) − ln L −
3 ln ν(ξ ), we get the RG equation for the formal coupling
constant g(ξ ):

d ln g

d ln ξ
= −K (ξ )

ln δ
− 3g(ξ )

�(ξ )

ln δ
, (29)

which has the solution

g(ξ ) = gLe
∫ 1
ξ

dη

η
K (η)

1 − 3gL

∫ 1
ξ

dξ ′
ξ ′ �(ξ ′)e

∫ 1
ξ ′ dη

η
K (η)

, (30)

where we have set ln δ = 1.
In view of K (ξ ) � 1, the value of D(ξ ) is utmost scale-

invariant and we can use the equality,

g(ξ )ν3(ξ ) = g0ν
3
0 = gLν3

L,

to evaluate ν(ξ ) for the known values of g(ξ ).
The solution of the RG Eq. (27) in the IR region, calculated

for a fixed normalization momentum x∗ = 4π , is presented
in Fig. 2. The renormalized viscosity νξ (k) is a counterpart
of renormalized viscosity in the action of ordinary theory
(5). The difference is that νξ (k) is taken not in IR-stable
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FIG. 2. The dependence of turbulent viscosity νA(k) on the ob-
servation scale ξ = A/L and the dimensionless momentum x = kL.
Calculations were performed in the IR region using the equation (30)
at the assumption of invariant gAν3

A = gLν3
L, i.e., small K (ξ ), and

normalization momentum x∗ = 4π used to evaluate gL, in accor-
dance to k = 2 energy injection limit in simulated turbulence from
John Hopkins Turbulence Database.

fixed point, and therefore describes the asymptotic behav-
ior of large-scale eddies, but is taken at a fixed observa-
tion scale A = ξL. In terms of the scale-dependent action
S[ua, u

′
a] νξ (k) can be understood as a viscosity acting on the

wavelet-type pulsations of the velocity field ua (x) measured
at scale A. The wave vector k of such perturbations can take
arbitrary values.

In this paper we neither aim to construct a turbulent stress
tensor, as is presented in statistical filtering theory [24] for the
wave vectors less or equal to 1/a, nor we construct statistical
closures for scale-dependent fields ua (x) for it would result in
integral equations. Instead, since what is really measured in
turbulence are the n-point correlation functions, we consider
the Fourier transform of such functions 〈ũa1 (k1) . . . ũan

(kn)〉,

= + 1_
2

+ +

FIG. 3. Feynman diagrams used for evaluation of the pair corre-
lator of velocity field.

where the wave vectors ki are responsible for the separation
between the observation points, while the scale arguments ai

are responsible for the observation scales.

V. ENERGY SPECTRA

The full kinetic energy of homogeneous isotropic turbu-
lence can be expressed in terms of scale components of the
velocity field: E = 1

2

∫ 〈|ũa (k)|2〉 ddk
(2π )d

1
Cg

da
a

. We evaluate the
equal-time pair correlator C(k, ξ ) = 〈ũA(t, k)ũA(t,−k)〉 of
velocity field wavelet coefficients according the diagram rule
shown in Fig. 3. The first term, the bare correlator integrated
over the frequency and two internal scales, is equal to

C (0) = 1

ν0k2

g0ν
3
0

L
(Lk)2e−(Lk)2 |g̃(Ak)|2Pik (k). (31)

The next contribution comes from the symmetric diagram
in first line of Fig. 3, integrated over the frequency arguments.
This gives

C (2) = 1

2

(
g0ν

3
0

2Cg

)2
L2k3

16ν3
0

|g̃(Ak)|2f 2(Ak)Pik (k)
∫

y2dy

(2π )2

e−2(Lk)2(1+2ξ 2 )( 1
4 +y2 )

(
1
4 + y2

)
4
(

1
4 + y2

)
ν0k2

(
1 + 1

2

(
1
4 + y2

)) ∫
dμ

(1 − μ2)(8μ2y2 + 4y2 + 1)(
1
4 + y2 − yμ

)(
1
4 + y2 + yμ

) ,

(32)

where f (Ak) = e−(Ak)2
are wavelet filters in the legs of diagram. 1/2 before the whole equation is a topological factor.

