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Current-voltage response for unipolar funnel-shaped nanochannel diodes
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Permselective nanochannels can rectify the electric current transported through them similar to solid-state
diodes. The rectification is due to symmetry breaking related to distribution of the nanochannels’ surface charge
as well as the geometry. Thus far, most of the works related to the asymmetric current response have been
primarily experimental. Here, we theoretically model a funnel-shaped nanochannel with a nonhomogeneous
surface charge from which we derive a current-voltage relation (I-V). If the effects of the adjacent microchannels
are ignored, the I-V is shown to behave like a unipolar diodes. When the effects of the adjacent microchannels
are accounted for, the channel behaves like a diode only in a small voltage domain, while at larger voltages, the
response is determined by the microchannels. The theoretical results are confirmed by numerical simulations.
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I. INTRODUCTION

Permselective nanochannels have garnered much interest
in the last decade due to the many applications to which they
are relevant [1–3]. Their ability to filter ions based on their
electric charge [4–8] has made them an ideal tractable model
for permselective membranes commonly used in desalination
[9,10]. Also, due to their small size, they are ideal biomolecu-
lar detectors where the molecules are detected via a change
in the electrical current due to modification of the channel
surface charge [11] or simply due to steric effects [12]. Of
particular interest is their potential to act as fluid-based diodes
[13] similar to their solid-state counterparts [14] where the
nanochannel can potentially rectify the electric current by
orders of magnitudes [13,15]. The diodelike behavior depends
on the distribution of the surface within the channel as well as
the geometry. The two simplest surface charge distributions
are those that make the diodes unipolar [16,17] or bipolar
[11,16,18–21] and the simplest geometries are either straight
[16,17,20–22] or conical [11,13,18,19,21] nanopores.

Nanofluidic bipolar diodes are similar to their solid-state
counterparts in that they are comprised of two charged regions
of opposite charges which are responsible for the symme-
try breaking. In contrast, unipolar diodes are comprised of
two nanochannel regions, where only one of the regions is
charged, while the charge of the second region has been
neutralized or modified [11,17,18]. However, diodes are not
the only way to rectify the current. There are many paths to
current rectification even when the entire nanochannel is ho-
mogeneously charged. Permselective nanochannels can rec-
tify the current if any symmetry in the system is broken (vary-
ing nanochannel geometry [23–25], asymmetric microchannel
geometry [26], asymmetric microchannel bulk concentrations
[8,25,27–31] and/or pH [32], ion mobilities [33]). Thus,
current rectification is a robust process. Perhaps the major
difference between these different rectification paths, and the
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diodelike behaviors, is that the former are usually current
limited for both positive and negative flows whereas bipolar
diodes exhibit a limiting current only in one direction (as do
diodes). The behavior of unipolar diodes will be discussed
more extensively in this work where it is shown that under
different circumstances, unipolar diodes respond differently—
sometimes they have one limiting current and sometimes two.

The symmetry breaking is a result of the nanochannels’
permselective property whereby ions of a certain charge
(counterions) are transported through the channel while ions
of the opposite charge (coions) are excluded [10]. As will
be discussed below, the degree to which the nanochannel
can filter out these ions depends on the surface charge as
well as the degree of electric double layer (EDL) overlap
[26,34–37]. This permselective property is best understood
at its two extremes: ideal and vanishing permselectivity. In
the ideal case, due to strong EDL overlap and large surface
charge [37], coions are completely excluded from the channel
and their transport is completely inhibited. In the vanishing
case, the EDLs do not overlap and the effects of the surface
charge are rather negligible, such that coion and counterion
concentration distributions hardly vary under the application
of an electric field [26,38]. In the vanishing permselective
limit nanochannels typically behave like classical macro-
scopic channels and rectification is minimal. In reality, all
channels exhibit an intermediate degree of permselectivity
which can be termed nonideal permselectivity [39,40]. While
this more general case can be treated mathematically, the
end result typically requires numerical evaluation and sim-
ple analytical solutions are not attainable [39]. In contrast,
consideration of the two extreme cases vastly simplifies the
mathematical analysis and allows for the derivation of simple
closed-form analytical solutions [25,26,37,38]. Further, the
region in which the nonideal model cannot be described
accurately by either of the two extremes cases is small [26,34].

