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Tenth-order compact difference code Miranda is used to perform large-eddy simulation (LES) of a hydrogen
gas–plastic mixing layer in a spherical geometry. Once the mixing layer has achieved self-similar growth, it is
heated to 1 keV, and the second-order arbitrary Lagrangian-Eulerian (ALE) code Ares is used to simulate mixing
layer evolution as it undergoes thermonuclear (TN) burn. Both premixed (in which deuterium and tritium are
initially present in the gas) and nonpremixed (in which deuterium is initially present only in the plastic) variants
are considered at Atwood numbers 0.05 and 0.50. The impact of turbulent mixing on mean TN reaction rate
is examined, and a four-equation k-L-a-V Reynolds-averaged Navier-Stokes (RANS) model is presented. The
k-L-a-V model, which represents an extension of the k-L-a model [Morgan and Wickett, Phys. Rev. E 91,
043002 (2015)] by the addition of a transport equation for the scalar mass fraction variance, is then applied in
one-dimensional simulations of the reacting mixing layer under consideration. Excellent agreement is obtained
between LES and RANS in total TN neutron production when fluctuations in reaction cross-section can be
neglected.
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I. INTRODUCTION

When fluids of differing densities are subject to an acceler-
ation that is opposite in direction to the mean density gradient,
the conditions exist for Rayleigh-Taylor (RT) instability [1,2].
In certain cases, such as in supernovae [3,4] and in inertial
confinement fusion (ICF) applications [5–8], RT instability
can occur in the presence of additional convergence effects
as a result of spherical or cylindrical geometries [9,10]. These
geometrical effects, often referred to generally as Bell-Plesset
(BP) effects, can affect RT linear-phase growth rates and may
lead to an earlier onset of mode coupling [11–13].

In the indirect-drive approach to ICF, laser energy is
absorbed by a high-Z enclosure known as a hohlraum.
The hohlraum then emits x rays, which are used to drive
ablation and implode a hydrogen fuel capsule surrounded
by the hohlraum [7]. RT instability at the hydrogen-ablator
interface is known to contribute to the degradation of target
performance in experiments conducted at the National
Ignition Facility (NIF) [14]. For this reason, a series of
experiments have been conducted at NIF to study mixing
due to hydrodynamic instability in which tritium (T) gas
is initially separated from a deuterated plastic (CD) layer
[15]. By analyzing the resulting neutron spectra, researchers
were able to identify the signature of the DT reaction
(D + T → 4He + n0) to obtain an experimental measurement
directly tied to the amount of instability-induced mixing [16].
In simulations of these so-called CD Symcap experiments
[16] as well in the development and analysis of many other
ICF targets [17–20], it has become common practice to
utilize Reynolds-averaged Navier-Stokes (RANS) modeling

approaches to simulate turbulent mixing of the fuel and
ablator materials. Until recently, however, the turbulent
contribution to the average thermonuclear (TN) reaction rate
has been neglected by common RANS approaches such as
the k-L [21], k-L-a [22,23], and BHR [24–27] models.

Since RANS remains a common tool for the design and
assessment of ICF targets, the present work is concerned
with developing and validating a RANS modeling approach
for reacting, buoyancy-driven turbulent mixing. Whereas the
CD Symcap experiments dealt with initally separated (i.e.,
nonpremixed) reactants, ICF targets designed for ignition
and gain typically utilize premixed DT fuel [7]. A RANS
approach for reacting turbulence in ICF must therefore be
general enough to handle both premixed and nonpremixed
reactants. Ristorcelli [28] has proposed an approach for clos-
ing the turbulent contribution to the average TN reaction rate
using the density-specific-volume covariance, b, for binary,
nonpremixed reactants. While the Ristorcelli approach may
potentially be useful in conjunction with a RANS model such
as BHR [27], little validation work has yet been done, and
the model’s reliance on b would seem to suggest divergent
behavior in the limit of zero Atwood number. In the present
work, an alternative approach is presented based on extending
the k-L-a model [22,23] with an additional transport equation
for the mass fraction scalar variance, V .

Since detailed turbulence statistics are generally not avail-
able from ICF experiments, high-fidelity simulation repre-
sents an attractive alternative to provide baseline data for
RANS model validation. Previous three-dimensional sim-
ulations of RT [4,29,30] and Richtmyer-Meshkov (RM)
[31–33] instability in a convergent or spherical geometry have
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generally been limited to simulation of an octant or sector
of a sphere or cylinder to conserve computational resources.
Unfortunately, such an approach imposes artificial symmetries
at sector boundaries which can affect turbulence statistics in
the neighborhood of these symmetry planes. A number of
high-fidelity simulations of reacting ICF targets have addi-
tionally been performed [34–39]; however, in the case of these
previous ICF simulations, the focus has generally been on
the impact of large-scale symmetry perturbations and, as a
result, data such as mean TN reaction rates have not been
widely reported. In the present work, high-fidelity large-eddy
simulation (LES) is performed of a reacting RT mixing layer
in a full 4π , spherical geometry. Through manipulation of
the LES initial conditions, it is possible to collect data at
different Atwood numbers in both premixed and nonpremixed
configurations.

In present simulations, the computational mixing layer is
allowed to develop until it reaches a self-similar state, as
defined by previous work for a planar RT mixing layer [40].
Once the mixing layer has reached self-similarity, indicating
that a steady-state magnitude of scalar variance has been
achieved, the mixing layer is heated to 1 keV, and TN burn is
initiated. Both premixed and nonpremixed configurations are
considered. In the premixed configuration, both deuterium and
tritium are initially present together in the light gas material,
and a CH plastic is taken as the heavy gas material. In the
nonpremixed configuration, only tritium is initially present in
the light gas material, and a deuterated CD plastic is taken as
the heavy gas material. For both configurations, simulations
are performed at Atwood numbers 0.05 and 0.50 by varying
the density of the heavy material. From these simulations,
a time history of the mass-weighted average temperature is
obtained. To compare directly with RANS, in which turbulent
fluctuations of the reaction cross-section are neglected (as
discussed in greater detail in Sec. III), a secondary set of
large-eddy simulations are then run in which spatial variation
in reaction cross-section is artificially eliminated by imposing
a spatially uniform, time-varying temperature profile equal
to the average temperature obtained from the preliminary set
of simulations. These simulations are then compared with
one-dimensional (1D) RANS simulations of the same reacting
RT mixing layer with both the k-L-a and the new k-L-a-V
models. It is shown that when turbulent fluctuations in the
reaction cross section can be neglected, the k-L-a-V model
is able to accurately capture the turbulent contribution to the
mean TN reaction rate.

The remainder of this paper is laid out as follows. First,
in Secs. II A–II D, a description is given of the governing
equations as well as the Miranda and Ares codes used in
the present work. In Sec. II E, the k-L-a-V model is pre-
sented, and similarity analysis is used to determine constraints
on model coefficients necessary to reproduce the expected
mixedness of an RT mixing layer. Next, in Secs. II F and II G,
detailed descriptions are given of the computational setup of
the spherical mixing layer problem for LES and RANS. Re-
sults are presented in Sec. III for premixed and nonpremixed
configurations, and comparisons are made between LES and
RANS data. Finally, in Sec. IV conclusions are drawn, and
recommendations are made concerning the direction of future
research.