Two last diagrams in Fig. 3 contribute equally to the correlation function. Their joint contribution is

2C (1) = − 2Pik (k)|g̃(Ak)|2f 2(Ak)
g0ν

3
0

CgL
|g̃(Lk)|2 g0kL

128Cg

∫
y4dy

(2π )2

e−(Lk)2(1+4ξ 2 )( 1
4 +y2 )

2(ν0k2)2
[
1 + 2

(
1
4 + y2

)]
×

∫
dμ

(1 − μ2)(8μ2y2 + 2μy(4y2 − 5) + 4y2 + 1)(
1
4 + y2 − yμ

)(
1
4 + y2 + yμ

) e−(kL)2yμ. (33)

The common sign minus stands for the fact �δ is equal to minus diagram.
The final equation, without common wavelet factor g̃(kA) ¯̃g(kA) on the legs of each diagram, calculated with g1 wavelet is

given by

C(k, ξ ) = g0ν
3
0

νA(k)
Le−(Lk)2 +

(
g0ν

3
0

)2

128

(Lk)L

ν4
A(k)

e−2ξ 2(Lk)2
∫ ∞

0

y2dy

(2π )2

e−2(kL)2(1+2ξ 2 )( 1
4 +y2 )

1 + 1
2

(
1
4 + y2

) ∫ 1

−1
dμ

(1 − μ2)(8μ2y2 + 4y2 + 1)(
1
4 + y2 − yμ

)(
1
4 + y2 + yμ

)
+

(
g0ν

3
0

)2

32

(Lk)L

ν4
A(k)

e−(Lk)2(1+2ξ 2 )
∫ ∞

0

y4dy

(2π )2

e−(kL)2(1+4ξ 2 )( 1
4 +y2 )

1 + 2
(

1
4 + y2

)
×

∫ 1

−1
dμ

(μ2 − 1)(8μ2y2 + 2μy(4y2 − 5) + 4y2 + 1)(
1
4 + y2 − yμ

)(
1
4 + y2 + yμ

) e−(kL)2yμ. (34)
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The coupling g0 is related to the mean energy dissipation
rate per unit of mass ε by the energy balance equation εL4 =
g0ν

3
0χ [g], where χ [g] is numeric factor, which depends on

the shape of basic wavelet Eq. (21). For the g1 wavelet used
in this paper χ [g1] = 3

8π3/2 .
The obtained function Eq. (34) can be used to study

the dependence of the turbulent pulsations energy spectrum
E(x, ξ ) = 4πk2C(k, ξ ), which is assumed to be Kolmogorov
spectrum, if there is no dependence on the observation scale
ξ = A/L.

We have compared our results with the 10243 grid simula-
tions of homogeneous isotropic turbulence presented in John
Hopkins Turbulence Database (JHTDB) and described, e.g.,
in Ref. [45], with the following parameters of simulation: cu-
bic domain of size L = 2π , Kolmogorov length l = 0.0028,
dissipation rate ε = 0.103, viscosity ν0 = 0.000185.

In traditional theory of turbulence the dependence of re-
sults of measurements, viz. the fields vδ := 1

δd

∫
v(x)ddx and

their statistical momenta, on the averaging scale δ is usually
considered as an artifact of inappropriate choice: if δ is too
small, say is close to the mean free path, we may get out of
applicability of hydrodynamic approximation; alternatively, if
it is too large, that is of the same order as the system size
L, we get out of the limits of the Kolmogorov theory. Thus,
the “legitimate” choice of observation scale lies deeply inside
the Kolmogorov range of scales: l � δ � L. Experimental
processing of turbulence data stepped a little further when the
wavelet transform was used to study turbulence behavior in
(k, a) plane [32]. The study of distributions in (k, a) plane
gives more information than that in k only: the window width
(a) for each mode (k) may tell whether this mode originates
from the small or from the large-scale dynamics.

In the limit of large observation scales a � L there is
no need for pulsations ua (k) to obey Kolmogorov’s laws.
The energy of such pulsations decreases with the increase of
resolution a → L. The analytic tools, based on continuous
wavelet transform, we propose in this paper may be useful in
analytical computations of correlations of velocity pulsations
measured at different spatial resolution.