Most of the aforementioned works on diodes and/or rectifi-
cation factors have been either experimental and/or numerical
although some theoretical consideration has been given. Thus
far theoretical works have primarily modeled the rectification
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under the assumption of vanishing permselectivity [24,30–
32,41], or used the more general formulation [8,21,23,29]. In
the limit of ideal permselectivity, there are even fewer works:
two works for bipolar diodes [16,22], and one for a unipo-
lar diode [16]. However, in these works, the effects of the
adjacent microchannels were ignored and the systems were
assumed to be completely one dimensional (1D). In a recent
work [25], we derived an analytical solution for the case of a
bipolar diode where the two-dimensional (2D) microchannels
are not neglected. There, it is shown that not only are the
effects of microchannels non-negligible, they are crucial in
determining the overall response. In the sole theoretical work
for the unipolar diode [16], the current-voltage response (I -V )
was not given by a single expression that covered the entire
voltage domain response but was comprised of a number of
piecewise solutions that varied for large or small and positive
or negative voltages.

This work considers ion transport through a 2D ideally
permselective funnel-shaped unipolar diode in two scenarios.
First, we consider the case where the unipolar diode is not
connected to adjacent microchannels. While this scenario is
not completely realistic, it is instructive. Section II introduces
the geometry (without the microchannels) and governing
equations. We derive the solution for concentration and the
electric potential distributions from which we find a simple
and single I -V relation. The solution derivation is based
on the assumption that the 2D problem can be reduced to
a qausi-1D transport problem that retains much of the 2D
characteristics. We present 1D and 2D results in Sec. III. We
then consider the more realistic case of when the diode is
connected to adjacent microchannels. It has been established
that the adding of adjacent microchannels to long nanochan-
nels is tantamount to changing the boundary conditions at
that interface [25,26,38,39]. Hence, the derivation in the first
scenario will also hold for the second scenario. In Sec. IV, the
derivation is extended to include the effect of the microcham-
bers where we show that the adjacent 2D microchannels play
a crucial role in determining the overall response. Concluding
remarks are given in Sec. V.

II. THEOERTICAL MODEL

A. Geometry

We consider a planar Cartesian 2D funnel-shaped ge-
ometry (see Fig. 1) where the height of the upper surface
is given by h(x) = h1 + x tan α, where the funnel angle is
tan α = (h2 − h1)/�, and the length of the entire channel is
� = L1 + L2. The model consists of a system comprising
two regions. Region 1, defined by x ∈ [0, L1], y ∈ [0, h(x)],
is ideally permselective which corresponds to the surface
charge, σs , determining the nanochannels’ response [34]. In
region 2, defined by x ∈ [L1,�], y ∈ [0, h(x)], the effects of
the surface charge are negligible. However, ion transport in
region 2 strongly depends on transport in region 1 [34]. A
plane of symmetry is defined along the x axis (y = 0) such
that only the top surface in region 1 is charged. The case α = 0
(h1 = h2) and L2 = 0 corresponds to a straight and uniformly
charged nanochannel that has previously been considered in
2D [25,38,39] and 3D [26,34,42]. To simplify the analysis, we
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FIG. 1. Schematic of a 2D funnel-shaped channel of angle α

under an applied potential V . The top surface in region 1 (marked
in blue) is charged by a negative surface charge σs .

assume that the interface between the regions is sharp which
corresponds to the soon-to-be defined parameter ε going to
zero [10].

B. Governing equation

The nondimensional equations governing ion transport
through a permselective medium for a symmetric and binary
(z± = ±1, D̃± = D̃) electrolyte are the Poisson-Nernst-
Planck (PNP) equations. In steady state and with negligible
convection these are [10,35,43]

∇ · (∇c± ± c±∇φ) = −∇ · j± = 0, (1)

2ε2∇2φ = −ρe. (2)

Equation (1) is the Nernst-Planck equation for continuity of
ionic fluxes for the counterion, c+, and coion, c−, concentra-
tions that have been normalized by the bulk concentrations c̃0