II. NUMERICAL MODELS

A. Hydrodynamics equations

The governing equations are the compressible Navier-
Stokes equations for a multicomponent, reacting flow:

∂ρ

∂t
+ ∂ (ρui )

∂xi

= 0, (1)

∂ (ρYk )

∂t
+ ∂ (ρYkui )

∂xi

= −∂Jk,i

∂xi

+ ṙk, (2)

∂ (ρuj )

∂t
+ ∂ (ρuiuj )

∂xi

= − ∂p

∂xj

+ ∂τij

∂xi

+ ρgj , (3)

∂E

∂t
+ ∂[(E + p)ui]

∂xi

= ∂ (τijui )

∂xj

− ∂qi

∂xi

+ ρgiui + Q̇. (4)

In Eqs. (1)–(4), ρ is density, t is time, ui is the velocity vector,
xi is the spatial coordinate vector, Yk is the mass fraction of
species k, Jk,i is the diffusive mass flux of species k, ṙk is
the reaction rate of species k, p is pressure, τij is the viscous
stress tensor, gj is a gravitational body force vector, E is the
total energy, qi is the heat flux vector, and Q̇ is the heat source
term. The diffusive mass flux is given in terms of effective
binary diffusion coefficients Dk as

Jk,i = −ρ

⎛⎝Dk

∂Yk

∂xi

− Yk

N∑
j=1

Dj

∂Yj

∂xi

⎞⎠, (5)

for k = 1, 2, . . . , N total species. The viscous stress tensor is
given by

τij = 2μSij +
(

β − 2

3
μ

)
∂ui

∂xi

δij , (6)

where μ is the shear viscosity, β is the bulk viscosity, δij is
the Kronecker δ, and Sij is the strain rate tensor,

Sij = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
. (7)

The heat flux vector is given in terms of the thermal conduc-
tivity κ , the temperature T , and species enthalpy hk ,

qi = −κ
∂T

∂xi

+
N∑

k=1

hkJk,i . (8)

Component temperature, enthalpy, and pressure are obtained
through the equation-of-state (EOS) as a function of com-
ponent partial density and specific internal energy. These
relationships are given functionally as

pk = PEOS(ek, ρk ), (9a)

Tk = TEOS(ek, ρk ), (9b)

hk = HEOS(ek, ρk ). (9c)

Using an assumption of pressure and temperature equi-
librium, an iterative process is used to solve for component
volume fractions, vk , which allows the determination of partial
densities and energies according to

ρk = Ykρ

vk

(10)
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TABLE I. Summary of AFLES terms in Miranda.

ψ∗ Cψ f (U ) φ

β∗ 7.0 × 10−2 ρ
∂ui

∂xi

μ∗ 1.0 × 10−4 ρ

�
ui

κ∗ 1.0 × 10−3 ρ

T �t
cv T

D∗
k 1.0 × 10−2 1

�t
Yk

and

e = E

ρ
− 1

2
uiui =

N∑
k=1

Ykek. (11)

Total pressure is then determined according to the mixture
relationship

p =
N∑

k=1

vkpk. (12)

B. The Miranda code

The Miranda code solves the hydrodynamics equations
presented in Sec. II A with a tenth-order compact differencing
scheme for spatial discretization and a fourth-order explicit
Runge-Kutta scheme for temporal integration. It has been
utilized extensively in previous studies of RT and RM mixing
[40–47]. To model the subgrid scale (SGS) transfer of energy,
Miranda utilizes an artificial fluid LES (AFLES) approach
in which artificial transport terms are added to the fluid
viscosity, the bulk viscosity, the thermal conductivity, and the
molecular diffusivity [48,49]. Equations (13a)–(13d) describe
the formulation used in the present study where the subscript
f denotes the fluid, or physical, contribution to the molecular
transport property, and an asterisk superscript denotes the
artificial contribution:

μ = μf + μ∗, (13a)

β = βf + β∗, (13b)

κ = κf + κ∗, (13c)

Dk = Df,k + D∗
k . (13d)

In Eqs. (13a)–(13d), each artificial term assumes a general
form given by

ψ∗ = Cψf (U )G(φ)�2, (14)

where the overbar notation indicates application of a
truncated-Gaussian filter, and � is the local mesh spacing.
G(φ) represents the application of an eighth-derivative opera-
tion such that for a scalar φ,

G(φ) = max

(∣∣∣∣∂8φ

∂x8
�x8

∣∣∣∣, ∣∣∣∣∂8φ

∂y8
�y8

∣∣∣∣, ∣∣∣∣∂8φ

∂z8
�z8

∣∣∣∣), (15)

and for a vector φi ,

G(φi ) = max(G(φx ),G(φy ),G(φz)). (16)

Table I summarizes the formulation of the artificial fluid
terms used in Miranda. In this table, cv is the specific heat

coefficient at constant volume, and �t is the time step. Since
the present study is focused on the high-Reynolds number
regime in which viscous length scales are significantly smaller
than energy-containing structures, the approach of Olson et al.
[44] is adopted, and fluid contributions to molecular transport
properties are neglected such that μf =βf =κf =Df,k =0.

C. Radiation diffusion equations

In the present work, coupling between radiation and hydro-
dynamics is treated with a Planckian nonequilibrium diffusion
model. A single opacity, ω, is used to characterize both the
energy absorbed from the radiation field and the energy con-
tributed from the material to the radiation field via emission.
The radiation energy Er is then evolved according to

∂Er

∂t
= ∂

∂xi

(
c

3ωρ

∂Er

∂xi

)
+ cωρ

(
arT

4
e − Er

)
, (17)

where c is the speed of light in a vacuum, Te is the electron
temperature, and ar is the radiation constant, which is given
in terms of the Stefan-Boltzmann constant σSB by

ar ≡ 4

c
σSB. (18)

Electron and ion energies are allowed to evolve separately,
with the ion energy given by Eq. (4) and the electron energy
Ee given by

∂Ee

∂t
+ ∂ (Eeui )

∂xi

= −∂qe,i

∂xi

+ Q̇e. (19)

The electron heat flux vector qe,i is given in terms of the
electron conductivity κe by

qe,i = −κe

∂Te

∂xi

. (20)

The ion and electron fields are then coupled to the radiation
field through the source terms, which are given by

Q̇e = ρcvKie

�t

(Ti − Te ) + cωρ
(
Er − arT

4
e

) + Q̇T N,e, (21)

Q̇ = ρcvKie

�t

(Te − Ti ) + Q̇T N,i . (22)

In Eqs. (21) and (22), Kie is the ion-electron coupling coeffi-
cient, and Ti is the ion temperature. The specific heat, electron,
and ion temperatures are determined from the EOS, and the
radiation temperature is related to the radiation energy by

Er = arT
4
r . (23)

Q̇T N,e and Q̇T N,i in Eqs. (21) and (22) are source terms due
to local deposition of energy from TN reactions, which will
be discussed in more detail in the next section.

D. The Ares code

The Ares code solves the coupled radiation-hydrodynamics
equations using an arbitrary Lagrangian-Eulerian (ALE) ap-
proach with a second-order remap [50]. Explicit time integra-
tion is accomplished with a second-order predictor-corrector
scheme [51], and spatial differences are computed with a
nondissipative second-order finite element approach. A tensor
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TABLE II. Summary of TN reactions supported by Ares.

No. Reaction QTN (MeV)

1 D + D → n0 + 3He 3.26
2 D + D → 1H + T 4.02
3 T + T → n0 + n0 + 4He 11.32
4 D + T → n0 + 4He 17.59
5 D + 3He → 1H + 4He 18.35

artificial viscosity [52] is applied for the capturing of shocks
and material discontinuities. Although Ares also boasts an
adaptive mesh refinement (AMR) capability [53,54], it is not
utilized in the present study. Ares has been applied previously
in studies of canonical RM instability in both planar [46]
and cylindrical [55] configurations. It has also been utilized
extensively in the simulation of ICF targets and experiments
[14,16,20,56–59].

In the present work, five TN reactions are computed by
Ares, as summarized by Table II. In these reactions, products
can be either neutrons, indicated by n0, or charged particles.
The rate of a given reaction with products γ and reactants α

and β is given simply by

ṙγ,αβ = 〈σv〉αβnαnβ, (24)

where 〈σv〉αβ is the reaction cross-section, and nα and nβ

are the particle number densities. The reaction cross-section
is interpolated using the TDFv2.3 library [60]. Additionally,
each reaction has an average thermal energy, which is tabu-
lated in Table II. Local deposition of this energy is assumed
such that the average thermal energy is removed from the
ion energy field and charged particle energy is deposited
in the same volume with a split between the ion and elec-
tron energies according to the Corman-Spitzer model [61].
Neutrons are assumed to immediately escape the problem,
and energy carried by neutron products is removed from the
system. Thermal effects and the apportionment of average
thermal energy amongst reactants is determined following
the method by Warshaw [60]. Additionally, the ion-electron
coupling coefficient Kie is determined according to Brysk
[62].