As we can see from Fig. 4, the slope of the curves E(k, ξ )
depends on the observation scale ξ . The curves A = 0.1, 0.2,
corresponding to small observation scales, i.e., those more
than an order of magnitude less than external scale L, have
the slopes close to the Kolmogorov k− 5

3 regime. In contrast,
the larger observation window A = 0.5, 1.0, i.e., only one
order less than L, results in a steeper falloff of the energy
curves. Same thing happens with the dependence of energy
on the dimensionless wave vector x = kL. Our analyzing

wavelet g̃(ak) ∼ (ak)e− (ak)2

2 is mostly sensitive to the wave
numbers k ∼ 1

a
, hence the observation scale A ∼ 0.1 results

in dimensionless wavevectors of the order x ∼ 2π
0.1 ≈ 63, and

similar for other curves, which qualitatively agrees with that
observed in Fig. 4.

The spectral index is close to the Kolmogorov value
− 5

3 for the values of observation scale in the middle of
the inertial range ξ0 � ξ � 1, but becomes steeper when
approaching the dissipation scale ξ0. Since our correlation
functions Eq. (34) represent only partial energies of the given
scale ξ = A/L fluctuations, only the slopes can be compared.

10-6

10-5

10-4

10-3

10-2

10-1

100

 10  100

E(
x)

x=kL

A=0.1
A=0.2
A=0.5
A=1.0

JHU

FIG. 4. One-dimensional energy spectra. Calculated for the set
of parameters of the John Hopkins Turbulence Database for the
isotropic turbulence grid simulations. The curves show the spectra
for observation scales A = 0.1, 0.2, 0.5, 1.0. The E(k) numerical
energy spectrum, obtained for the 1283 decimation of the original
JHTDB 10243 data, is shown by dashed line. The normalization
scale x∗ = 4π corresponds to the k = 2 energy injection limit. All
quantities are normalized to (2π )3 volume.

The integral over all scales should give a “no-scale” energy
spectrum. Since we are interested in the dependence of the
energy spectra on the observation scale ξ in Fig. 4 we
present the graphs of such spectra and the standard “no-scale”
spectrum (shown in dashed line) obtained from numerical
simulations [46].

VI. CONCLUSION

We conclude, that using the multiscale representation of
fields in field-theoretic calculations of turbulent velocity cor-
relations we can obtain more information on the statistics of
turbulent pulsations, than by standard spectral methods. Pre-
sented formalism is more relevant to experimental studies: any
measured statistics of turbulent pulsations is always obtained
at certain observation scale by averaging velocity fluctuations
over the measuring volume. This volume should be somehow
taken into account by theoretical description of turbulence.

It should be noted that our method of renormalization,
acting from larger scales to smaller scales, ignores any effects
of inverse energy cascade. This is significant simplification.
The authors think, however, that a rigorous approach to the
effect of small-scale fluctuations on large-scale fluctuations,
which remains a chalenging problem, would involve more
complicated description than just the forced Navier-Stokes
equation itself. First of all the parity breaking effects and the
inviscid topological invariants should be taken into account
[44]. The complexity of the problem can be seen for instance
from the recent paper [47]. We can hardly foresee such theory
of an incompressible fluid flow capable of analytic calcula-
tions in the nearest future. The incompressibility itself is also a
simplification. Wavelets might be of some use here as well, but
up to the best authors knowledge their use in studying inverse
energy cascade is limited to numerical simulation [48].

From experimental point of view the dependence of the
energy spectra on the observation scale A becomes important
when that scale approaches the Kolmogorov dissipative
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length l. In this limit the really observed steepness of the
energy spectra should significantly exceed the Kolmogorov
value of −5/3. In the opposite case, if the observation
scale A approaches the system size L, the steepness also
increases for a large-scale aperture can hardly resolve the
energy-containing range fluctuations. If the observation scale
belongs to the inertial range, the steepness is utmost equal to
the Kolmogorov value, and does not significantly depend on
scale [49].
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APPENDIX A: LARGE-SCALE STIRRING FORCE