(tilde denotes the parameter in dimensional form). The spatial
coordinates have been normalized by the diffusion length L̃ =
L̃2 (see Appendix A for a discussion on this normalization).
The ionic fluxes are normalized by D̃c0/L̃. Equation (2) is the
Poisson equation for the electric potential, φ, which has been
normalized by the thermal potential �T/F , where � is the
universal gas constant, T is the absolute temperature, and F is
the Faraday constant. The nondimensional charge density, ρe,
appearing in Eq. (2) is normalized by zF c̃0. The normalized
Debye layer is

ε = λ̃D/L̃, (3)

with

λ̃D =
√

ε0εr�T/(2F 2c̃0), (4)

where ε0 and εr are the permittivity of vacuum and the relative
permittivity of the electrolyte, respectively. The space charge
density [25,26,38,44] is

ρe = c+ − c− − Nδ1,k, (5)
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where k represents the regions (k = 1, 2) and δ1,k is
Kronecker’s delta. The average excess counterion concentra-
tion, N , in region 1 is related to the surface charge, σs , of the
walls [26,37]. The exact N − σs relation is given below.

C. Permselectivity and boundary conditions

We consider the boundary conditions (BCs) at y = 0 and
y = h(x). The ionic flux is zero

j± · n̂ = 0. (6)

At y = 0, the normal is n̂ = ŷ while at y = h(x), the normal

to the wall is n̂ = {h,x,−1}/
√

1 + h,x
2 [( ),x denotes a spatial

derivative of x]. Small angles tan α ≈ α � 1 imply n̂ ∼= − ŷ
such that

j±[x, y = 0, h(x)] · ŷ = 0. (7)

Since region 1 is ideally permselective, the coion flux through

it is j− · x = 0. Combined with Eq. (7) this results in j−
�= 0.

However, if tan α ∼ 1, then j± · y �= 0 which would result in
j− �= 0 in the bulk. As will soon be shown, the combination

of no flux at the walls, as well as j−
�= 0, results in quasi-1D

transport. Yet, the transport will still retain some of its 2D
properties. Similarly, the BCs for the electric potential are

φ,y (x, y = 0) = 0, φ,y[x, y = h(x)] = σδ1,k, (8)

where σ is the normalized surface charge [normalized by
ε0εr�T/(FL̃)].

The analytical model will assume j−
�= 0 and j± · y = 0.

In the numerical simulations (see Appendix B), the boundary

condition (BC) j± · n = 0 is enforced at y = h(x) and j−
�=

0 is not set directly [37]. Using numerical simulations, we
will investigate when the α � 1 assumption fails as well as
investigate when the assumption of ideal permselectivity fails.

D. Solution derivation

We take the height averages of Eqs. (1) and (2), where the
height average quantities of c±, φ are denoted by overbars and
are calculated by

{c̄±, φ̄} = 1

h

∫ h

0
{c±, φ}dy. (9)

The 1D height average of Eq. (1) after accounting for the BCs
discussed in Sec. II C yields

c̄+,x + c̄+φ̄,x = −j̄+, (10)

c̄−,x − c̄−φ̄,x = 0, (11)

where j+ = j+ · x̂ = const. The height averaged Poisson
equation is [Eq. (2)]

2ε2(φ̄,xx + σδ1,k/h) = −(c̄+ − c̄−). (12)

Comparing to Eq. (5), it is easy to see that the dimensional and
nondimensional excess counterion concentrations are Ñ =
−σ̃ /(F h̃) and N = Ñ/c̃0, respectively. For brevity, we now
shall drop the overbars.

We now make the further assumption of local electroneu-
trality (LEN) [10,35] where it is assumed as ε → 0 (Appendix
A), that ε2φ,xx � 1. In region 2, where σ ∼= 0, we have ρ = 0
which yields c2,± = c. Then Eq. (10) yields [25,26]

c2,x = − I

2h(x)
, (13)

where j̄+ = j = I/h. While from Eq. (11) it can be shown
that [35,43]

φ2 = ln c2 + φ̂2,0. (14)

In region 1, while ε → 0, it is assumed that |ε2σ | 
 1.
Then, from ρ = 0, one has

c1,+(x) = Nh(x) = − σs

h(x)
, c1,− = 0, (15)

where |σs | = |2ε2σ | 
 1. It is now apparent that the excess
counterion concentration, N = Nh = N [h(x)], depends on
the height and varies within the channel and leads to the
complete exclusion of coions from this region (c1,− = 0).
Then, the governing equation for the electric potential is

Nh,x + Nhφ1,x = − I

h(x)
, (16)

In both regions, we require that the total current I is conserved
at each cross section. While Eqs. (13) and (16) appear to
be explicitly 1D, they depend on h(x), such that some of
the 2D transport characteristics are retained. This will be
demonstrated shortly.

