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Enstrophy spectrum in freely decaying two-dimensional self-similar turbulent flow
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We consider freely decaying two-dimensional homogeneous and isotropic turbulent motion in a self-similar
limit that is achieved at large Reynolds numbers based on time and the mean kinetic energy of the flow
provided that initial average enstrophy tends to infinity as fluid viscosity tens to zero. In this case, the enstrophy
dissipation rate has a nonzero finite limit. The vorticity correlation function and the spectral enstrophy density are
investigated in an inertial range of distances and wave numbers where these functions are free from the influence
of viscosity and large-scale flow parameters. It turns out that in freely decaying two-dimensional self-similar
turbulence, the inertial range exists in real space but is absent in the space of wave numbers. This means that
turbulent eddies of the appropriate size do not contribute to the spectral density and the known k−1 law does
not hold. The spectral enstrophy density at large wave numbers behaves nonmonotonically: it first decreases
faster than in accordance with the k−1 law and then, in the dissipation region, has a growth portion and a second
maximum. The enstrophy spectral flux at the boundary of the dissipation region is only a fraction of the enstrophy
dissipation rate.
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I. INTRODUCTION

Freely decaying two-dimensional isotropic turbulence is
described by the two-dimensional Navier-Stokes equations in
which external forces are absent. Its main properties, accord-
ing to Batchelor [1], follow from the fact that for plane motion
the kinetic energy dissipation tends to zero when the fluid
viscosity ν → 0. In this limit, the average kinetic energy per
unit mass E is conserved and is an invariant of the motion
under consideration. Batchelor assumed that the statistical
characteristics of turbulence depend on only two governing
parameters ν and E and, therefore, obey self-similar laws. The
enstrophy, in particular, reads [1]

1

2
〈ω2〉 = A

t2
, (1)

where A is a dimensionless constant. The law of conservation
of energy

dE

dt
= −ν〈ω2〉 = −2Aν

t2

after integration gives the equality

E = V 2 + 2Aν

t
, V 2 = E(∞),

which implies that for τ = tV 2/ν ∼ 1, when both terms on
the right-hand side have the same order of magnitude, average
kinetic energy changes by an amount of order V 2. This
happens because for τ ∼ 1 according to (1), enstrophy has
the order V 4ν−2, and the relative energy dissipation rate is of
order unity. Therefore, at the initial instant of time, energy
differs significantly from V 2. Hence we can conclude that
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the self-similar flow arises for τ � 1 provided that the initial
velocity field is weakly correlated, it has a small spatial scale
of inhomogeneity proportional to viscosity, and the Reynolds
number R0 = V 2/ω0ν, where ω0 is the root of initial average
enstrophy, is of order unity.

According to (1), the self-similar representation of the
enstrophy dissipation rate

χ = −d〈ω2〉
2dt

(2)

is χ = −At−3 and does not depend on viscosity. This does not
contradict Eyink’s rigorous mathematical result [2], according
to which in two-dimensional flow in the limit of vanishing
viscosity, χ → 0 for a finite value of initial enstrophy, and the
limit χ �= 0 is possible if initial enstrophy tends to infinity,
which is just achieved under the condition R0 ∼ 1. Thus, the
self-similar flow with the initial enstrophy ω2

0 ∼ V 4ν−2 is ex-
actly the case when the well-known Batchelor conjecture [1]
about a finite nonzero value of the enstrophy dissipation rate
is fulfilled.

Another known Batchelor’s result [1] is the k−1 law for the
spectral enstrophy density

�(k, t ) = Cχ2/3k−1 (3)

(C is a universal constant), which was obtained under the
assumption of the existence of an inertial range of wave
numbers where this quantity depends on the wave number
k and χ only. It must be said that DNS data on this law
do not agree well with each other. One part [3–6] confirms
Eq. (3), but the other one [7–11] demonstrates a stronger
decrease of � ∼ k−α with the exponent α > 1. We will show
that for self-similar flow, the k−1 law cannot be satisfied, since
it contradicts Eq. (2), but there is a more rapid decrease in the
spectral enstrophy density at large wave numbers.
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Thus, the aim of the present study is to find out what
a consistent application of Batchelor’s conjecture about the
self-similarity of freely decaying two-dimensional turbulence
yields.