E. The k-L-a-V RANS model

The k-L-a-V model represents an extension of the k-L-a
model [22,23] by the addition of a transport equation for the
variance of the mass fraction of species k, denoted by Vk ≡
˜Y ′′
k Y ′′

k . The model equations are derived from the compressible
RANS equations for a multicomponent, reacting gas mixture.
In the present work, an overbar denotes Reynolds averaging,
and a tilde denotes mass-weighted (Favre) averaging. An
arbitrary scalar, f , is decomposed as

f = f + f ′ = f̃ + f ′′, (25)

where the Favre average is related to the Reynolds average
through the density, ρ, according to

f̃ = ρf

ρ
. (26)

The Reynolds stress tensor, turbulence kinetic energy, mass-
flux velocity vector, and density–specific-volume covariance
are defined, respectively, by

ρRij ≡ −ρu′′
i u

′′
j , (27a)

ρk ≡ 1

2
ρu′′

i u
′′
i , (27b)

ai ≡ −u′′
i , (27c)

b ≡ −ρ ′
(

1

ρ

)′
. (27d)

Notice that the convention used here is that the Reynolds
stress is negated, in the style of Wilcox [63].

Equations (28)–(40) below summarize the k-L-a-V model,
where L is the turbulence length scale and μt is the eddy
viscosity. The model coefficients Cμ, Ca , Cb, CB , CD , CL1,
CL2, CV 1, CV 2, Na , Ne, Nk , NL, NV , NY , and Cdev are set
through similarity analysis. The model equations are

Dρ

Dt
= −ρ

∂ũi

∂xi

, (28)

ρ
DỸk

Dt
= ∂

∂xi

(
μt

NY

∂Ỹk

∂xi

)
+ ṙ k, (29)

ρ
Dũj

Dt
= ρgj − ∂p

∂xj

+ ∂

∂xi

(ρRij ), (30)

ρ
Dẽ

Dt
= −p

∂ũi

∂xi

− ai

∂p

∂xi

+ CD

ρ(2k)3/2

L

+ ∂

∂xi

(
μt

Ne

∂ẽ

∂xi

)
, (31)

ρ
Dk

Dt
= ρRij

∂ũi

∂xj

+ ai

∂p

∂xi

− CD

ρ(2k)3/2

L

+ ∂

∂xi

(
μt

Nk

∂k

∂xi

)
, (32)

ρ
DL

Dt
= CL1ρ

√
2k + CL2ρRij

L

k

∂ũi

∂xj

+ ∂

∂xi

(
μt

NL

∂L

∂xi

)
, (33)

ρ
Daj

Dt
= C2

Bb̂
∂p

∂xj

− Caρaj

√
2k

L
+ Rij

∂ρ

∂xi

+ ∂

∂xi

(
μt

Na

∂aj

∂xi

)
, (34)

ρ
DVk

Dt
= CV 1μt

∂Ỹk

∂xi

∂Ỹk

∂xi

− CV 2ρ

√
2k

L
Vk

+ ∂

∂xi

(
μt

NV

∂Vk

∂xi

)
, (35)

where

D

Dt
≡ ∂

∂t
+ ũi

∂

∂xi

, (36)

μt = Cμρ
√

2kL, (37)
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S̃ij = 1

2

(
∂ũi

∂xj

+ ∂ũj

∂xi

)
− 1

3

∂ũk

∂xk

δij , (38)

ρRij = Cdev2μt S̃ij − 2

3
ρkδij . (39)

For the special case of binary mixing, V1 = V2 = V , and
Ristorcelli [28] derives the following expression, which is
utilized here to close b:

b̂ ≡ Cbb ≈ Cb

(
rρ

ρH

)2

V. (40)

In Eq. (40), r is a constant factor that can be written in terms
of the Atwood number, A ≡ ρH −ρL

ρH +ρL
, or as a ratio of the heavy

fluid density ρH to the light fluid density ρL,

r ≡ ρH

ρL

− 1 = 2A

1 − A
. (41)

Finally, to derive a closure for the average reaction rate,
the expression mαnα = ρYα is utilized to transform Eq. (24)
to the following form in terms of the species molar mass mα:

ṙγ,αβ = 〈σv〉αβYαYβρ2

mαmβ

. (42)

Then, by applying a Reynolds decomposition and averaging,
Eq. (42) is transformed into

ṙγ,αβ = 〈σv〉αβỸαỸβρ2

mαmβ

×
⎧⎨⎩1 +

˜Y ′′
α Y ′′

β

ỸαỸβ

+ ρ ′ρ ′

ρ2 + ρ ′Y ′′
α

ρỸα

+ ρ ′Y ′′
β

ρỸβ

+ h.o.t.

⎫⎬⎭,

(43)

where fluctuations of the cross-section have been neglected,
and third- and fourth-order moments have been indicated by
the abbreviation h.o.t. (high-order terms).

At this point, it is useful to notionally differentiate between
materials and reactants. By convention, a reactant may be
taken to be any species for which a mass fraction evolution
equation is solved. To simplify the closure problem, however,
it is useful to group reactants into heavy and light materials.
For example, in the present problem D and T are considered
reactants while more generally light gas and heavy plastic
are considered materials. Thus, reactants may be initially pre-
mixed, as in a DT (light gas) material mixing with CH (heavy
plastic) material, or nonpremixed, as in T (light gas) material
mixing with CD (heavy plastic) material. An assumption is
then made that fluctuations of reactant mass fractions can
be related to fluctuations of the containing material mass
fraction. For instance, if reactant α is in the light material, then
using YL to indicate the mass fraction of the light material,

Y ′′
α

Ỹα

≈ Y ′′
L

ỸL

, (44)

or

Y ′′
α ≈ Y ′′

L

Ỹα

ỸL

. (45)

For binary mixing, V can be used to model the mass-
fraction covariance term directly; however, further closure

is required for the density variance and the density-mass-
fraction covariance terms. To close these terms, an incom-
pressible RT mixing layer is considered with a linear density
profile given by

ρ = YH�ρ + ρL = (1 − YL)�ρ + ρL, (46)

where YH and YL indicate, respectively, the heavy material
mass fraction and the light material mass fraction, and �ρ =
ρH − ρL. Using Eq. (46), it is then possible to write

ρ ′ = ρ − ρ = �ρY ′′
H = −�ρY ′′

L. (47)

Substituting Eq. (47) into Eq. (43), it becomes possible to
transform the density variance and the density-mass-fraction
covariances into functions of the mass-fraction covariance. If
one further assumes that ρ ≈ (ρH + ρL)/2, as is the case in
the low-Atwood number limit, these terms assume an Atwood
number dependence. The density variance is thus closed by

ρ ′ρ ′

ρ2 = (�ρ)2

ρ2
˜Y ′′
α Y ′′

α ≈ 4A2
˜Y ′′
α Y ′′

α . (48)

The density-mass-fraction covariance term is peculiar in that
the sign of this term may depend on a reference material. That
is by plugging Eq. (47) into Eq. (43), one can write either

ρ ′Y ′′
α

ρỸα

= �ρ

ρ

˜Y ′′
α Y ′′

H

Ỹα

≈ 2A
˜Y ′′

α Y ′′
H

Ỹα

(49a)

or

ρ ′Y ′′
α

ρỸα

= −�ρ

ρ

˜Y ′′
α Y ′′

L

Ỹα

≈ −2A
˜Y ′′
α Y ′′

L

Ỹα

. (49b)