The following interfacial BCs are supplemented:

μ1(0) = V, μ1(L1) = μ2(L1), c2(�) = 1, φ2(�) = 0.

(17)

The first two terms are the requirement that the counterion
electrochemical potential,

μ(x) = ln c(x) + φ(x), (18)

is continuous at the permselective interfaces [10,25]. At x =
�, we require the concentration to equal the bulk concentra-
tion, and the total potential drop is V . Solution of Eqs. (13),
(16), and (17) yields

φ1 = V + Ix

σs

+ ln

[
h1(� − x) + h2x

−σs�

]
, (19)

c2 = 1 − I

2α
ln

[
h1(� − x) + h2x

h2�

]
, (20)

with φ̂2,0 = 0 (φ2 = ln c2). The current-voltage (I -V ) relation
is

V = −IL1

σs

+ 2 ln

(
1 − I

Ilim

)
, (21)

where the limiting current is

Ilim = 2α

[
ln

(
h2L1 + h1L2

h2�

)]−1

. (22)
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FIG. 2. 1D current density–voltage (j -V ) curve for varying val-
ues of N (simulations—markers; theory—solid line). Color coding
of theory corresponds to the according simulations. (Inset) Ratio
of jSimulations/jTheory vs V . Simulation parameters are L1 = L2 =
1, ε = 10−4.

III. RESULTS

A. One-dimensional results

We start off by considering a 1D geometry (α = 0). Equa-
tion (21) reduces to

V = jL1/N + 2 ln (1 + jL2/2). (23)

Figure 2 shows j -V curves for varying N while the inset
shows the ratio of the current density of simulations versus
theory (jSimulations/jTheory). The numerical simulations are
conducted in COMSOLTM (Appendix B). For the smallest sim-
ulated value, N = 10, reasonable correspondence is observed
with variations of 15%. As N increases so does the correspon-
dence. The difference between simulations and theory can be
attributed to two key factors. In the simulations, ε �= 0. It is
known that ε �= 0 leads to the creation of nonlinear space
charge at x = L1 for V < 0 [35,36]. This space charge is
known to increase the current above its theoretically predicted
limiting value (where excess currents depend on ε [35,36]).
Also, the deviation for V > 0 can be attributed to the fact
that in simulations j−

�= 0 is not set directly; rather it is a
result of N 
 1 that leads to coion exclusion and enhanced
selectivity. Thus, Eq. (23) overestimates the conductance of
region 1. However, as N increases, region 1 behaves more like
an ideal permselective region such that the correspondence
deviation decreases. Further, as N increases, the range of good
correspondence increases.

The rectification factor (RF) is defined as RF =
|IV >0/IV <0|. While negative currents, |IV <0| < |Ilim| =
|2/L2|, are bounded, positive currents IV >0 are not so that RF
is also unbounded as V increases. The exact values depend on
N and already in 1D we can have a RF ∼ O(102). However,
it should be noted that as N increases, it converges to the
N → ∞ solution when the first term in Eq. (23) is negligible
such that the current is now only dependent on the geometry
of region 2. As a result, in this situation, RF depends on only
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FIG. 3. Current-voltage (I -V ) curves for varying values of
h2 (simulations—markers; theory—solid line). (Inset) Ratio of
I Simulations/ITheory vs V . Simulation parameters are L1 = L2 = 1,
h1 = 0.1, Nh(h(x = 0) = h1) = 103, ε = 10−3.

L2. In the more general case RF depends on the 2D geometry,
as well as on N and V . Given the simplicity of Eqs. (21) and
(23), calculating RF for any geometry and surface charge is
immediate, and it is left to the interested reader.

