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Linear stability of a contaminated fluid flow down a slippery inclined plane
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The linear stability analysis of a fluid flow down a slippery inclined plane is carried out when the free surface of
the fluid is contaminated by a monolayer of insoluble surfactant. The aim is to extend the earlier study [Samanta
et al., J. Fluid Mech. 684, 353 (2011)] for low to high values of the Reynolds number in the presence of an
insoluble surfactant. The Orr-Sommerfeld equation (OSE) is derived for infinitesimal disturbances of arbitrary
wave numbers. At low Reynolds number, the OSE is solved analytically by using the long-wave analysis, which
shows that the critical Reynolds number decreases in the presence of a slippery plane but increases in the presence
of an insoluble surfactant. This fact ensures a destabilizing effect of wall slip and a stabilizing effect of insoluble
surfactant on the long-wave surface mode. Further, the Chebyshev spectral collocation method is implemented
to tackle the OSE equation numerically for an arbitrary value of the Reynolds number, or equivalently, for an
arbitrary value of the wave number. At moderate Reynolds number, wall slip exhibits a stabilizing effect on
the surface mode as opposed to the result in the long-wave regime, while the insoluble surfactant exhibits a
stabilizing effect on the surface mode as in the result of the long-wave regime. On the other hand, at high
Reynolds number, both wall slip and insoluble surfactant exhibit a stabilizing effect on the shear mode. Further,
it is shown that both surface and shear modes compete with each other to dominate the primary instability once
the inclination angle is sufficiently small. In addition, new phase boundaries are identified to differentiate the
regimes of surface and shear modes.
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I. INTRODUCTION

There are numerous theoretical and experimental studies
of falling film instability over the past few decades since the
work of Kapitza [1] because of its prevalence in chemical
and technological processes. For instance, the generation of
instability on the surface of a coating film degrades the quality
of the final product and thereby, the controlling process of
that instability is of great practical interest [2]. Further, the
wave formation at the film surface significantly enhances heat
and mass transfer rates and, indeed, it plays a crucial role
in the process equipment, such as falling film evaporators,
condensers, and absorption columns [3,4]. Besides their ap-
plications, such studies are of special importance due to their
relevance in the fundamental problems of fluid mechanics. In
fact, instabilities often originate on the free surface to some
flow conditions and undergo a transition to spatiotemporal
chaos [5,6].

The linear stability analysis of a falling film down an
inclined plane was initiated by Benjamin [7] and Yih [8]
who explored the surface mode in detail at low Reynolds
number. In particular, such mode is detected on the sur-
face when the Reynolds number exceeds its critical value,
Rec = (5/4) cot θ , where θ is the inclination angle. Later, the
same problem was extended by Lin [9] and De Bruin [10]
to decipher the shear mode which is often detected on the
surface at high Reynolds number as soon as the inclination
angle is sufficiently small. As discussed by De Bruin [10],
the surface and shear modes compete with each other to
dominate the primary instability at sufficiently small values
of the inclination angle. This problem was further revisited by

Chin et al. [11] and Floryan et al. [12] to take into account the
effects of surface tension and inclination angle on the shear
mode. According to their report, the critical Reynolds number
corresponding to the shear mode displays a nonmonotonic
behavior in the presence of surface tension.

In many practical situations, the solid substrate is not
completely wetting [13], and this fact raises the question on
the choice of no-slip boundary condition at the fluid-solid
boundary [14,15]. Apart from that, the recent development
of microfluidic and nanofluidic devices shows the existence
of the slip effect at the fluid-solid boundary. Furthermore,
the macroscopic modeling of the transport phenomena at
the fluid-porous interface reveals a semiempirical Navier-slip
boundary condition as long as the flow in the porous layer is
driven by Darcy’s equations [16,17]. In this context, Pascal
[18] showed that a linear stability analysis of a two-sided
fluid flow over a saturated porous inclined plane can be
modeled into a linear stability analysis of a one-sided fluid
flow over a slippery inclined plane. Later, the same study was
expanded by Sadiq and Usha [19] and Thiele et al. [20] in
the weak nonlinear regime to take into account the effect of
nonlinearity. In fact, these studies were limited to the vicinity
of the critical Reynolds number. Recently, the study proposed
by Pascal [18] was further revisited by Samanta et al. [21] to
explore the effect of slip boundary condition on the primary
and secondary instabilities in the moderate Reynolds number
regime. As mentioned by Samanta et al. [21], the slip length
exhibits a dual role on the primary instability, i.e., a destabiliz-
ing effect close to the threshold of instability and a stabilizing
effect far from the threshold of instability. However, there was
no investigation into the high Reynolds number regime, which
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provokes us for further exploration of the effect of slip length
on the shear mode when the Reynolds number is quite large.