II. PROBLEM FORMULATION

Let us assume that the limiting at τ → ∞ self-similar flow
depends on three governing parameters ν, V , and ω0. Then
for the average enstrophy and the rate of its dissipation from
dimensional considerations, we obtain the expressions

1

2
〈ω2〉 = f (R0)

t2
, χ = −2f (R0)

t3
, (4)

in which f is a universal function. Relations (4), like all
subsequent ones, are obtained under the condition τ → ∞
with R0 = O(1).

Since V and V t are the characteristic velocity and length
scale of large-scale motion, the spectral density characterizing
the flow on large scales can be written

�(k, t ) = V

t
ge(K, R0), K = V tk, (5)

where ge is a universal function.
Following Batchelor, we assume that there exists a direct

enstrophy cascade, and the parameter χ determines the prop-
erties of freely decaying two-dimensional turbulence on the
dissipation scale. Then the inner length scale is calculated in
terms of the quantities ν and χ and equals ν1/2χ−1/6. The
fluctuation velocity on this scale is of order ν1/2χ1/6. Since
χ characterizes an enstrophy flux from large eddies to small
ones, the characteristic time of motion for all scales (up to the
enstrophy dissipation scale inclusive) has the same order of
magnitude χ−1/3. In accordance with these estimates and the
second formula in Eq. (4), the representation of the spectral
density on the enstrophy dissipation scale is

�(k, t ) =
√

ν

t3
gi (�, R0), � = k

√
νt = K√

τ
, (6)

where gi is a universal function.
Thus, on large and small scales, the spectral density is

described by self-similar representations (5) and (6).

III. INERTIAL RANGE OF WAVE NUMBERS: THE k−1 LAW

Suppose that there exist an inertial range of wave numbers
where the spectral enstrophy density does not depend on the
outer parameter V and viscosity. In this case, Eqs. (5) and (6)
give the k−1 law

ge(K, R0) → G(R0)

K
, K → ∞, (7)

gi (�, R0) → G(R0)

�
, � → 0, (8)

where G is a certain function. Relations (7) and (8) are
matching conditions [12] that relations (5) and (6) must satisfy
in the inertial range.

Substituting (5) and (6) into the integrals

1

2
〈ω2〉 =

∫ ∞

0
�(k, t ) dk, χ = 2ν

∫ ∞

0
k2�(k, t ) dk

yields

1

2
〈ω2〉 = 1

t2

[∫ τ 1/4

0
ge(K, R0) dK +

∫ ∞

τ−1/4
gi (�, R0) d�

]
,

(9)

χ = 2

t3

[
1

τ

∫ τ 1/4

0
K2ge(K, R0) dK

+
∫ ∞

τ−1/4
�2gi (�, R0) d�

]
. (10)

In view of the relation between the two dimensionless
wave numbers K = �

√
τ , the boundary of the dissipation

range is characterized by the conditions K = O(
√

τ ) or
� = O(τ−1/2). Therefore, the first integrals (9) and (10) en-
compass the region of large-scale motion lying outside the
dissipation range, where representation (5) and asymptotics
(7) are true, and the second ones encompass the region of
viscous dissipation, where representation (6) and asymptotics
(8) are true. In other words, asymptotic representations (7)
and (8) are satisfied up to a conditional boundary of the
dissipation region, where the dimensionless wave numbers
reach the values K = O(

√
τ ) and � = O(τ−1/2), while the

limits of integration have the values K = τ 1/4 and � = τ−1/4,
which guarantees the validity of asymptotic representations
(7) and (8) within the integration intervals. In the limit τ →
∞, Eqs. (9) and (10) give

1

2
〈ω2〉 = t−2

[
1

2
G(R0) ln τ + I (R0)

]
, (11)

I =
∫ 1

0
ge dK +

∫ ∞

1
[ge − GK−1] dK

+
∫ 1

0
[gi − G�−1] d� +

∫ ∞

1
gi d�, (12)

χ = 2

t3

∫ ∞

0
�2gi d�. (13)

The convergence of the second and third integrals (12) is
ensured by asymptotic representations (7) and (8). Expression
(11) does not agree with (4). The time derivative of (11)
contains ln τ and cannot be equal to (13). It implies that the
assumption of the existence of the inertial range of wave
numbers [the overlap region for representations (5) and (6)]
and the k−1 law provide such a form of enstrophy spectrum
that does not ensure Eq. (2).