According to the Kolmogorov hypotheses, the energy in-
jection should be equal to viscous energy dissipation per unit
of mass. For stationary turbulence, to justify that the rate of
energy dissipation per unit of mass,

ε = d

dt

〈u2(t, x)〉
2

= 〈u̇i (t, x)ui (t, x)〉, (A1)

is compensated by the stirring force f , we chose the random
force correlator by defining the correlation function of its scale
components:

〈f̃ai (t, k)f̃a′j (t ′, k′)〉
= δ(t−t ′)Pij (k)g0ν

3
0Cg (2π )dδd (k+k′)aδ(a−a′)δ(a−L),

where g0 is formal dimensionless strength of forcing, to be
used for the perturbation expansion [19]. The δ functions in
scale arguments ensure that fluctuations of different scales a

and a′ are uncorrelated, and the work is exerted over the fluid
only at large scale a = L.

Reconstruction of Eulerian velocities ui from their scale
components uai by means of inverse wavelet transform gives

〈u̇i (t, x)ui (t, x)〉

= 1

C2
g

∫
exp[ıx(k1 + k2)]g̃(a1k1)g̃(a2k2)〈f̃a1i (t, k1)

×
∫ t

f̃a2i (τ, k2)dτ 〉 ddk1

(2π )d
da1

a1

ddk2

(2π )d
da2

a2

= g0ν
3
0

Ld+1

(d − 1)

2Cg

∫ ∞

0
|g̃(y)|2 ddy

(2π )d
, (A2)

where factor (d − 1) comes from the trace of orthogonal
projector, and the factor 1

2 is the value of the θ function at
the discontinuity. For particular case of

g̃1(k) = −ıke−k2/2

wavelet in d = 3 dimensions, we get

Cg = 1

2
,

∫ ∞

0
y2e−y2 4πy2dy

8π3
= 3

16π3/2
≡ χ [g1]

2
,

Substituting this integral into Eq. (A2), one gets

ε = g0ν
3
0

L4

3

8π3/2
. (A3)

APPENDIX B: FEYNMAN DIAGRAM TECHNIQUE

Using the generating functional Eq. (19) with the action
Eq. (20) we can easily derive the Feynman diagram technique
for the scale-dependent fields �a .

The correlation functions are given by functional deriva-
tives

〈�a1 (x1) . . . �an
(xn)〉c = δnW [A]

δAa1 (x1) . . . δAan
(xn)

∣∣∣∣
A=0

.

The difference is that each spatial integration measure dx is
substituted by the integration measure over affine group dxda

a
,

with functional derivatives taken with respect to this measure.
Using the Fourier transform,

u(x) =
∫

eı(kx−ωt )u(k)
ddkdω

(2π )d+1
,

of the fields in Eq. (20) we make each convolution with basic
wavelet g into a multiplicative factor g̃(ak). In this way we
obtain the following diagram technique:

(1) Each external line is labeled by a pair (a, k)
(scale,momentum) and a vector index (i).

(2) The integration in each internal line is performed over
the measure dω

2π
dd k

(2π )d
da
a

1
Cg

.

(3) There are two type of lines: (a) Green functions 〈uu′〉
and (b) correlation functions 〈uu〉; the auxiliary field u′ has
zero moments 〈u′u′〉 = 0. These Green functions are given by
propagator matrix K−1 multiplied by wavelet factors g̃(ak)
on each leg.

(4) Each line carrying momentum k is proportional to
orthogonal projector Pij (k), where i and j are vector indices
of the line, i.e.,

G
(0)
iα,jβ (k) = g̃(αk)Pij (k)g̃(βk)

−ıω + ν0k2

for the Green function, and

D
(0)
iα,jβ (k) = Pij (k)

g0ν
3
0

CgL

g̃(αk)|g̃(kL)|2 ¯̃g(βk)

| − ıω + ν0k2|2
for the bare velocity pair correlation function.

(5) Each vertex of the diagram is given by mabc(k) =
ı
2 (kbδac + kcδab ), multiplied by 3 wavelet factors of adjusted
lines.