On the other hand, in order to delay the transition process
of the surface instability to the spatiotemporal chaos, the in-
soluble surfactant or the soluble surfactant was incorporated in
the model of falling film down an inclined plane by Whitaker
and Jones [22], Ji and Setterwall [23], Pozrikidis [24],
Blyth and Pozrikidis [25], Wei [26,27], and Karapetsas and
Bontozoglou [28,29]. It was shown that the critical Reynolds
number increases in the presence of an insoluble surfactant,
i.e., the surfactant has a stabilizing effect on the surface mode.
Recently, this model was extended by Anjalaiah et al. [30]
by including the slippery plane instead of an impermeable
plane. However, their study was confined to the moderate
Reynolds number regime. No result regarding the shear mode
was demonstrated in the high Reynolds number regime. In
the present article, our aim is to fill those gaps available in
the previous studies, i.e., to decipher the linear stability of
a surfactant-laden film flown down a slippery inclined plane
in different regimes of the Reynolds number. The results are
produced in detail when the flow parameters vary.

II. EQUATIONS OF MOTION

Consider a gravity-driven viscous incompressible two-
dimensional fluid flown down a slippery inclined plane having
an angle θ with the horizontal line as sketched in Fig. 1.
Suppose that the free surface y = h(x, t ) of the fluid is
covered by an insoluble surfactant with concentration �(x, t ).
The origin is located at the plane and the coordinate axes x

and y are placed along the streamwise and crosswise flow di-
rections, respectively. The physical properties, such as density
ρ and dynamic viscosity μ are constants for a given fluid.
The present flow configuration is governed by the mass and
momentum conservation equations [6]

∂xu + ∂yv = 0, (1)

ρ(∂t + u∂x + v∂y )u = −∂xp + μ(∂xx + ∂yy )u

+ ρg sin θ, (2)

ρ(∂t + u∂x + v∂y )v = −∂yp + μ(∂xx + ∂yy )v

− ρg cos θ, (3)

d

x

y

0

g

θ

h(x, t)

U(y)

Fluid layer

Insoluble surfactant

Slippery plane

FIG. 1. Schematic diagram of a surfactant-laden fluid flow down
a slippery inclined plane.

where u and v are velocity components and p is the pressure
of the fluid. Here g is the gravitational acceleration. The
system is subject to the following boundary conditions. At the
plane y = 0 the velocity of the fluid satisfies Navier-slip and
no penetration boundary conditions [18–21]

u = α∂yu, v = 0, (4)

where α is the dimensional slip length of the slippery plane,
which varies with the material property of the slippery plane.
For example, the experimental measurement of slip length for
a polydimethylsiloxane slippery plane is 250 μm [31]. At the
free surface y = h(x, t ) the hydrodynamic stress is balanced
by the Marangoni stress induced due to the transport of insol-
uble surfactant and yields the dynamic boundary conditions
[24,25,32]

[4μ∂yv∂xh + μ(∂yu + ∂xv)(1 − ∂xh
2)]

= (∂xσ + ∂xh∂yσ )
√

1 + ∂xh2, (5)

−p + 2μ

[1 + ∂xh2]
[∂yv(1 − ∂xh

2) − (∂yu + ∂xv)∂xh]

= σ∂xxh

[1 + ∂xh2]3/2
, (6)

where σ is the surface tension of the fluid, which varies
linearly with the surfactant concentration �(x, t ) through the
following relation:

σ = σ0 − E(� − �0), (7)

where σ0 is the base surface tension corresponding to the
base surfactant concentration �0. The surface elasticity E =
−∂�σ |�=�0 > 0, because the surface tension of a fluid reduces
with increasing value of the surfactant concentration. Further,
the transport of insoluble surfactant at the free surface is
described by the convection-diffusion equation [33–36]

∂t [�
√

1 + ∂xh2] + ∂x[�u
√

1 + ∂xh2]