B. Two-dimensional results

To investigate the effect of assuming j± · y = 0 at y =
h(x) [Eq. (7)], we conducted 2D simulations where we varied
the height h2. Figure 3 compares the 2D I -V curves pre-
dicted by Eq. (21) to the simulations that have not made this
oversimplifying assumption. The correspondence is striking
for most values of h2. Even for a large angle of 45◦ the
deviation is only approximately 15%–20%. The inset of Fig. 3
shows the ratio of the current of the simulations versus the
theory, I Simulations/ITheory. As can be expected, as h2 increases,
the correspondence decreases. From this, we conclude that for
small angles, the solution using the assumption of quasi-1D
transport holds.

IV. REALISTIC DIODE SYSTEMS—EFFECT OF
MICROCHANNELS

In real systems, the funnel-shaped channel is not iso-
lated from its environment but rather is connected to two
adjacent microchannels (Fig. 4 inset). These microchannels
can substantially change the characteristics of the transport.
To show this, we add the microchambers to the system. In
previous works, similar to here, we assumed that the transport
in the permselective region was fully developed and quasi
1D [25,26,38]. This allows for solving separately in different
regions and connecting the regions through a set of modified
interfacial BCs. We provide the solutions for the concentration
and electric potential distributions in each of these regions.
Thereafter, we comment on a few issues related to these
solutions. See Refs. [25,26,38,45] for a detailed derivation
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and discussion. The solutions for the left and right channels
(as in the inset of Fig. 4) are denoted by the subscripts L

and R, respectively. The concentration and electric potential
distributions are

cL = 1 − I (x + LL)

2HL

− I

∞∑
n=1

sin(λL,nh1)

h1HLλ2
L,n cosh(λL,nLL)

sinh[λL,n(x + LL)] cos(λL,ny), (24)

cR = 1 + I (� + LR − x)

2HR

+ I

∞∑
n=1

sin(λR,nh2)

h2HRλ2
R,n cosh(λR,nLR )

sinh
[
λR,n(� + LR − x)

]
cos(λR,ny), (25)

with λi,n = πn/Hi and i = L,R. The electric potentials are

φL = ln cL + V, φR = ln cR. (26)

Several brief comments are warranted. The total poten-
tial drop, V , refers to the drop across the entire system
φL(−LL, y) = V, φR (� + LR, y) = 0, whereas previously
V was the potential drop across the diode alone. At the two
ends of the systems, the bulk concentration are set by the BCs
cL(−LL, y) = cR (� + LR, y) = 1. At the three interfaces,
x = 0, L1,�, the total current, I , is conserved. The results
from Sec. II D and Eqs. (24)–(26) are connected through a
modified [relative to Eq. (17)] interfacial BC,

μL(0) = μ1(0), μ1(L1) = μ2(L1),

c2(�) = cR (�), μ2(�) = μR (�), (27)

from which we find the I -V response:

V4 = −IL1

σs

− 2 ln

(
1 + I/Īlim,V <0

1 − I/Ilim,V >0

)
. (28)

-10 0 10

-0.5

0

0.5

RHLH

RL
LL

FIG. 4. Current-voltage (I -V ) response curve comparing three
different scenarios (simulations—markers; theory—solid line):
unipolar diode without [Eq. (21)] and with [Eq. (28)] microchannels
and uniformly charged nanochannel with microchannels [Eq. (32)].
(Inset) Funnel-shaped channel placed between two reservoirs: Left
and Right. The height H and length L of each region are subscripted
with L and R accordingly. Simulation parameters are HL,R =
L1,2,L,R = 1, h1,2 = 10−2, Nh = 103, ε = 10−3.

The subscript 4 denotes the number of regions while the
limiting currents are given by

Īlim,V >0 =
(

LL

2HL

+ fL

)−1

, (29)

Īlim,V <0 =
(

LR

2HR

+ fR − I−1
lim

)−1

, (30)

and Ilim is given by Eq. (22). The field focusing resistors, fR,L,
[25,26] can be attributed to the focusing of the fields from
large geometries to smaller geometries. Conceptually, they are
similar to the classical access resistance [46]. For the case of
Cartesian geometries they are given by [25,26,38]

fi =
∞∑

n=1

sin(λi,nhi )

hiHiλ
2
i,n

tanh(λi,nLi ), (31)

where hi corresponds to the appropriate Hi for i = L,R. Sim-
ilar expressions can be found for cylindrical pores interfacing
with cylindrical microchannels [47].