Utilizing Eq. (47), the density-mass-fraction covariance can
then be closed in terms of a mass-fraction variance with a
sign that depends on which material contains the reactant α.
In other words,

ρ ′Y ′′
α

ρỸα

≈

⎧⎪⎨⎪⎩
2A

˜Y ′′
H Y ′′

H

ỸH
, α in heavy material

−2A
˜Y ′′
LY ′′

L

ỸL
, α in light material

. (50)

1. Premixed reactants

If both reactants are well-mixed and in the same material
with material mass fraction Ỹ ,

Y ′′
α ≈ Y ′′ Ỹα

Ỹ
, (51a)

and

Y ′′
β ≈ Y ′′ Ỹβ

Ỹ
. (51b)

Thus, the average reaction rate can be written as a function of
the material mass fraction and the scalar variance only:

ṙγ,αβ ≈ 〈σv〉αβỸ 2ρ2

mαmβ

{
1 + V

Ỹ 2
+ 4A2V ± 4A

V

Ỹ

}
. (52)

Notice that the sign of the density-mass-fraction covariance
closure depends on the material in which the reaction occurs
for an RT mixing layer. If the reaction occurs in the light
material, then the covariance will be negative; conversely, if
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TABLE III. Summary of k-L-a-V model coefficients and the experimental values that constrain them.

αb
EK

�PE n � Cμ Ca Cb CB CD CL1 CV 1 CV 2 Na Ne Nk NL NV NY

0.06 0.50 1.11 0.80 0.204 0.339 5.00 0.857 0.354 0.283 46.67 0.849 0.060 0.060 0.060 0.030 0.060 0.060

the reaction occurs in the heavy material, then the density-
mass-fraction covariance will be positive.

2. Nonpremixed reactants

If both reactants are initially in separate materials, then one
reactant must be present in the heavy material and the other
present in the light material. Then, if it is assumed that reactant
α is in material with material mass fraction Ỹ ,

Y ′′
α ≈ Y ′′ Ỹα

Ỹ
, (53a)

and

Y ′′
β ≈ −Y ′′ Ỹβ

1 − Ỹ
, (53b)

where binary mixing has been invoked such that Y ′′
H = −Y ′′

L

and ỸH = 1 − ỸL. Plugging Eqs. (53) back into Eq. (43),
the average reaction rate then takes on the following more
complicated form:

ṙγ,αβ ≈ 〈σv〉αβỸ (1 − Ỹ )ρ2

mαmβ

×
{

1 − V

Ỹ (1 − Ỹ )
+ 4A2V ± 2A

(
V

Ỹ
− V

1 − Ỹ

)}
.

(54)

Again, the sign of the density-mass-fraction covariance clo-
sure depends on the material in which the reaction occurs.

Self-similarity analysis, the details of which are fully
contained in Appendix, is utilized to derive constraints on
model coefficients in terms of the RT growth parameter αb,
the RT energetics ratio EK/�PE, the homogeneous isotropic
turbulence (HIT) decay exponent n, and the mixedness of an
RT mixing layer given by

� ≡
∫ ∞
−∞ ˜YHYLdx∫ ∞
∞ ỸH ỸLdx

= 1 −
∫ ∞
∞

˜Y ′′
HY ′′

Hdx∫ ∞
∞ ỸH ỸLdx

= 1 −
∫ ∞
∞ V dx∫ ∞

∞ ỸH ỸLdx
. (55)

Table III summarizes the complete set of model coefficients
used as well as the experimental values used to constrain
them.

F. LES problem setup and initial conditions

LES simulations are conducted on a square Cartesian mesh
extending between −2Rc and 2Rc in each dimension, where
Rc indicates the initial radius of the material contact surface.
Light hydrogen gas with a density of ρL = 0.011683 g/cm3 is
initialized nominally out to a radius of Rc = 1 cm. Heavy CH
plastic with an arbitrary density of ρH = ρL(1 + A)/(1 − A)

is initialized for radius r > Rc. Two configurations are consid-
ered: a premixed configuration and a nonpremixed configura-
tion. In the premixed configuration, the light gas is assumed to
consist of a 3:1 DT mixture by atom fraction, and the plastic
consists of carbon and hydrogen in an atom ratio of 1.35:1. In
the nonpremixed configuration, the light gas consists entirely
of tritium, and the hydrogen content of the plastic is replaced
with deuterium. A constant radial gravitational acceleration
is balanced by a hydrostatic radial pressure gradient such that
the mixing layer remains nominally centered around r = Rc at
later time. Constant mesh spacing, �, is utilized in all dimen-
sions, such that Nx = Ny = Nz, and nonpenetration boundary
conditions are specified at all problem boundaries. Table IV
summarizes the four levels of grid refinement considered in
the present study. The ratio h0/Rc indicates the initial mixing
layer width.

Spherical harmonic functions are used to specify an initial
perturbation spectrum at the contact surface. Since the goal
of the present work is to study mixing layer behavior in the
limit of self-similarity, it is desirable to maximize the total
number of mixing layer generations simulated. Therefore, the
approach of Morgan et al. [40] is adopted in the present work,
and the perturbation spectrum is specified as a function of
the mesh resolution such that each successive level of mesh
refinement is expected to allow for one additional generation
of mixing layer evolution. The initial perturbation amplitude
is given by

δ(r ) =
{

δ0
2

[
cos

(
2π r−Rc

h0

) + 1
]
, |r − Rc| < h0

2
0, otherwise

, (56)

where δ0 = h0/10. An initial perturbation function is then
defined according to

η(r, θ, φ) =
lmax∑

l=lmin

l∑
m=−l

δ(r )P m
l (θ + ψl,m, φ + ξl,m), (57)

where P m
l is the spherical harmonic function of order l and

degree m, and ψl,m and ξl,m are phase shifts drawn from
uniformly distributed random numbers between 0 and π and
between 0 and 2π , respectively. For the present work, only the
finest harmonic mode admitted by the mesh is used such that
lmin = lmax = Nx/2. The perturbed mass fraction field is then

TABLE IV. Summary of LES mesh parameters.

Mesh h0/Rc Nx Ny Nz Total pts.

A 0.200 144 144 144 2.99M
B 0.100 288 288 288 23.9M
C 0.050 576 576 576 191M
D 0.025 1152 1152 1152 1.53B

033111-6



LARGE-EDDY SIMULATION AND REYNOLDS-AVERAGED … PHYSICAL REVIEW E 98, 033111 (2018)

defined as

YH (r, θ, φ) = 1

2

[
tanh

(
r − Rc + η(r, θ, φ)

4�

)]
. (58)

Simulations are evolved in Miranda using an ideal gas EOS
until the homogeneous mixing layer width hhom, as defined by

hhom ≡ 4
∫ ∞

0
YH (1 − YH )dr, (59)

exceeds Rc/2 (approximately 25% of the computational do-
main). Note that hhom represents the thickness that would
result if the entrained fluids were perfectly homogenized in θ

and φ [42]. hhom is a convenient measure for comparison with
RANS calculations; however, when considering LES results
in general the mixing layer half-width shall be taken as

h ≡ 4
∫ ∞

0
YH (1 − YH )dr. (60)

From Eq. (55), it is clear that h and hhom are related according
to

� = h

hhom
. (61)

Once hhom > Rc/2, electron and ion temperatures are set
to 1 keV everywhere, and the problem is continued with
radiation diffusion and TN burn physics in the Ares code.
Additionally, at this time which shall be denoted as tburn, grav-
itational acceleration is turned off, boundary conditions are
changed to extrapolation, and equations-of-state are changed
to tabular Livermore EOS (LEOS) 1018 and LEOS 5350 for
the gas and plastic, respectively [64,65]. The simulation is
then continued in Ares until the average electron temperature
drops below 0.1 keV. To compare directly with RANS, a
preliminary LES is run to obtain a realistic temperature time
history. A secondary simulation is then carried out in which
spatial variation in reaction cross-section is eliminated by im-
posing a spatially uniform, time-varying temperature profile
obtained from the preliminary simulation.