= Ds∂x[∂x�/
√

1 + ∂xh2], (8)

where Ds is the surfactant diffusivity. In practice, Ds is usually
small. It should be useful to mention here that the insoluble
surfactant moves with the same velocity as the fluid particle
lying on the free surface. Finally, the kinematics of the free
surface is described by the kinematic boundary condition

∂th + u∂xh = v. (9)

As we are interested in exploring the linear stability analysis,
it is necessary to compute the base flow solution, which can be
obtained by considering a unidirectional parallel flow with a
constant fluid layer thickness y = d and a constant surfactant
concentration � = �0. Consequently, the governing equations
(1)–(9) are simplified in the following form:

μ∂yyu + ρg sin θ = 0, ∂yp + ρg cos θ = 0, (10)

u|y=0 = α∂yu|y=0, ∂yu|y=d = 0, p|y=d = 0. (11)
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FIG. 2. (a) The variation of the streamwise base velocity U/Us as a function of y/d . (b) The variation of the shear stress (dU/dy ) × (d/Us )
as a function of y/d . Here solid, dashed, and dotted lines stand for β = 0, β = 0.04, and β = 0.08, respectively.

The solution of the base equations (10) and (11) can be
expressed as

U (y) = ρgd2 sin θ

2μ

(
2
y + α

d
− y2

d2

)
, (12)

P (y) = ρgd cos θ
(

1 − y

d

)
(13)

and the associated flow rate can be expressed as

Q =
∫ d

0
U (y)dy = ρgd3 sin θ

μ

(
1

3
+ α

d

)
. (14)

In fact, the maximum value of the streamwise base velocity
appears at the free surface and its magnitude is given by Us =
[ρgd2 sin θ/(2μ)](1 + 2β ), where β = α/d is the dimension-
less slip length whose reasonable range is (0 − 0.08) for
a fluid with base layer thickness d = 3×10−3 m [37]. Ob-
viously, the base velocity is independent of the surfactant
concentration. Figure 2(a) demonstrates that the streamwise
base velocity enhances in the presence of slip length. On the
contrary, the wall shear stress reduces in the presence of slip
length, which can be found in Fig. 2(b). This result ensures
that base flow velocity is strongly influenced by the slippery
plane.

A. Dimensionless criterion

The above set of governing equations (1)–(9) are made
dimensionless by choosing d as the characteristic length scale,
Us as the characteristic velocity scale, ρU 2

s as the pressure
scale, σ0 as the scale for surface tension, and �0 as the scale
for surfactant concentration. After normalizing, the governing
equations are written in the nondimensional form

∂xu + ∂yv = 0, (15)

Re(∂tu + u∂xu + v∂yu + ∂xp)

= ∂xxu + ∂yyu + 2/(1 + 2β ), (16)

Re(∂tv + u∂xv + v∂yv + ∂yp)

= ∂xxv + ∂yyv − 2 cot θ/(1 + 2β ), (17)

where Re = ρUsd/μ is the Reynolds number which com-
pares the inertia force with the viscous force. Similarly, after
normalizing, the associated boundary conditions are written
in the nondimensional form

u = β∂yu, v = 0, at y = 0, (18)

[4∂yv∂xh + (∂yu + ∂xv)(1 − ∂xh
2)]

= −(Ma/Ca)∂x�
√

1 + ∂xh2, at y = h, (19)

−Re p + 2

[1 + ∂xh2]
[∂yv(1 − ∂xh

2) − (∂yu + ∂xv)∂xh]

= [1 − Ma(� − 1)]∂xxh

Ca[1 + ∂xh2]3/2
, at y = h, (20)

∂t [�
√

1 + ∂xh2] + ∂x[�u
√

1 + ∂xh2]

= (1/Pe)∂x[∂x�/
√

1 + ∂xh2], at y = h, (21)

∂th + u∂xh = v, at y = h, (22)

where Ma = E�0/σ0 is the Marangoni number which
compares the Marangoni stress with the surface stress,
Ca = μUs/σ0 is the capillary number which compares the
viscous stress with the surface stress, and Pe = Usd/Ds is the
Péclet number which compares the advective mass transport
and the diffusive mass transport of an insoluble surfactant at
the free surface.