It is worthwhile to compare the behavior of this less-
standard four-layered system to the popular three-layer setup
comprised of two microchannels connected by a nanochannel
[25,26,38]. In contrast to the four-layer I -V [Eq. (28)] or
even the two-layer I -V [Eq. (21)], in a three–layer setup, the
assumption of α � 1 results in a 1D solution that does not
retain any of its 2D characteristics [25,26,38]. The I -V for
the three-layer setup is

V3 = −IL1

σs

− 2 ln

(
1 + I/Îlim,V <0

1 − I/Îlim,V >0

)
, (32)

and is denoted by a subscript 3 where the limiting currents are

Îlim,V <0 =
(

LR

2HR

+ fR

)−1

, (33)

and Îlim,V >0 = Īlim,V >0 [Eq. (29)]. For the three-layer setup
(L2 = 0), this requires changing the characteristic length
L̃ = LL,R (Appendix A), although this does not change any
of the results discussed here. It should be noted that while
Eq. (28) has yet to be verified experimentally, the predictions
of Eq. (32) (α = 0) have been verified in two separate works
[34,42].

It is already evident that the both the three-layer [Eq. (32)]
and four-layer [Eq. (28)] systems differ from the two-layer
system [Eq. (21)]. The latter has a limiting current only for
negative voltages while the former have limiting currents for
both positive and negative currents. This indicates that the
effects of the microchambers are of utmost importance as
they eliminate the continued growth of the current discussed
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in Sec. III. The positive limiting currents of the three- and
four-layered systems are identical, while the negative values
[Eqs. (30) and (33)] differ by the I−1

lim term. For the case that
region 2 is substantially smaller than region R, the effects can
be substantial as this term will dominate the negative limiting
current. As a result, the ratio of the positive and negative
limiting currents can be large. Figure 4 plots the I -V curves
for the three scenarios: diode and microchannels [Eq. (28)],
nanochannel and microchannel [Eq. (32)], and diode without
microchannels [Eq. (21)] for α = 0 where the theoretical
predictions are confirmed by numerical simulations. In con-
trast to what is typically reported, the microchannel scenarios
exhibit both positive and negative limiting currents such that
they differ from a strict diodelike behavior. Yet, in a certain
range, both scenarios appear to be virtually the same. Hence,
measuring the I -V for a small range of voltages, one might
observe only the negative limiting, from which it would be
deduced that there is no positive limiting current. We will
return to this point shortly.

As evident in Fig. 4, the three-layer and four-layer re-
sponses differ also in the low current and/or voltage response.
This too has additional interesting implications. To highlight
this, we take a Taylor series of V4 and V3 for small currents
I � 1. For simplicity we consider the case of α = 0 (or
h1,2 = h) and calculate the total resistance, R = V/I , of each
system,

R4 = −L1

σs

+ L2

h
+ Rmicro, (34)

R3 = −L1

σs

+ Rmicro, (35)

where

Rmicro =
[

LL

HL

+ LR

HR

+ 2(fL + fR )

]
(36)

is the sum of resistance associated with the microchannels
[34]. When N 
 1 (or |σs | 
 1), R3 ≈ Rmicro, the nanochan-
nel is no longer the dominating resistance within the system
[4,48,49], but rather the response is determined by Rmicro.
We recently suggested that the nanochannel-dominating resis-
tance paradigm be changed to reflect this understanding [34],
and since then the results have been confirmed experimentally
[34,50]. In contrast to the three-layer system, in the four-
layer system, the diode is comprised of two highly confined
regions where one region is charged while the other is not.
As result, two resistances can be associated with this region,
one that depends on σs and one that does not. Here, the surface
charge independent term dominates the response, R4 ≈ L2/h.
As a result, at low currents, the four-layer response almost
completely overlaps with the diode-only system (Fig. 4). The
eventual deviation is a result of the effect of the microchan-
nels, which once more become the dominate resistance due to
the effects of depletion at high voltages [10].