(6) We consider the observation scale A to be much
bigger than the viscous dissipation scale l and to belong
the Kolmogorov range: ξ = A/L � 1. For this reason we
assume the statistical momenta of the turbulent velocity field
are determined by direct energy cascade. At the language of
Feynman diagrams this means it should be no scales ai in
internal lines less than minimal scale of all external lines.
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APPENDIX C: ONE-LOOP CONTRIBUTIONS
TO THE GREEN FUNCTIONS

The scale dependence of the viscosity is given by renor-
malization of the Green function 〈�α (x)�β (x ′)〉 by means
of loop corrections. In Fourier space the value of the Green
function G

(2)
αa,βs (k), shown in diagram Fig. 1, can be evaluated

from the above mentioned expressions for the vertices and
the Green functions after the integration over internal line
scale arguments. The upper line of the diagram Fig. 1, (p+),
contains the random stirring force correlator, the bottom line
(p−) is the Green function.

The frequency integration in the loop integral can be done
explicitly ∫ ∞

−∞

dq0

2π

∣∣∣∣G0

(
k

2
+ q

)∣∣∣∣
2

G0

(
k

2
− q

)

= 1

2ν2
0

( k
2 + q

)2

1

− ık0

ν2
0

+ k2

2 + 2q2
,

where

G0(k) = 1

−ık0 + ν0k2
.

The loop tensor structure Las (k, p+, p−) Eq. (24) is given
by the convolution of

L(k, p+, p−) = mabc(k)mf ls (p−)Pbl (p
+)Pcf (p−), (C1)

where

mabc(k) = ı

2
(kbδac + kcδab ), p± = k

2
± q,

over repeated indices. The explicit equation for tensor struc-
ture is Eq. (24).

Let A = min(α, β ) be the minimal scale of two external
lines of the diagram Fig. 1. The lower line (p−) contributes
two identical g1 wavelet factors

e−(Ap− )2 = 1

Cg

∫ ∞

A

|g̃(ap−)|2 da

a
,

so the factor e−2(Ap− )2
will be prescribed to the bottom line,

and similar factor e−2(Ap+ )2
will be prescribed to the upper

line.
Introducing the dimensionless momentum q = |k|y, with

the polar angle between q and k measured from the k di-
rection, we can write the whole one-loop integral in d = 3
dimension in the form

−�as (k) = g0ν
3
0

CgL

∫
k3 y2dy

(2π )3
sin θdθdϕLas (k, p+, p−)

1

ν2
0k4

1
1
2 + 2y2 + 2y cos θ

1
1
2 + 2y2 − ık0

ν0k2

× (Lk)2

[
1

4
+ y2 + y cos θ

]
e−(Lk)2[ 1

4 +y2+y cos θ]e−2(Lk)2ξ 2[ 1
4 +y2−y cos θ]e−2(Lk)2ξ 2[ 1

4 +y2+y cos θ].

This can be simplified to

−�as (k) = g0ν
3
0C

−1
g Lk

4ν2
0

∫
y2dy

(2π )3
sin θdθdϕLas (k, p+, p−)

1
1
4 + y2 − ık0

2νk2

.

The sign −� is introduced for the value of one-loop integral is equal to minus “self-energy” contribution.
In view of the existence of only one preferred direction, that is the direction of k, the integrals of Las should depend upon

two scalars only:

T1 ≡ TrLas, T2 = kaks

k2
Las, (C2)

T1 = − (p−k)(p+p−)2

2(p+)2(p−)2
+ (p+k)(p+p−)

(p+)2
− (p−k)

2
,

T2 = − (p+k)(p+p−)(p−k)2

(p+)2(p−)2k2
+ (p−k)(p+k)2

2(p+)2k2
+ (p+k)(p+p−)k2

2(p+)2k2
+ (p−k)3

(p−)2k2
− (p−k).