B. Perturbation equations

Consider an infinitesimal disturbance on the base flow, and
accordingly, each flow variable can be decomposed as

z = Z + z′, (23)

where Z represents the base flow variables and z′ represents
the perturbation flow variables. Substituting equation (23) in
the dimensionless governing equations (15)–(22) and lineariz-
ing with respect to the base solution, we obtain perturbation
equations

∂xu
′ + ∂yv

′ = 0, (24)

Re(∂tu
′ + U∂xu

′ + v′∂yU + ∂xp
′) − ∂xxu

′ − ∂yyu
′ = 0, (25)
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Re(∂tv
′ + U∂xv

′ + ∂yp
′) − ∂xxv

′ − ∂yyv
′ = 0, (26)

[u′ − β∂yu
′]|y=0 = 0, v′|y=0 = 0, (27)

[∂yu
′ + ∂xv

′ + h′∂yyU ]|y=1 + (Ma/Ca)∂x�
′ = 0, (28)

[−Re p′ + {2 cot θ/(1 + 2β )}h′ + 2∂yv
′]|y=1

− (1/Ca)∂xxh
′ = 0, (29)

∂t�
′ + U |y=1∂x�

′ + ∂xu
′|y=1 − (1/Pe)∂xx�

′ = 0, (30)

∂th
′ + U |y=1∂xh

′ − v′|y=1 = 0. (31)

III. ORR-SOMMERFELD EQUATION

Now the perturbation stream function ψ ′ is introduced
from the perturbation continuity equation (24) by the follow-
ing relation:

u′ = ∂yψ
′, v′ = −∂xψ

′. (32)

Inserting equation (32) into the perturbation momentum equa-
tions (25) and (26) and eliminating pressure terms from
those equations, we obtain a fourth-order partial differential
equation (PDE) in terms of ψ ′

(∂yyyyψ
′ + 2∂xxyyψ

′ + ∂xxxxψ
′)

= Re[(∂tyyψ
′ + ∂txxψ

′) + U (∂xyyψ
′ + ∂xxxψ

′)

− ∂xψ
′∂yyU ]. (33)

Next the solution of the perturbation equations (24)–(31) is
assumed in the normal mode form [8]

ψ ′(x, y, t ) = φ(y) exp[ik(x − ct )], (34)

h′(x, t ) = η exp[ik(x − ct )], (35)

�′(x, t ) = γ exp[ik(x − ct )], (36)

where k is the wavenumber and c = cr + ici is the complex
wave speed of the infinitesimal disturbance. Here φ, η and γ

are respectively the amplitude of stream function, deformation
of the free surface and perturbation surfactant concentration.
It should be noted that the perturbation stream function
ψ ′(x, y, t ), surface deformation h′(x, t ) and perturbation sur-
factant concentration �′(x, t ) are all in the same phase. After
substitution of the normal mode solution (34)–(36) in PDE
(33), one can obtain a usual form of the Orr-Sommerfeld (OS)
equation

(∂yyyy − 2k2∂yy + k4)φ

= Re ik[(U − c)(∂yy − k2) − ∂yyU ]φ. (37)

Similarly, using the normal mode solution (34)–(36), the
perturbation boundary conditions (27)–(31) can be recast into
the following form

φ = 0, (∂yφ − β∂yyφ) = 0, at y = 0, (38)

(∂yy + k2)φ + η∂yyU + (Ma/Ca)ikγ = 0, at y = 1, (39)

(∂yyy − 3k2∂y )φ − ikRe(U − c)∂yφ −
ik[{2 cot θ/(1 + 2β )} + k2/Ca]η = 0, at y = 1, (40)

∂yφ + (U − c)γ − (1/Pe)ikγ = 0, at y = 1, (41)

φ + (U − c)η = 0, at y = 1. (42)

Equations (37)–(42) are sometimes called the Orr-
Sommerfeld eigenvalue problem, where c is the eigenvalue.
In fact, the real part cr of the eigenvalue c is the phase
speed of the disturbance while the imaginary part ci , or
equivalently, kci is the growth rate of the disturbance. If
ci > 0, the infinitesimal disturbance will grow with time
and becomes unstable. On the other hand, if ci < 0, the
infinitesimal disturbance will decay with time and becomes
stable. ci = 0 leads to the neutral stability criterion.