Finally, while theoretically predicted, in most diode sys-
tems the positive limiting current is not observed experimen-
tally [3]. Rather, one observes a continued increase of the
current similar to the diode-only system shown in Fig. 4. One
possible reason is that the I -V are measured in a small voltage
domain when the positive current has still not saturated. How-
ever, it should be noted that even in simple three-layer systems

the limiting current is not always observed. In fact, observa-
tions show the current continues to increase and transitions
to what is known as the overlimiting current [15,42,49]. The
overlimiting current can be attributed to a process commonly
known as electro-osmosis of the second kind [51], whereby
the applied electric operates on its own nonlinearly induced
space charge [10,35,36] at the nanochannel interface. This
results in the creation of electroconvective vortices that are
responsible for mixing the ions more efficiently than the diffu-
sion limited process. The lack of an observed limiting current
is not limited to single channel systems but also occurs in
systems comprised of multiple nanochannels [42,49]. Another
possibility for the lack of observation of a limiting current is
that the experimental conditions (high bulk concentrations,
etc.) are such that channels are not ideally permselective,
where it is known that the limiting current is shifted to larger
values and the transition voltage increases with increasing
concentration [40]. From an experimental standpoint, distinc-
tion should not only be made between the various two-, three-,
and four-layer scenarios discussed above but also as to what
the experimental conditions are and whether they correspond
to ideal or vanishing permselectivity.

V. CONCLUSIONS

The key findings of this work are as follows. We have
theoretically considered the case of a unipolar funnel-shaped
nanochannel which is comprised of two regions: One region is
ideally permselective, while the surface charge of the second
region is negligible. We derive several analytical I -V relations
that depend on the geometry of the system in consideration
(with and without microchannel and surface charge distribu-
tion). The I -V and resultant rectification factor depend on
numerous factors, including the surface charge, the geometry,
and the applied voltage. We show that the microchannels
play a crucial role in determining the overall response of the
system. The theoretical results are confirmed by numerical
simulations. Another key result of this work is that it has been
shown that the unipolar diode’s behavior differs substantially
from a uniformly charged nanochannel where it is shown
that the noncharged nanochannel (region 2) dominates the
response. We note that as long as the transport in the permse-
lective region can be assumed to be 1D, the results of this work
are easily generalizable to three-dimensional (3D) geometries,
straight circular pores or conical pores. It is also likely that
the method used in this work can be used to derive a complete
analytical solution for a similar bipolar funnel-shaped diode.

In summary, the importance of the results in this work are
twofold. Fundamentally, the physics become clearer and more
transparent. Applicationwise, preliminary experiments and/or
simulations are no longer needed to estimate the response of
the system.
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APPENDIX A: PERMSELECTIVITY

The extent to which a channel is permselective depends
on the degree of EDL overlap as well as the size of the
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surface charge [37]. To be ideally permselective ( j−
�= 0),

the following two constraints must be satisfied. First, a high
degree of overlap corresponds to λ̃D/h̃ 
 1. Second, large
surface charge typically corresponds to N 
 1. Reference
[37] suggested a more restrictive constraint, which in our
notation is N 
 λ̃2

Dh̃−1L̃−1 
 1. In a long 1D nanochannel,
without adjacent microchannels, where transport is fully de-
veloped, there is only one characteristic length in the system
and it is natural to define L̃ = h̃ [37], which in turn leads
to ε = λ̃D/h̃ 
 1 [Eq. (3)] and N 
 ε2 
 1. However, the
situation is much more complicated when the geometry is 2D
and involves two geometries (one that is permselective and
one that is not) or additional microchambers. Choosing L̃ is
rather ambiguous.

In contrast, region 2 is not highly selective on its own since
the surface charge associated with the region has been neu-
tralized leading to N � 1. However, this region is adjacent
to a permselective medium. Solving for the transport in such
regions typically requires using what would appear to be the
opposite assumption [10,35,36]. It is assumed that adjacent to
the permselective interface there is a boundary layer, whose
length is of O(λ̃D ), which controls the response. This region
is typically much smaller than the diffusion length. Here, L̃ =
L̃2 for the two-layer setup (and under certain circumstances
can be either L̃ = L̃L/R [26]). This leads to ε � 1 [10,35,36]

where j−
�= 0 is enforced artificially.