Assuming

�as = ν0g0�
δδask

2 + ν0g0�
T kaks = −

∫
Lasdμ(y, θ ), (C3)

we get

(d�δ + �T )k2 = −
∫

T1dμ(y, θ ) = −k2I1, (�δ + �T )k2 = −
∫

T2dμ(y, θ ) = −k2I2,

where d =3 is the space dimension. So, we need to calculate I1 and I2. From where

�δ = −I1 − I2

2
, �T = −I2 − �δ = −3I2 − I1

2
.
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The substitution q = ky, (kq ) = kyμ, with μ ≡ cos θ , gives:

T1 = TrLas = k2 −μ3y3 + 2μ2y4 + μy3 − 2y4

2
[(

1
4 + y2

)2 − y2μ2
] = 8k2(μ − 1)(μ + 1)(2y − μ)y3

(4y2 − 4yμ + 1)(4y2 + 4yμ + 1)
,

T2 = kaks

k2
Las = k2 −μ3y5 + μy5 − μ4y4 + 5

2μ2y4 − 3
2y4 + 1

4μ3y3 − 1
4μy3 − 1

8μ2y2 + 1
8y2

2(1/4 + yμ + y2)(1/4 − yμ + y2)

= −k2 (μ − 1)(μ + 1)(8μy3 + 8μ2y2 − 12y2 − 2μy + 1)

(4y2 − 4yμ + 1)(4y2 + 4yμ + 1)
y2,

T1 − T2

2
= k2 (μ2 − 1)y2(8μ2y2 + μ(8y3 − 10y) + 4y2 + 1)

2(4y2 − 4yμ + 1)(4y2 + 4yμ + 1)
,

3T2 − T1

2
= −k2 (μ2 − 1)y2(24μ2y2 + μ(24y3 − 14y) − 20y2 + 3)

2(4y2 − 4yμ + 1)(4y2 + 4yμ + 1)
.

After standard algebraic manipulations, this gives

�δ = kL

128Cg

∫ ∞

0

y2dy

(2π )2

e−(kL)2(1+4ξ 2 )( 1
4 +y2 )

1
4 + y2 − ı 2k0

ν0k2

∫ 1

−1
dμ

(1 − μ2)(8μ2y2 + μ(8y3 − 10y) + 4y2 + 1)(
1

4y
+ y − μ

)(
1

4y
+ y + μ

) e−(kL)2yμ,

(C4)

�T = − kL

128Cg

∫ ∞

0

y2dy

(2π )2

e−(kL)2(1+4ξ 2 )( 1
4 +y2 )

1
4 + y2 − ı 2k0

ν0k2

∫ 1

−1
dμ

(1 − μ2)(24μ2y2 + μ(24y3 − 14y) − 20y2 + 3)(
1

4y
+ y − μ

)(
1

4y
+ y + μ

) e−(kL)2yμ,

where μ = cos θ determines the polar angle between k and q.
Since the velocity field is transversal, it is natural to present
the self-energy as a sum of transversal and longitudinal terms:

�as = νg�δ

(
δas − kaks

k2

)
k2 + νg�lkaks, (C5)

where �l = �δ + �T .

APPENDIX D: ONE-LOOP CONTRIBUTION
TO STIRRING FORCE CORRELATOR

The one-loop contribution to stirring force correlator is
shown in Fig. 5 below. The tensor structure of this diagram
has the form

Cas (k, p+, p−) = −mabc(k)msf l (k)P bl (p+)P cf (p−),

(D1)

or explicitly:

Cas (k, p+, p−) = δas

[
k2 − (p+k)2

4(p+)2
− (p−k)2

4(p−)2

]
+ kaks

2

+ p+
a p+

s

4

[
(p−k)2

(p−)2(p+)2
− k2

(p+)2

]

+ p−
a p−

s

4

[
(p+k)2

(p−)2(p+)2
− k2

(p−)2

]

= (p+
a p−

s + p−
a p+

s )
(p+k)(p−k)

4(p+)2(p−)2

− (kap
+
s + p+

a ks )
(p+k)

4(p+)2

− (kap
−s + p−

a ks )
(p−k)

4(p−)2
.

The corresponding invariants the tensor structure can depend
on are

C1 = TrCas = 3

2
k2 − (p−k)2

(p−)2
− (p+k)2

(p+)2

+ (p+k)(p−k)(p+p−)

2(p+)2(p−)2
,

C2 = kaks

k2
Cas = k2 − (p−k)2

(p−)2
− (p+k)2

(p+)2
+ (p−k)2(p+k)2

(p−)2(p+)2
.