In this way, large-eddy simulations are carried out in three
parts. First, a hydrostatic RT mixing layer is evolved in a
spherical geometry using the Miranda code until it reaches
self-similarity and a steady-state value of the scalar mass
fraction variance. During this stage of simulation, no reactions
are occurring, and the problem is purely a hydrodynamic one.
Then, once the mixing layer is fully developed, a second stage
proceeds using the Ares code to compute the TN reactions
with a fully coupled radiation-hydrodynamics treatment. Dur-
ing this second stage of simulation, turbulent fluctuations in
temperature may exist, and an average temperature history
is extracted. In the third and final stage, the Ares calculation
is repeated with a spatially uniform, time-varying tempera-
ture profile set to the average temperature history extracted
from the previous stage. By computing turbulence statistics
obtained during the reacting stages of the calculation, it is
possible to obtain validation data by which to evaluate the
k-L-a-V RANS model and the average reaction rate closures
given by Eqs. (52) and (54). Figure 1 illustrates an example
mixing layer simulation at t = tburn.

FIG. 1. Slice of YH contours at the y = 0 plane taken at t = tburn

for simulation on mesh D at A = 0.05. Contours are illustrated
between YH = 0 (white) and YH = 1 (black).

G. RANS problem setup and initial conditions

RANS simulations are conducted using the k-L-a-V model
in Ares. Problems are solved in r-z geometry (with revolved
symmetry about the z axis) on a quasi-1D wedge mesh
of width 0.01◦ with 576 uniformly spaced computational
zones extending out to a radius of r = 2Rc. A nonpenetration
boundary condition is assumed at r = 2Rc, and symmetry
boundary conditions are assumed along the angular bound-
aries. Figure 2 illustrates the initial configuration of the mesh
used.

Problems are set to match the LES as closely as possi-
ble, with the same material densities and compositions as
described in the previous section. As in the LES problem,
a constant radial acceleration is balanced by a hydrostatic
radial pressure gradient such that during the nonreacting stage

FIG. 2. Initial contours of YH plotted with the computational
mesh (every 12th zone) used for RANS simulations. Contours are
illustrated between YH = 0 (white) and YH = 1 (gray).
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FIG. 3. Nonreacting mixing layer evolution as a function of
generation number for four mesh resolutions at A = 0.05 and 0.50.

of the problem the mixing layer remains nominally centered
about r = Rc. Turbulence quantities are initialized such that
Lt=0 = 2.0 × 10−6 cm and kt=0 = 2.0 × 10−12 cm2/μs2 in
the two zones bordering the interface at r = Rc and are zero
everywhere else. This initialization procedure leads to an
initial turbulence time scale, L/

√
2k, equal to 1 μs at the

interface. Other turbulence quantities such as ai and Vk are
initially zero everywhere.

As in the LES problem, a nonreacting mixing layer is
evolved with an ideal gas EOS until hhom > Rc/2. After
hhom exceeds Rc/2, electron and ion temperatures are set to
1 keV everywhere, ideal gas equations-of-state are changed to
tabular LEOS 1018 and 5350 for hot, dense matter [64,65],
and the problem is continued with radiation diffusion and TN
burn physics active. Additionally, at tburn, gravitational accel-
eration is turned off, and the r = 2Rc boundary is changed to
extrapolation. Temperature in RANS simulations is specified
everywhere to equal the mass-weighted average temperature
time history obtained from LES.

III. RESULTS AND DISCUSSION

A. Nonreacting mixing layer growth

As discussed by Morgan et al. [40], the generation number
is a convenient way to nondimensionalize time in mixing layer
problems, and it represents the number of times the mixing
layer has doubled in width,

ng (t ) ≡ log2

[
h(t )

h(0)

]
. (62)

Figure 3 illustrates the mixing layer width hhom as a function
of generation number for obtained from LES for the four mesh
resolutions considered at A = 0.05 and 0.50. As expected,
each additional level of grid resolution allows for approxi-
mately one additional generation of mixing layer growth. Ini-
tial mixing layer widths are nearly equal to h0, as previously
given in Table IV, and tburn occurs once hhom/Rc > 0.50.

Two additional indicators of mixing layer development
are considered in Fig. 4. First, the mixedness � is plotted
in Fig. 4(a). For simulations at both A = 0.05 and 0.50,
the mixedness is seen to approach a value of about 0.8, as
expected. Notably, mixedness in the present results does not
appear to drop significantly below 0.8 during the early-time
evolution, as earlier simulations in a planar geometry have
often observed [40,42,66]. Since such a drop is generally
indicative of the linear growth phase of dominant-mode per-
turbations, the relative suppression of such a feature in the
present work is likely due to the combined impact of BP
effects, which act to shorten the linear phase in a spherical
geometry, and the single, highest-mode initial perturbation
used in the present work. It might be expected, for instance,
that an initial perturbation with more low-mode content would
lead to a greater drop in initial mixedness.

Figure 4(b) additionally plots the RT growth constant α

computed according to

α = h2
t

4Agh
, (63)

where ht indicates the time derivative of h. Equation (63) has
been derived alternately using self-similarity analysis [66] and
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FIG. 4. Two measures of mixing layer development as a function of generation number on mesh D: (a) mixedness, �, and (b) growth
constant, α, at A = 0.05 and 0.50.
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an energy balance argument [41]. As illustrated in Fig. 4(b),
by tburn for both Atwood numbers, α appears to approach a
value around 0.03.

For the purposes of comparing to RANS, which relies on
assumptions of fully developed turbulence and self-similar
growth, it is important that the LES results reach a state of
self-similarity. To further quantify the degree to which the
present LES results are self-similar, the approach of Morgan
et al. [40] is adopted. Figure 5 plots contours of radially
averaged mass fraction profiles as a function of generation
number (i.e., time) and space. When the spatial coordinate
is normalized by the mixing layer width, then as the mix-
ing layer approaches self-similarity, contours should become
horizontal. The degree to which the mass fraction contours
demonstrate this kind of self-similar behavior is therefore
quantified by the self-similarity metric,

σYH
(ng ) ≡ 1 −

∫ ∞
−∞

∣∣ ∂ỸH

∂ng

∣∣dχ∫ ∞
−∞

√(
∂ỸH

∂ng

)2 + (
∂ỸH

∂χ

)2
dχ

, (64)
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FIG. 6. Self-similarity of the heavy species mass fraction profile
as a function of generation number for simulations on mesh D at
A = 0.05 and 0.50.

where χ ≡ (r − Rc )/h is used to indicate the self-simlar
spatial coordinate.

Figure 6 plots the self-similarity metric defined by Eq. (64)
for simulations at A = 0.05 and 0.50. In both cases, σYH

is
observed to decrease sharply during the first generation of
mixing layer growth before rising again quite rapidly. Around
ng ≈ 2.5, both cases reach a maximum value of σYH

≈ 0.98.
By tburn, which occurs after approximately four generations
of growth, both cases appear to be well within the self-similar
regime.

B. Burn with premixed reactants

1. LES results

Attention is now turned to the second stage of simulations,
in which the fully developed mixing layer simulations pre-
sented in the previous section are heated to 1 keV, and TN burn
is allowed to proceed. A premixed configuration, in which D
and T are initially well-mixed in the light fluid, is considered
first. To provide a sense of how radiation behaves in this
problem, Fig. 7 plots the average photon mean free path λ ≡
(ρω)−1 across the mixing layer. In the light gas and across
most of the mixing layer, λ is significantly greater than the
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FIG. 7. Spatial profile of photon mean free path from LES in the
premixed configuration at tburn + 0.0015 μs on mesh D.
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FIG. 8. Mass-weighted average temperature history of burning mixing layer LES in the premixed configuration on mesh D: (a) A = 0.05
and (b) A = 0.50.

mixing layer width. Although λ/Rc < 1 in the heavy fluid, the
mixing layer itself is essentially transparent to the radiation
field. As a result, Er is nearly uniform in space throughout
the problem evolution. Figure 8 illustrates the mass-weighted
average temperature history of the evolving mixing layer in
the first 30 ns after tburn for both A = 0.05 and 0.50. In both
cases, there is little difference between the ion and electron
temperatures. A steep, nearly linear drop in electron and

ion temperatures occurs over the first 4–8 ns in both cases,
after which time the matter and radiation temperatures appear
approximately to reach equilibrium. During this first 4–8 ns
when the matter temperature is dropping sharply is when the
majority of TN reactions occur in the present problem.