A. Solution of OS equation at inertialess
approximation without surfactant

In the inertialess approximation (Re → 0), the Orr-
Sommerfeld equation (37) is simplified into a fourth-order
homogeneous ordinary differential equation with constant
coefficients

∂yyyyφ − 2k2∂yyφ + k4φ = 0. (43)

The general solution of (43) is of the form

φ(y) = (a1 + a2y)eky + (a3 + a4y)e−ky, (44)

where a1, a2, a3, and a4 are integrating constants to be deter-
mined from the boundary conditions. Putting the solution (44)
in the boundary conditions (38)–(42) and setting Re = 0, we
obtain a set of five homogeneous linear equations in terms of
a1, a2, a3, a4 and η. In fact, this set of equations are useful to
study from a matrix point of view and thereby, these equations
are transformed into a matrix form

MX = 0, (45)

where M is a 5 × 5 square matrix and X is a 5 × 1 column
matrix defined by

M =

⎛
⎜⎜⎜⎜⎜⎝

1 0 1 0 0

(k2β − k) 2kβ − 1 (k2β + k) −2kβ − 1 0

ekk2 ek (k2 + k) e−kk2 e−k (k2 − k) −1/(2β + 1)

−2ekk3 −2ekk3 2e−kk3 2e−kk3 −ik[2 cot θ/(2β + 1) + (k2/Ca)]

ek ek e−k e−k 1 − c

⎞
⎟⎟⎟⎟⎟⎠ and X =

⎛
⎜⎜⎜⎜⎜⎝

a1

a2

a3

a4

η

⎞
⎟⎟⎟⎟⎟⎠.

Hence for a nontrivial solution of X , the determinant of M must be zero, i.e.,

det(M) = 0, (46)
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which leads to a dispersion relation corresponding to the inertialess flow configuration over a slippery plane. The phase speed cr

and the growth rate kci are determined from the dispersion relation and expressed as

cr = 1 + 2

1 + 2(1 + 2β )k2 + 2kβ sinh 2k + cosh 2k
(47)

and

kci = [cot θ + {k2(1 + 2β )/(2Ca)}][(2 + 2β )k − 2βk cosh 2k − sinh 2k]

k(1 + 2β )[1 + 2(1 + 2β )k2 + 2βk sinh 2k + cosh 2k]
. (48)

The current results are in full agreement with that of Yih [8]
and Samanta [38] when the slip length β vanishes. Further,
there is evidence that the resulting growth rate is negative
despite the presence of the slippery wall.

B. Solution of OS equation at low Reynolds number

In order to solve the Orr-Sommerfeld boundary value prob-
lem (OS BVP) (37)–(42) analytically at low Reynolds num-
ber, the long-wave regular perturbation technique (k → 0) is
used as proposed by Yih [8]. In this method, the amplitude of
each perturbation field is expanded in the series form

φ(y) =
∞∑

n=0

φnk
n, η =

∞∑
n=0

ηnk
n, (49)

γ =
∞∑

n=0

γnk
n, c =

∞∑
n=0

cnk
n, (50)

where n ∈ N ∪ {0}, and N is the set of natural numbers. After
substitution of (49) and (50) in the OS BVP (37)–(42), we
collect the leading order equations, i.e., O(k0) equations

∂yyyyφ0 = 0, (51)

φ0|y=0 = 0, [∂yφ0 − β∂yyφ0]|y=0 = 0, (52)

[∂yyφ0 + η0∂yyU ]|y=1 = 0, ∂yyyφ0|y=1 = 0, (53)

[∂yφ0 + (U − c0)γ0]|y=1 = 0, (54)

[φ0 + (U − c0)η0]|y=1 = 0. (55)

The solution of the leading order equations (51)–(55) is given
by

φ0(y) = η0[2βy + y2]/(1 + 2β ). (56)

Obviously, the leading order φ0 strongly depends on the
slip length, but it is free from the surfactant concentration.
Inserting the expression of φ0 in (54) and (55), we get a
coupled system of algebraic equations in terms of η0 and γ0,

[2(1 + β )/(1 + 2β )]η0 − (c0 − 1)γ0 = 0, (57)

(c0 − 2)η0 = 0. (58)

In fact, Eqs. (57) and (58) reveal the existence of two modes as
reported by Wei [26]. If η0 �= 0, the resulting mode is referred
to as the surface mode because it describes the deviation of
the free surface from the base flow solution. The leading order
phase speed c0 of the surface mode is given by

c0 = 2 (59)

and the leading order amplitude γ0 of the surfactant concen-
tration is given by

γ0 = 2η0[(1 + β )/(1 + 2β )]. (60)