These different normalizations lead to drastically different
ε. Which naturally raises the question—are they mutually
exclusive? The answer is unsurprisingly no. The chosen nor-
malization allows the system to be probed or investigated dif-
ferently. The ε 
 1 assumption is preferable to investigate the
transverse behavior of the concentration and electric potential
distributions. In contrast ε � 1 is preferable to investigate the
axial behavior of these distributions whereby the behavior
in the transverse direction is averaged out. Here, we are
interested in deriving a I -V response across an elongated
system so that L̃ = L̃2 and we take cross-sectional averages
in regions 1 and 2. To ensure consistency we enforce ideal

permselectivity by requiring that j−
�= 0 and c1,− = 0. In-

deed, this formulation would not differ if we replaced the
nanochannel with any kind of permselective medium, such
that only average properties can be considered and matter.
Hence, as we have previously stated [25,26,34,38,42,45], the
findings of this work are not solely limited to permselective
nanochannels but can also be applied to membrane systems
which show similar trends [52].

In the next Appendix, we will show that numerical simu-
lations that model either strong overlap or use cross-sectional
averages are virtually identical save that the former is compu-
tationally much more expensive.

APPENDIX B: NUMERICAL SIMULATIONS

To verify our results we solved the fully coupled PNP
equations given by Eqs. (1) and (2) using the finite

-10 -5 0 5 10
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0.04
Theory
LEN Simulations
Surface Charge Simulations

FIG. 5. Current-voltage response curve comparing the two dif-
ferent numerical methods for the geometry given for the following
parameters: L1 = 0.03, L2 = 1, h1 = 10−4, h2 = 10−3, Nh(h1) =
150, σs = 7500, ε = 10−3.

elements program COMSOLTM for the two-dimensional geom-
etry described in Fig 1. The PNP equations were solved using
the Transport of Diluted Species and Electrostatic modules in
COMSOL for the cases of ε = 10−4 in 1D, and ε = 10−3 in 2D
(see our previous works for more details [25,26,34,45]).

We modeled the systems in two different ways. First, the
top surface is subject to a surface charge σs in region 1 and
the charge density ρe = c+ − c− in all regions. The second
method assumed that the excess counterion concentration is
Nh = −σs/h, as described in the main text. Then, the space
charge density in region 1 is given by ρe = c+ − c− − N . The
geometry is chosen such that h/ε = 1 which corresponds to
relatively strong overlap which will allow for comparison of
these two models.

The first method requires that, at the surface, the mesh size
be smaller than ε so that the behavior of the concentration
within the electric double layer can be captured. This fine
meshing requires approximately at least an order of magnitude
more elements such that the run time approximately takes
an order of magnitude longer. Further computational consid-
erations (memory and more) constrain the geometries that
are numerically solvable. This makes solving for elongated
geometries virtually impossible. As such, in the main text,
we used the simulations from the second model (denoted as
LEN). In Fig. 5 we compare between the two models and
show that they produce identical results (complete overlap).
As shown in Fig. 2, correspondence between the simula-
tions and theoretical results can be improved by increasing
N (or σs); however, this too would result in refining the
mesh at the interfaces which would further increase the run
time.
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[24] I. D. Kosińska and A. Fuliński, Asymmetric nanodiffusion,
Phys. Rev. E 72, 011201 (2005).

[25] Y. Green, Y. Edri, and G. Yossifon, Asymmetry-induced electric
current rectification in permselective systems, Phys. Rev. E 92,
033018 (2015).

[26] Y. Green, S. Shloush, and G. Yossifon, Effect of geometry on
concentration polarization in realistic heterogeneous permselec-
tive systems, Phys. Rev. E 89, 043015 (2014).

[27] L.-J. Cheng and L. J. Guo, Rectified ion transport through
concentration gradient in homogeneous silica nanochannels,
Nano Lett. 7, 3165 (2007).

[28] Y. Qiu, R. A. Lucas, and Z. S. Siwy, Viscosity and conductivity
tunable diode-like behavior for meso- and micropores, J. Phys.
Chem. Lett. 8, 3846 (2017).

[29] J. Cervera, B. Schiedt, R. Neumann, S. Mafé, and P. Ramírez,
Ionic conduction, rectification, and selectivity in single conical
nanopores, J. Chem. Phys. 124, 104706 (2006).
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