IV. INERTIAL RANGE IN REAL SPACE

In the case of homogeneous and isotropic two-dimensional
turbulence, the spectral density is calculated in terms of the
vorticity correlation function

�(r, t ) = 〈ω(x, t )ω(x + r, t )〉 (14)

by the formula [13]

�(k, t ) = k

2

∫ ∞

0
�(r, t )J0(kr )r dr, (15)
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0 

FIG. 1. Qualitative form of the vorticity correlation function.

where J0 is the zero-order Bessel function. In accordance with
the estimates given above, we introduce the dimensionless
correlation functions for two characteristic regions of varia-
tion of r

�(r, t ) = φe(η, R0)

t2
, η = r

V t
, (16)

�(r, t ) = φi (ζ, R0)

t2
, ζ = r√

νt
= η

√
τ , (17)

on large scales and the dissipation scale, respectively.
Suppose that there exists an inertial range of scales in

real space, i.e., such a range of r that is much smaller than
the outer scale of the flow but much larger than the viscous
enstrophy dissipation scale, where � depends neither on outer
parameters nor on viscosity. Then representations (16) and
(17) must satisfy the matching condition [12]

φe(0, R0) = φi (∞, R0) = D(R0), (18)

where D is a certain function.
Because of spatial uniformity of the flow

〈[ω(x, t ) − ω(x + r, t )]2〉 = 2〈ω2〉 − 2�,

which implies that � ≤ 〈ω2〉 and, therefore, in view of Eq. (4),
D < 2f . Thus, the function � qualitatively has the form
shown in Fig. 1.

The second- and third-order velocity correlation functions

BLL(r, t ) = 〈u1(x, t )u1(x + r, t )〉,
BLL,L(r, t ) = 〈u1(x, t )u1(x, t )u1(x + r, t )〉

(the x1 axis is directed along the vector r) satisfy the Kármán-
Howarth equation [14]

r3 ∂BLL

∂t
= ∂

∂r
r3

(
BLL,L + 2ν

∂BLL

∂r

)
. (19)

The relation between the velocity and vorticity correlation
functions [14]

�(r, t ) = −1

r

∂

∂r
r

∂

∂r

1

r

∂

∂r
r2BLL(r, t ) (20)

implies that in the inertial range

BLL(0, t ) − BLL(r, t ) = D(R0)r2

16 t2
. (21)

Hence, on the basis of Eq. (19),

BLL,L(r, t ) = D(R0)r3

48 t3
. (22)

Relations (21) and (22) are valid in the inertial range of
distances between two selected points in freely decaying
two-dimensional self-similar turbulence and differ from the
corresponding relation obtained for stationary forced two-
dimensional turbulence [15] (see also Ref. [14]).

V. CALCULATION OF THE SPECTRAL
ENSTROPHY DENSITY

Substituting (16) and (17) into the integral (15) gives

�(k, t ) = V

2t

[
K

∫ ∞

τ−1/4
ηφe(η, R0)J0(Kη) dη

+ �√
τ

∫ τ 1/4

0
ζφi (ζ, R0)J0(�ζ ) dζ

]
. (23)

In view of the relation between the integration variables
ζ = η

√
τ , the first integral (23) encompasses the interval of

variation of η, which lies entirely in the region of large-scale
motion, where representation (16) is valid, while the second
one encompasses the interval of variation of ζ , which lies
entirely in the enstrophy dissipation region, where represen-
tation (17) is valid. Adding and subtracting the integral

V K

2t

∫ τ−1/4

0
ηφe(η, R0)J0(Kη) dη

= V �

2t
√

τ

∫ τ 1/4

0
ζφe

(
ζ τ−1/2, R0

)
J0(�ζ ) dζ,

we transform (23) into

�(k, t ) = V

2t

{
K

∫ ∞

0
ηφe(η, R0)J0(Kη) dη + �√

τ

∫ τ 1/4

0
ζ

× [
φi (ζ, R0) − φe

(
ζ τ−1/2, R0

)]
J0(�ζ ) dζ

}
.