In dimensionless variables

C1 = − 2k2(μ2 − 1)y2(12y2 + 1)

(4y2 − 4yμ + 1)(4y2 + 4yμ + 1)
,

C2 = 16k2(μ2 − 1)2y4

(4y2 − 4yμ + 1)(4y2 + 4yμ + 1)
,

C1 − C2

2
= − k2(μ2 − 1)y2(8y2μ2 + 4y2 + 1)

(4y2 − 4yμ + 1)(4y2 + 4yμ + 1)
,

3C2 − C1

2
= k2(μ2 − 1)y2(24y2μ2 − 12y2 + 1)

(4y2 − 4yμ + 1)(4y2 + 4yμ + 1)
. (D2)

k
a s

b l

k/2+q

k/2−q

α β

k/2

c f

−k

FIG. 5. One-loop contribution to the correlation function. Greek
letters α and β denote scale arguments.
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The total symmetric contribution to the 1PI correlation function has the form

�(2)
as =

(
g0ν

3
0

LCg

)2 ∫
d4q

(2π )4

|g̃(Lp+)|2f 2(Ap+)

| − ıω+ + ν0(p+)2|2
|g̃(Lp−)|2f 2(Ap−)

|−ıω− + ν0(p−)2|2 Cas (k, p+, p−).

In case the nonzero frequency k0 �= 0,∫ ∞

−∞

dq0

2π

∣∣∣∣G0

(
k

2
+ q

)∣∣∣∣
2∣∣∣∣G0

(
k

2
− q

)∣∣∣∣
2

= 1

4ν3
0

k2

4 + q2( k2

4 + q2 + ı 2k0
ν0

)( k2

4 + q2 − ı 2k0
ν0

) · 1
k2

4 + q2 + kq
· 1

k2

4 + q2 − kq
. (D3)

In the case of the zero frequency k0 = 0, this turns out to be∫ ∞

−∞

dq0

2π

∣∣∣∣G0

(
k

2
+ q

)∣∣∣∣
2∣∣∣∣G0

(
k

2
− q

)∣∣∣∣
2

= 1

4ν3
0

1
k2

4 + q2
· 1

k2

4 + q2 + kq
· 1

k2

4 + q2 − kq
. (D4)

The δ function in scale variables results in square of wavelets in both upper and lower parts of the loop

|g̃(Lp+)|2|g̃(Lp−)|2 = L2

(
k
2

+ q
)2

e−L2( k
2 +q)2

L2

(
k
2

− q
)2

e−L2( k
2 −q)2.

The angle arguments in the exponents are canceled due to symmetry. The filter factors for g1 wavelet are

f (Ap±) = e−(Ak)2(1/4+y2±y cos θ ).

After integration over the loop frequency variable
∫ ∞
−∞

dq0

2π
. . . we get

�(2)
as =

(
g0ν

3
0

LCg

)2

(kL)4
∫ [(

1

4
+ y2

)2

− y2 cos2 θ

]
e−2(kL)2( 1

4 +y2 ) 1

4ν3
0

k2

4 + q2( k2

4 + q2 + ı 2k0
ν0

)( k2

4 + q2 − ı 2k0
ν0

) ·

× 1
k2

4 + q2 + kq
· 1

k2

4 + q2 − kq
e−4ξ 2(Lk)2( 1

4 +y2 )Cas (k, p+, p−)
q2dq

(2π )2
sin θdθ.

After algebraic simplification we get

�(2)
as (L, k) =

(
g0ν

3
0

2Cg

)2
L2

ν3
0

∫
q2dq

(2π )2
sin θdθ

e−2(Lk)2(1+2ξ 2 )( 1
4 +y2 )Cas (k, p+, p−)

( k2

4 + q2
)

( k2

4 + q2 + ı 2k0
ν0

)( k2

4 + q2 − ı 2k0
ν0

) .