It is noticed that the dimensional leading order phase speed of
the surface mode is two times the velocity of the fluid particle
at the free surface. In this case, the deflection of the free
surface and the perturbation surfactant concentration always
lie in the same phase because the slip length β is positive. In
the absence of wall slip, the current result coincides with that
of Wei [26] when the imposed shear stress is removed from
the free surface. On the other hand, if η0 = 0, the resulting
mode is referred to as the surfactant mode because it is
generated by the perturbation surfactant concentration. In this
case, the leading order phase speed c0 of the surfactant mode
is given by

c0 = 1, (61)

provided the leading order amplitude of the surfactant
concentration is nonzero, i.e., γ0 �= 0. Note that the
dimensional leading order phase speed of the surfactant
mode is exactly the same as the velocity of the fluid particle
at the free surface. In other words, the surface mode travels
faster than the surfactant mode. Now we collect the first-order
equations, i.e., O(k) equations

∂yyyyφ1(y) − iRe[(U − c0)∂yy − ∂yyU ]φ0 = 0, (62)

φ1|y=0 = 0, [∂yφ1 − β∂yyφ1]|y=0 = 0, (63)

[∂yyφ1 + η1∂yyU ]|y=1 + i(Ma/Ca)γ0 = 0, (64)

[∂yyyφ1 − i Re(U − c0)∂yφ0]|y=1

− [2i cot θ/(1 + 2β )]η0 = 0, (65)

[∂yφ1 + (U − c0)γ1]|y=1 − c1γ0 − (1/Pe)iγ0 = 0, (66)

φ1 + (U − c0)η1 − c1η0 = 0. (67)

The solution of the first-order equations (62)–(67) is given by

φ1(y) = b1y + b2y
2 + b3y

3 + b4y
4 + b5y

5, (68)

where

b1 = −2i Reβ(1 + 4β + 6β2)η0

3(1 + 2β )2
− 2iβ(cot θη0 + iη1)

1 + 2β

− iβ{(Ma/Ca)γ0 − c0Reη0},
b2 = (1/2β )b1,

b3 = iη0

[
cot θ

3(1 + 2β )
+ 2β2Re

3(1 + 2β )2
− βc0Re

3(1 + 2β )

]
,
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b4 = i Re

6(1 + 2β )

[
β

1 + 2β
− c0

2

]
η0,

b5 = i Re(1 + β )η0

30(1 + 2β )2
.

Substituting the expression of φ1 in Eqs. (66) and (67),
we get a coupled system of algebraic equations in terms of
η0, η1, γ0, and γ1,

i

[
Re

{
2
(
1 + 3β + 3β2

)
c0

3(1 + 2β )

}
− cot θ −Re

{
3 + 15β + 28β2 + 24β3

6(1 + 2β )2

}]
η0 +

[
2 + 2β

1 + 2β

]
η1

−[(i/Pe + c1) + i(1 + β )(Ma/Ca)]γ0 + (1 − c0)γ1 = 0, (69)

[
i Re(5 + 20β + 24β2)c0

12(1 + 2β )
− c1 − 2i(1 + 3β ) cot θ

3(1 + 2β )
− i

10

{
Re

(
3 + 18β + 40β2 + 40β3

)
(1 + 2β )2

}]
η0

+ (2 − c0)η1 − [i(1/2 + β )(Ma/Ca)]γ0 = 0. (70)

Hence, for the surface mode we must have η0 �= 0. Using
the expression of γ0 and c0 = 2 in (70), one can obtain the
expression for c1

c1 = −i[d1(Ma/Ca) + d2Re + d3 cot θ ], (71)

where

d1 = (β + 1),

d2 = −4(1 + β )[2 + 5β(2 + 3β )]/[15(1 + 2β )2],

d3 = [2(1 + 3β )]/[3(1 + 2β )].