To better inform the RANS reaction rate closures discussed
in Sec. II E, Fig. 9 plots the spatial profiles of contributions to
the radially averaged DT reaction rate given by

ṙγ,αβ︸︷︷︸
I

= 〈σv〉αβỸαỸβρ2

mαmβ︸ ︷︷ ︸
II

(
1 +

˜Y ′′
α Y ′′

β

ỸαỸβ︸ ︷︷ ︸
V︸ ︷︷ ︸

III

+ ρ ′ρ ′

ρ2︸︷︷︸
VI

+ ρ ′Y ′′
α

ρỸα︸ ︷︷ ︸
VII

+ ρ ′Y ′′
β

ρỸβ︸ ︷︷ ︸
VIII

︸ ︷︷ ︸
IV

+ h.o.t.

)
, (65)

at a time 1.5 ns after tburn. In this plot, curve I is the average
reaction rate that must be modeled in RANS. Curve II is
the mean contribution to the reaction rate that is modeled by
k-L-a and other models which do not account for the addi-
tional contributions due to higher-order statistical moments.
Curves III and IV represent closure models which account,
respectively, for the contribution from the scalar variance only
and for the contribution from all second moments. It is clear
in Fig. 9 that the average reaction rate (curve I) is under-
predicted by the mean contribution alone (curve II). Both
curves III and IV appear to capture the average reaction rate
quite well; although, for the A = 0.50 case, the reaction rate
appears slightly over-predicted around 0.65 � r/Rc � 0.9
when the density variance and covariance terms are ignored
(term III). Of course, the density variance and density-mass-
fraction covariance terms are expected to increase in magni-
tude with Atwood number; so, this is somewhat expected.

The relative magnitude of turbulence terms inside the
parentheses in Eq. (65) is explored further in Fig. 10. In this
figure, curve V is the spatial profile of the scalar variance

contribution to the average DT reaction rate, and curve VI is
the spatial profile of the density variance contribution to the
average reaction rate. For the premixed configuration, the two
density-mass-fraction covariance contributions are equivalent;
so, the sum of these two terms is plotted together as a dotted
line. Finally, the sum of all second moment contributions is
plotted as a solid line. Since DT reactions are occurring in the
light fluid, the density-mass-fraction covariance contribution
is opposite in sign to the scalar variance and density variance
contributions. Although the greatest single contributor to the
reaction rate is the scalar variance term, the sum of all
second moments is, therefore, somewhat less than the scalar
variance contribution alone. As a result, if the covariance
terms are neglected in a RANS model, the total reaction
rate would be over-predicted, particularly at higher Atwood
number. Although the density variance and density-mass-
fraction covariance contributions are small at low Atwood
number, as illustrated in Fig. 10(b), these terms increase in
relative magnitude at higher Atwood number, a finding that is
consistent with the proposed closure model given by Eq. (52).
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FIG. 9. Spatial profiles of radially averaged DT specific reaction rate from LES in the premixed configuration at tburn + 0.0015 μs on mesh
D: (a) A = 0.05 and (b) A = 0.50. I. Radially averaged reaction rate. II. Mean contribution to reaction rate. III. Mean contribution plus scalar
variance term. IV. Mean contribution plus all second moment terms. See Eq. (65) for mathematical definitions of curves.

2. Comparison with RANS

Although the k-L-a-V RANS model development has
relied on an assumption of constant reaction cross-section,
as illustrated in Fig. 11, the present problem as developed
thus far unfortunately has significant spatial temperature vari-
ance, which leads to equally significant spatial variance in
cross-section. Figure 11(a) plots spatial profiles from LES of
the standard deviation in temperature normalized by mean
temperature, while Fig. 11(b) plots spatial profiles of the
standard deviation in DT reaction cross-section, normalized
by the mean cross-section. From this plot, it is clear that as
much as 17% difference in cross-section exists within one
standard deviation across the mixing layer, suggesting that the
assumption of constant reaction cross-section is a poor one for
the present problem. Therefore, to make direct comparisons
with RANS, a second set of LES calculations is carried out
in which the spatial variation in cross-section is artificially

eliminated by specifying a uniform spatial temperature profile
equal to the mass-weighted average temperature histories
illustrated previously in Fig. 8.

Figure 12 illustrates representative mass fraction and scalar
variance profiles from both LES and RANS simulations at
A = 0.05 at tburn. Although these profiles represent the end-
state of the nonreacting phase of both simulations, the profiles
illustrated in Fig. 12 also represent the initial conditions
for the burn phase. In this regard, reasonable agreement is
achieved between the RANS and LES in terms of profile shape
and the peak magnitude of mass fraction variance.

The results illustrated in Fig. 13 represent the main di-
agnostic by which the k-L-a-V model is evaluated. In this
figure, the total neutron production as a function of time is
plotted for both LES and RANS simulations at A = 0.05 and
0.50. Three RANS simulations are compared against LES:
k-L-a results with no modification to the mean reaction rate;
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√
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k-L-a-V results with only the scalar variance contribution
to the reaction rate, indicated as “k-L-a-V (without Atwood
terms)”; and k-L-a-V results with reaction rate contributions
from all second moments, indicated as “k-L-a-V (with At-
wood terms).” For cases at both A = 0.05 and 0.50, it is
clear that the k-L-a results under-predict the total neutron
production by approximately 10–15%. While the density vari-
ance and density-mass-fraction covariance terms appear fairly
negligible in the A = 0.05 case, as illustrated in Fig. 13(b),
if these terms are neglected at A = 0.50, the result is an
over-prediction by almost the same amount. However, when
all second moment contributions are modeled as given by
Eq. (52), the k-L-a-V model predicts total neutron production
to within 1% for the A = 0.05 case and to within 3% for the
A = 0.50 case.

C. Burn with nonpremixed reactants

1. LES results

In the nonpremixed configuration, T in the light gas is
initially separated from D in the heavy plastic material.

Although the code is capable of solving for all TN reactions
listed in Table II, for the nonpremixed configuration, DD
and TT reactions are disabled to focus exclusively on the
nonpremixed DT reaction rate. Figure 14 plots the mass-
weighted temperature evolution in the first 10 ns after tburn.
Compared to the premixed configuration, there is slightly
greater divergence between the ion and electron tempera-
tures, and equilibration with the radiation temperature occurs
over a shorter time period; however, the overall temperature
history is qualitatively quite similar. The matter temperature
decreases nearly linearly over a period of 2–4 ns, during
which time most of the DT reactions occur, before slowly
equilibrating with the radiation temperature.

Figure 15 plots spatial profiles of contributions to the
average DT reaction rate, as previously defined by Eq. (65).
In the nonpremixed configuration, DT reactions only occur in
the mixing layer region, and reaction rate profiles go to zero
outside of the mixing layer. Additionally, in the nonpremixed
configuration, the average contribution to the reaction rate
(curve I) is observed to over-predict, rather than under-predict,
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the average reaction rate. This observation is consistent with
the anticipated sign of the scalar variance contribution pre-
dicted by the closure model given by Eq. (54). Although
there appears to be a slight under-prediction of the average
reaction rate at A = 0.50 when the density-variance and
density-mass-fraction covariance contributions are neglected
(curve III), the difference between curves III and IV is quite
small, particularly at A = 0.05 in Fig. 15(a).