(24)

Let us pass in (24) to the limit τ → ∞ with K = O(1). In
view of the equality � = Kτ−1/2, a rough estimate for the sec-
ond term is O(τ−1/2), and the spectral density representation
in the range of wave numbers corresponding to large-scale
motion is

ge(K, R0) = K

2

∫ ∞

0
ηφe(η, R0)J0(Kη) dη. (25)

A. Asymptotic behavior of the spectral density as K → ∞
We are interested in the asymptotic behavior of the integral

(25) as K → ∞, which can be calculated if the asymptotic
behavior of the function φe as η → 0 is known [16,17]. In
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accordance with Eq. (18), we assume the following form of
this asymptotics:

φe(η, R0) = D(R0) − E(R0)ηβ(R0 ) + · · · , η → 0, (26)

where E and β are positive functions. According to Ref. [16],
it is necessary to expand ηφe into an asymptotic series in
powers of η and integrate it term by term using the equality

∫ ∞

0
rsJμ(kr ) dr = 2s�

[
1
2 (μ + s + 1)

]
ks+1�

[
1
2 (μ − s + 1)

] , (27)

where � is the gamma function. In our case, μ = 0. Formula
(27) is applied for all s > −μ − 1 without taking into account
the domain of convergence of the integral. [The integral
converges in the strip −μ − 1 < Re s < 1

2 , but the right-hand
side of Eq. (27) gives its analytic continuation to the entire
complex s plane.] As a result, on the basis of Eq. (26), we get

ge(K, R0) = A(R0)K−1−β(R0 ) + · · · , K → ∞,

A = β2

π
2β−2 sin

(
1

2
πβ

)
�2

(
1

2
β

)
E. (28)

The first term in asymptotic expansion (26), as formula (27)
shows, gives a zero contribution to the asymptotic behavior of
the integral. In Eq. (28) β �= 2, since for β = 2, the function
A = 0 and the asymptotics of the integral is determined by
the next term in expansion (26). If we assume a more general
form of the asymptotic expansion for the function φe at zero:

φe(η, R0) = D(R0) − E(R0)ηβ(R0 )(− ln η)β1(R0 ) + · · · ,

η → 0, β1 > 0,

the leading term in the expansion of the integral is of order
K−1−β (ln K )β1 [17].

Similarly, it is possible to calculate the asymptotic behavior
of the spectral enstrophy flux, which is expressed in terms of
the triple correlation by the formula [13]

�(k, t ) = k6
∫ ∞

0

∂

∂r
[r3BLL,L(r, t )]

[
J3(kr )

(kr )3
− J2(kr )

2(kr )2

]
dr.

(29)

We are interested in the range of large wave numbers that
correspond to small values of r lying in the inertial range,
where BLL,L has asymptotics (22). The calculation of the
asymptotics of the integral (29) as k → ∞ on the basis of
asymptotic representation (22) and formula (27) gives

�∗ = �(k → ∞, t ) = D(R0)

t3
,

where �∗ is the spectral enstrophy flux at the boundary of the
enstrophy dissipation range. Since D < 2f , this flux is not
equal to the enstrophy dissipation rate χ . Relation (22) can
thus be written as

BLL,L = �∗r3

48
.

This formula is valid for both freely decaying and stationary
forced turbulence [15]. The difference is that �∗ = χ only in
the case of stationary forced turbulence [15].

B. Small-scale motion: Asymptotic behavior
of the spectral density as � → 0

Consider the second integral (24). By virtue of the match-
ing condition (18) for τ → ∞, the expression in square
brackets on the interval of integration uniformly in ζ tends
to the quantity

φi (ζ, R0) − D(R0),

which according to (18) has a zero limit as ζ → ∞. In the
limit τ → ∞ with 1/� = O(1), in view of asymptotic rep-
resentation (28) and the relation between the dimensionless
wave numbers K = �

√
τ , the first integral (24) tends to zero,

and the second one on the basis of Eq. (18) is

gi (�, R0) = �

2

∫ ∞

0
ζ [φi (ζ, R0) − D(R0)]J0(�ζ ) dζ. (30)

This is the representation of the spectral density in the range
of wave numbers corresponding to small-scale motion. Let
us investigate the properties of the function φi entering the
integral (30). In the enstrophy dissipation region, we introduce
the dimensionless structure functions

BLL(0, t ) − BLL(r, t ) = ν

t
b(ζ, R0),

BLL,L(r, t ) =
(ν

t

)3/2
h(ζ, R0).