In view of isotropy, using Eq. (D2), we get

Cas = Cδδas + CT kaks

k2

with

Cδ (L, k) =
(

g0ν
3
0

2Cg

)2
L2k3

16ν3
0

∫
y4dy

(2π )2
dμ

e−2(Lk)2(1+2ξ 2 )( 1
4 +y2 )

(
1
4 + y2

)
(

1
4 + y2 + ı 2k0

ν0k2

)(
1
4 + y2 − ı 2k0

ν0k2

) (1 − μ2)(8y2μ2 + 4y2 + 1)(
1
4 + y2 − yμ

)(
1
4 + y2 + yμ

) . (D5)

APPENDIX E: RENORMALIZATION GROUP EQUATIONS

1. Renormalization of viscosity

We use the following set of scales l = A0 < A1 < A2 < . . . < AL = L. In terms of dimensionless variable ξ = A/L this
corresponds to ξ0 = R−1, ξ1, ξ2, . . . , ξL = 1, where R = L/l � 1. If we use the iteration from the Kolmogorov dissipation
scale l to the macro scales, we would get the following chain of equations:

ν1 = ν0[1 + g0�(ξ0)], ν2 = ν1[1 + g1�(ξ1)], νk+1 = νk[1 + gk�(ξk )].

If we go from large scales to smaller scales the proposed inversion formulas are

ν0 ≈ ν1[1 − g1�(ξ0)], ν1 ≈ ν2[1 − g2�(ξ1)], νk−1 ≈ νk[1 − gk�(ξk−1)], (E1)

where gk ≡ g(ξk ). The iteration scheme above can be written in a form of difference equation

νk−1 − νk

νk

= −g(ξk )�(ξk−1). (E2)

For the equal scale steps Ak = A0δ
k, ξk = ξ0δ

k,� ln ξ = ln δ�k, we get

� ln ν

�k
= g(ξk )�(ξk ), or

d ln ν

d ln ξ
= g(ξ )

�(ξ )

ln δ
. (27)
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2. Renormalization of stirring force

The one-loop contribution to the stirring force correlation function is shown in Fig. 5.
Since the stirring force acts on large scales only, its yield on smaller scales will be the sum of correlator itself and the one

loop correction

DL−1 = DL + D2
L ∗ OneLoopK (ξL−1) (E3)

with D(ξ ) = g(ξ )ν3(ξ )/L, hence

DL−1 − DL

DL

= DL ∗ OneLoopK (ξL−1).

In differential form the latter difference equation yields

d ln D

d ln ξ
= −K (ξ )

ln δ
, (28)

where

K (ξ ) = (kL)3

16

∫
y4dy

(2π )2
dμ

e−2(Lk)2(1+2ξ 2 )( 1
4 +y2 )

(
1
4 + y2

)
(

1
4 + y2 + ı 2k0

ν0k2

)(
1
4 + y2 − ı 2k0

ν0k2

) (1 − μ2)(8y2μ2 + 4y2 + 1)(
1
4 + y2 − yμ

)(
1
4 + y2 + yμ

) . (E4)

The value of K (ξ ) is typically a few orders of magnitude less than �(ξ ).

APPENDIX F: FREQUENCY INTEGRALS THAT CONTRIBUTE TO VELOCITY PAIR CORRELATOR

The bare correlation function, being integrated over the frequency, contains the integral

Iw0 =
∫ ∞

−∞

dω

2π

1

| − ıω + A|2 = 1

2A
, A = νk2. (F1)

The integral coming from 1PI correlation function multiplied by two conjugated correlation functions from the legs of the
diagram has the form

Iw2 =
∫ ∞

−∞

dω

2π

1

| − ıω + A|2
1

|B + ı 2ω
A

|2 , B = 1

4
+ y2. (F2)

Substituting C = AB
2 , we get

Iw2 =
∫ ∞

−∞

dω

2π

A2

4

1

ω2 + A2

1

ω2 + C2
= 1

8

A

C(A + C)
= 1

4
(

1
4 + y2

)
νk2

[
1 + 1

2

(
1
4 + y2

)] .

The third integral comes from two conjugated diagrams with self-energy multiplied by correlator and propagator

I1w =
∫ ∞

−∞

dω

2π

1

ω2 + A2
· 1

−ıω + A
· 2A

4C − ıω
= 1

2A(A + 4C)
= 1

2(νk2)2
[
1 + 2

(
1
4 + y2

)] .

This integral contributes twice for there are two conjugated diagrams, shown in the lower part of Fig. 3.
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