Individual terms within the parentheses in Eq. (65) are
again explored in Fig. 16. In contrast to the premixed config-
uration in which the density-mass-fraction covariance terms
are equal, in the nonpremixed case, the two covariance terms
are opposite in sign and are plotted separately in Fig. 16.
At A = 0.05, the covariance terms act to nearly cancel each
other, and the density variance is negligible in comparison to
the scalar variance contribution; thus, at low Atwood number,
the scalar variance accounts for nearly all of the turbulent
contribution to reaction rate. At A = 0.50, the density vari-
ance is a more significant term, and the density-mass-fraction
covariance terms do not cancel each other as closely.

2. Comparison with RANS

Figure 17 plots normalized standard deviations of tem-
perature and DT cross-section for the nonpremixed case.
Compared to the premixed configuration (Fig. 11), standard
deviations of both temperature and cross-section in the non-
premixed configuration (Fig. 17) are significantly greater. In
particular, the standard deviation of DT cross-section peaks
at over 45% of the average for the nonpremixed case. Such a
high value again emphasizes that an assumption of constant
cross-section is particularly poor for the nonpremixed case, in
which DT reactions occur only within the turbulent mixing
layer. By contrast, in the premixed case, a significant frac-
tion of DT reactions occur within the laminar core, where
the assumption of a constant cross-section is more reason-
able. Therefore, as done previously, a second set of LES
calculations is carried out in which the spatial variation in
cross-section is artificially eliminated by specifying a uniform
spatial temperature profile equal to the mass-weighted average
temperature histories illustrated in Fig. 14.
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FIG. 15. Spatial profiles of radially averaged DT specific reaction rate from LES in the nonpremixed configuration at tburn + 0.0015 μs on
mesh D: (a) A = 0.05 and (b) A = 0.50. I. Radially averaged reaction rate. II. Mean contribution to reaction rate. III. Mean contribution plus
scalar variance term. IV. Mean contribution plus all second moment terms. See Eq. (65) for mathematical definitions of curves.

Mass fraction and scalar variance profiles at time tburn, as
illustrated in Fig. 18, again demonstrate that LES and RANS
are in reasonable agreement for the initial conditions to the
burn phase of simulations. As illustrated in Fig. 18(a), in the
nonpremixed configuration, D and T are only present together
within the turbulent mixing layer. Although the magnitude of
the scalar variance in the mixing layer is about the same as
in the premixed configuration, in general, the nonpremixed
configuration is more sensitive to turbulent fluctuations since
reactions do not occur outside of the mixing layer.

Total neutron production as a function of time is plotted
in Fig. 19 for both LES and RANS simulations at A = 0.05
and 0.50. Again, three sets of RANS results are compared
against LES. In the nonpremixed configuration, the k-L-a
model over-predicts total neutron production by between 35%
and 40% for both the A = 0.05 and 0.50 cases. This error
is reduced to about 2.7% for the A = 0.05 case and to 5.5%
for the A = 0.50 case, however, with the k-L-a-V model. As

expected, inclusion of the density variance and density-mass-
fraction covariance closures appears to have little impact in
the lower Atwood number case; although, their inclusion in
the A = 0.50 case modestly improves agreement with LES.
This result is consistent with earlier observations in Fig. 16,
in which the density-mass-fraction covariance terms were
found to be opposite in sign with contributions to the average
reaction rate that nearly cancel each other.

IV. SUMMARY AND CONCLUSIONS

In the present work, LES of a reacting RT mixing layer
in a spherical geometry has been performed to obtain high-
fidelity data on the impact of turbulent mixing on the average
reaction rate. Four levels of mesh refinement were considered,
and the highest-resolution simulations were shown to reach
a self-similar state, achieving a steady-state mixedness, � ≈
0.8, and a steady-state growth rate, α ≈ 0.03.
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T . VIII. ρỸT ρ ′Y ′
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√

˜f ′′f ′′/f̃ for (a) temperature and (b) DT reaction cross-section
from LES in the nonpremixed configuration at tburn + 0.0015 μs on mesh D.

After reaching self-similarity, simulations were then set to
1 keV to initiate TN burn. Both premixed and nonpremixed
configurations were considered at low (0.05) and moderate
(0.50) Atwood numbers. Using data from the LES results,
average reaction rate profiles were extracted and compared
against potential second-moment turbulence closures. At low
Atwood number, density variance and density-mass-fraction
covariance contributions to the average reaction rate were
found to be fairly negligible, and a reasonable closure of
the reaction rate could be made with the scalar variance
contribution alone. However, at A = 0.50, these terms became
increasingly significant and could not be neglected. In both
premixed and nonpremixed configurations, the assumption
of a constant reaction cross-section was found to be a poor
approximation due to turbulent variations in temperature. To
enable comparisons with RANS, a second set of simula-
tions were then carried out in which the spatial variation in
temperature was artificially eliminated by specifying a uni-
form temperature history.

LES results with specified temperature history were then
compared with 1D RANS simulations using the k-L-a model

[22,23] and the newly proposed k-L-a-V model, which
represents an extension of the k-L-a model by the addi-
tion of a transport model for scalar mass fraction variance.
The k-L-a-V model, which was presented in Sec. II E, has
been constrained through similarity analysis to reproduce the
mixedness of a self-similar RT mixing layer in the limit of low
Atwood number and includes proposed closure for the average
reaction rate to include contribution from second-moment
turbulence effects. When applied to simulation of the reacting
RT mixing layer in a converging geometry, the k-L-a-V
model was demonstrated to agree quite closely with LES in
total neutron production, resulting in a reduction in error over
the k-L-a model by about 12% in the premixed configuration
and as much as 35% in the nonpremixed configuration.

Of course, more work remains to be done. Most impor-
tantly, in the present work, the impact of turbulent fluctuations
in the reaction cross-section have been neglected. A more
complete model should account for density and mass fraction
correlations with the fluctuating cross-section and model them
appropriately. Therefore, the most immediate direction of fu-
ture research should focus on developing appropriate closures
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FIG. 19. Comparison of total neutron production as a function of time for LES (mesh D) and RANS in the nonpremixed configuration:
(a) A = 0.05 and (b) A = 0.50.

for these terms. The spherical RT mixing layer considered
in the present work is very much a manufactured problem.
In reality, turbulence in ICF targets may be dominated by
three-dimensional, low-mode asymmetries, and by viscous
dissipation effects [36]. Additionally, representative Atwood
numbers of realistic ICF targets are in general much greater
than those considered in the present work. Further work
should therefore be done to obtain high-fidelity reaction rate
data from simulation of more realistic ICF configurations. As
the present work has shown, when turbulent fluctuations in
reaction cross-section can be neglected, the k-L-a-V model
is able to match LES very closely. Application of the model
to the simulation of a more realistic ICF target for which
high-fidelity simulation and/or experimental data exists would
therefore represent a more rigorous test of the k-L-a-V
model’s usefulness in engineering applications.

ACKNOWLEDGMENTS

The authors thank Brian Pudliner, Oleg Schilling, Peter
Rambo, Mark Ulitsky, and others at LLNL for helpful input
and discussions. Wolfgang Black gratefully acknowledges
support from the 2017 and 2018 LLNL High Energy Den-
sity Physics Summer Program. This work was performed
under the auspices of the US Department of Energy by
Lawrence Livermore National Laboratory under Contract No.
DE-AC52-07NA27344.