Substituting these expressions into Eq. (19) gives the ordinary
differential equation

ζ 3(b + 1
2ζb′ − 2f

) = [ζ 3(h − 2b′)]′. (31)

Here we took into account the equality

d

dt
BLL(0, t ) = −ν〈ω2〉 = −2νf

t2

and Eq. (4).
In the inertial range on the basis of Eqs. (21) and (22), the

leading-order terms in the asymptotic representations of the
functions b and h are

b = Dζ 2

16
+ · · · , (32)

h = Dζ 3

48
+ · · · , ζ → ∞. (33)

We have to make some assumptions about the next terms in
these asymptotic expansions. The asymptotics of the right-
hand side of Eq. (31) in the leading term is determined
by representation (33). On the basis of (32), b′ = O(ζ ). It
is natural to assume that the next term in the asymptotic
expansion for h has the same (or smaller) order. Then Eq. (31)
implies that the next term in asymptotic expansion (32) is
some function D1(R0). Now Eq. (20) can be written as

ζ (φi − D) = ∂

∂ζ
ζ

∂

∂ζ

1

ζ

∂

∂ζ
ζ 2

(
b − Dζ 2

16
− D1

)
, (34)

which after integrating gives the equality∫ ∞

0
ζ (φi − D) dζ = 0, (35)
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which implies that the function φi − D is nonmonotonic and
changes sign. Hence, the function �, as shown in Fig. 1, has
at least two local maxima and minima.

We now consider the integral (30). Using the expansion for
the Bessel function at zero

J0(�ζ ) = 1 − 1
4 (�ζ )2 + O(�4) (36)

and equality (35), we obtain

gi (�, R0) = o(� ), � → 0. (37)

This estimate can be refined by assuming the convergence of
the integral

B(R0) = 1

8

∫ ∞

0
ζ 3(D − φi ) dζ. (38)

Then, substituting expansion (36) into the integral (30) and
integrating term by term, we have

gi (�, R0) = B(R0)�3 + · · · , � → 0. (39)

It follows from Eq. (34) that the integral (38) converges,
provided that the term in asymptotic expansion (32) following
D1 has the form D2(R0)ζ−2. In this case, B = 1

2D2.
Let us compare the integrals (35) and (38). When ζ

changes from zero to infinity, the integrand (35) is positive
at first and then changes sign at least once. The integrals
of the positive and negative parts of the function add up to
zero. Multiplying the integrand by a positive monotonically
increasing function ζ 2, in general, e.g., in the case when the
integrand changes sign only once, makes the integral negative.
Therefore, we can expect that B > 0.

C. Spectrum shape for large wave numbers

For the compensated spectrum based on (24)

t2k� = Kge(K, R0) + �gi (�, R0). (40)

So, proceeding from the assumption of the existence of the
inertial range of scales in real space, we came to the conclu-
sion that there is no such range in the spectrum of self-similar
two-dimensional turbulence. In other words, turbulent eddies
having a size belonging to the inertial range do not contribute
to the spectral density, which is the sum of the two functions
(40), depending on the outer parameter V and viscosity by the
definition of the dimensionless wave numbers K and �.

According to Eq. (40), the compensated spectrum depends
nonmonotonically on the wave number and for sufficiently
large values of τ in the range of wave numbers for which
the conditions K � 1 and �  1 are simultaneously satisfied
must have a minimum. The value of the compensated spec-
trum at the minimum point for τ → ∞ tends to zero. The
spectral energy density calculated in Refs. [7,10] behaves in
accordance with relation (40). At large wave number values,
it decreases in a power law with the exponent that diminishes
with time, which corresponds to the growth of β from zero to
a value approximately equal to two.

In view of asymptotic representations (28) and (37), Eq. (9)
in the limit as τ → ∞ gives the equality

1

2
〈ω2〉 = 1

t2

[∫ ∞

0
ge dK +

∫ ∞

0
gi d�

]
,

which now agrees with (4) and (2).
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