APPENDIX: SELF-SIMILARITY ANALYSIS
OF THE k-L-a-V MODEL

Previous work [22,23] has shown that a set of model
coefficients can be derived for the k-L-a model which satisfy
an ansatz of self-similar RT growth in the limit of low At-
wood number. When self-similarity constraints are satisfied,
the k-L-a model has been previously shown to reproduce
experimentally observable parameters, such as RT and RM
growth rates, that are used to constrain model coefficients. In
a manner similar to the approach of Schilling and Mueschke
[67], the k-L-a-V model differs from the k-L-a model only by

the addition of the scalar variance transport equation, Eq. (35),
and in the closure for b given in Eq. (40). Thus, similarity
analysis for the k-L-a-V model follows identically the anal-
ysis for the k-L-a model [22] with additional consideration
of the scalar variance equation and only minor difference in
analysis of the a equation.

To begin, a change of variable is introduced in terms
of the mixing layer half-width, h(t ). Let χ ≡ x/h. It is
assumed that k, L, and V are separable in space and time
such that k(χ, t ) = K0(t )f (χ ), L(χ, t ) = L0(t )

√
f (χ ), and

V (χ, t ) = V0(t )f (χ ) with f (χ ) = 1 − χ2. A linear mass
fraction profile is assumed such that

ỸH (χ ) = 1
2 (1 − χ ), (A1a)

ỸL(χ ) = 1
2 (1 + χ ). (A1b)

Substituting into Eqs. (A1) into Eq. (55) allows one to
derive the following simple relationship,

� = 1 − 4V0. (A2)

From prior work [40,42], � is expected to approach a value
of about 0.8 for a fully developed mixing layer. For a 1D RT
mixing layer in the limit of low Atwood number, Eq. (35)
reduces to

ρ
DV

Dt
= CV 1μt

(
∂Ỹ

∂x

)2

− CV 2ρ

√
2k

L
Vα + ∂

∂x

(
μt

NV

∂V

∂x

)
.

(A3)

Substituting into Eq. (A3) and utilizing the incompressibility
assumption to cancel factors of density leads to

D

Dt
(V0f ) = CV 1CμL0

√
2K0

(
− 1

2h

)2

f − CV 2

√
2K0

L0
V0f

+ ∂

∂x

[
CμL0f

√
2K0

NV

∂

∂x
(V0f )

]
. (A4)

According to the similarity ansatz, the turbulence length scale
is assumed to grow self-similarly such that L0 = βh. From
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FIG. 20. The k-L-a-V model applied to simulation of a planar 1D RT mixing layer at A = 0.05: (a) steady-state scalar variance profile
and (b) steady-state b profile compared with LES [40] and with similarity solution.

prior self-similarity analysis of the L equation [22,23],

β =
√

CL1NL

2Cμ

, (A5)

and

∂L0

∂t
= CL

2

√
2K0. (A6)

Recognizing from Eq. (A2) that ∂V0/∂t = 0 in the self-similar
regime, after some algebra and substitution of Eqs. (A5) and
(A6), Eq. (A4) can be rearranged to give[

CL1V0 + CV 1CL1NL

8
− CV 2V0 − 3CL1NL

NV

V0

]
χ2

−
[
CV 1CL1NL

8
− CV 2V0 − CL1NL

NV

V0

]
= 0. (A7)

To ensure that both the χ2 terms and the constant terms in
Eq. (A7) go to zero simultaneously requires

NV = 2NL. (A8)

Substituting Eq. (A8) back into Eq. (A7) reduces both sets of
terms in brackets to

CV 1CL1NL

8
− CV 2V0 − CL1

2
V0 = 0, (A9)

which can be rearranged to solve for the following constraint
on CV 1 in terms of �,

CV 1 = 2CV 2 + CL1

CL1NL

(1 − �). (A10)

To derive a constraint on the scalar variance dissipation
constant CV 2, consider the decay of HIT. In the absence of
mean velocity and pressure gradients, Eqs. (32), (33), and (35)

reduce to

dk

dt
= −CD

(2k)3/2

L
, (A11a)

dL

dt
= CL1

√
2k, (A11b)

dV

dt
= −CV 2

√
2k

L
V. (A11c)

These equations are solved in terms of a reference time t0,
a turbulence decay constant n, and a scalar decay constant m:

k = K0

(
1 + t

t0

)−n

, (A12a)

L = L0

(
1 + t

t0

)1−n/2

, (A12b)

V = V0

(
1 + t

t0

)−m

. (A12c)

Substituting Eqs. (A12a) and (A12b) into Eqs. (A11a) and
(A11b) gives

n = 2CD

CL1 + CD

. (A13)

Then, substituting Eq. (A13) along with Eqs. (A12a) through
(A12c) back into Eq. (A11c) leads to

CV 2 = m(CL1 + CD ). (A14)

Equation (A14) is general for any choice of the scalar decay
constant m. While there is some uncertainty about a universal
value of m, Sutton [68] suggests the following relationship
between the velocity decay exponent n and the scalar decay
exponent m,

m = 1
2 (6 − 3n). (A15)

Substituting Eqs. (A15) and (A13) back into Eq. (A14) gives

CV 2 = 3CL1. (A16)
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Applying the low-Atwood-number assumption that ρ ≈
(ρH + ρL)/2 to Eq. (40), one derives the self-similar profile
for b̂,

b̂ = Cb

4A2

1 − 2A2 + A4
V0f. (A17)

The remaining similarity analysis follows the same process
previously described in some detail in Refs. [22,23]. From this
analysis, it follows that the diffusion coefficients must all be
related by

NY = Ne = Nk = Na = NV = 2NL. (A18)

The buoyancy production coefficient, CB , is constrained by
the RT bubble growth parameter, αb, according to

CB = 4 αb

(
1 + 2 CD

CL1

)√
Cμ CL1

Nk

. (A19)

The ratio CμCL1/Nk is constrained by the RT growth parame-
ter and the ratio of liberated kinetic energy, EK , to the change
in potential energy, �PE, according to

Cμ CL1

Nk

= 8 αb

�PE

EK

. (A20)

The a dissipation coefficient, Ca , is constrained according to

Ca = CD +
√

CL1 Nk

Cμ

6 CB

− CL1

4
. (A21)

Finally, for the reduced a equation to be consistent with the
reduced k equation, the scaling coefficient Cb must satisfy

Cb = 1

4V0
= 1

1 − �
. (A22)

Since there is no shear in a 1D RT mixing layer, the
coefficients CL2 and Cdev can be neglected for the present
purposes. When shear is a concern, a proper treatment for
these coefficients has been derived in the context of the two-
length-scale k-L-a model [23]. As discussed by Morgan et al.
[23], however, when there is no shear the single length scale
model is equivalent to the two-length-scale model.
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FIG. 21. The k-L-a-V model applied to simulation of a planar
1D RT mixing layer at A = 0.05: mixedness as a function of gener-
ation number compared with LES [40].

Equations (A10), (A14), (A16), and (A18)–(A22) thus rep-
resent 12 constraints on the 14 model coefficients Cμ, Ca , Cb,
CB , CD , CL1, CV 1, CV 2, Na , Ne, Nk , NL, NV , and NY . Cμ and
CD are chosen to be consistent with the original k-L-a model
[22] such that Cμ

√
2 = 0.288 and CD23/2 = 1. Similarly, the

same set of experimental values as for the k-L-a model are
used to set the RT growth parameter αb = 0.06 [69,70], the RT
energetics ratio EK/�PE = 0.5 [70,71], and the HIT decay
exponent n = 1.11. As mentioned earlier, � = 0.8 is taken
for the RT mixedness parameter [40,42].

Figures 20 and 21 illustrate application of the k-L-a-V
model to simulation of a planar 1D RT mixing layer at A =
0.05. Problem setup and initialization is the same as described
by Morgan and Wickett [22], using the k-L-a-V model as
implemented in Ares. As shown in Fig. 20, the steady-state
scalar variance and b profiles predicted by k-L-a-V matches
very closely the quadratic profiles that were used to derive the
similarity constraints. Although the RANS model is incapable
by construction of capturing the complex turbulence transition
process, which the LES data exhibits during the first 4.5
generations of growth, as illustrated by Fig. 21 the desired
mixedness is recovered exactly in the steady state with the
k-L-a-V model.
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