The difference with the expression of c1 reported by Anjalaiah
et al. [30] can be attributed to the choice of the distinct
velocity scale. In the absence of wall slip, the expression of
c1 is identical with that of Blyth and Pozrikidis [25] and Wei
[26]. The criterion c1 = 0 leads to the analytical expression
of critical Reynolds number corresponding to the surfactant-
laden falling film down a slippery inclined plane

Rec = 15(1 + 2β )2(Ma/Ca)

4(15β2 + 10β + 2)

+ 5(2β + 1)(3β + 1) cot θ

30β3 + 50β2 + 24β + 4
. (72)

Indeed, the critical Reynolds number is independent of the
Péclet number. Therefore, the surface mode will be unstable

to an infinitesimal long-wave disturbance if Re > Rec. Oth-
erwise, it will be stable if Re < Rec. Note that the critical
Reynolds number is significantly affected by the slip length.
In fact, Rec decreases monotonically in a linear fashion with
the increasing value of the slip length, which can be found
in Fig. 3. Further, the above critical Reynolds number re-
covers the result of Samanta et al. [21] very well when the
free surface is uncontaminated from an insoluble surfactant
(Ma → 0)

Rec = (5 cot θ/4)
(1 + 2β )(1 + 3β )

[(15/2)β3 + (25/2)β2 + 6β + 1]
.

In addition, Rec recovers the result of Blyth and Pozrikidis
[25] and Wei [26] very well when the slip length vanishes
(β → 0):

Rec = (5 cot θ/4) + (15/8)(Ma/Ca).

On the other hand, for the surfactant mode we have η0 = 0
and c0 = 1, which yield

η1 = i[Ma(1 + 2β )]γ0/(2Ca), (73)

c1 = −i/Pe. (74)

In this case, c1 depends on the Péclet number Pe, and it is com-
pletely negative. This fact indicates that the surfactant mode
will be damped to an infinitesimal long-wave disturbance. It

0 0.02 0.04 0.06 0.08

β

1

1.7

2.3

R
e c

FIG. 3. The variation of the critical Reynolds number Rec for the surface mode with the slip length β when Ma = 1, Ca = 2, and θ = π/4.
The stars connected by straight line segments represent the present result. The circle is the result of Blyth and Pozrikidis [25]. The solid points
connected by the blue line segments are the results of Samanta et al. [21] without surfactant, and the green diamond is the result of Yih [8].
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TABLE I. Comparison between the analytical and numerical
values of the critical Reynolds number for the surface mode when
the slip length varies. Here θ = π/4, Ca = 2, Pe = 2, and Ma = 1.

Comparison β = 0 β = 0.04 β = 0.08

Analytical (Rec) 2.1875 2.1017 2.0209
Numerical (Rec) 2.1875 2.1018 2.0210

should be noted that Eq. (73) is exactly a balance between
the perturbation shear stress η1∂yyU and the Marangoni stress
i(Ma/Ca)γ0. In this case, the first-order [O(k)] perturbation
flow φ(1) becomes zero, which is consistent with the result
because the surfactant mode is generated due to the deflection
of the perturbation surfactant concentration.

IV. SOLUTION OF OS EQUATION FOR ARBITRARY
REYNOLDS NUMBER

A. Solution of OS equation at moderate Reynolds number

In order to solve the OS equation for an arbitrary Reynolds
number, or equivalently, for an arbitrary wave number, we
use the Chebyshev spectral collocation method proposed by
Schmid and Henningson [39]. Consequently, the OS BVP
(37)–(42) are converted into a generalized matrix eigenvalue
problem [40–42]

Aφ = cBφ, (75)

where c is the eigenvalue and φ is the associated eigenvector.
The matrices A and B can be expressed as

A = − 1

i Re
(D4 − 2k2D2 + k4) + kU (D2 − k2) − kD2U,

B = k(D2 − k2), D = d/dy.

The eigenvalue problem (75) is closed by applying the
boundary conditions given in (38)–(42). In fact, in the Cheby-
shev spectral collocation method, the amplitude function φ is
expanded in a truncated series of Chebyshev polynomials

φ =
N∑

i=0

φiTi (y), (76)

where N is the number of Chebyshev polynomials and φi’s
are unknown coefficients to be determined from the numer-
ical simulation. As the Chebyshev polynomials Ti (y) are
defined over the domain [−1, 1], the liquid layer domain
[0, 1] is shifted to [−1, 1] by applying a transformation
y = (x + 1)/2. As a result, the derivatives are replaced by
D → 2D, D2 → 4D2, . . . . Inserting (76) into the eigen-
value problem (75), the Chebyshev functions are evaluated
at the Gauss-Lobatto collocation points xj = cos(πj/N ),
which are extrema of the Chebyshev polynomials, where j =
0, . . . , N . First of all, the present numerical code is verified
by comparing the numerical and long-wave analytical results.
Accordingly, both results are demonstrated in Tables I and II,
respectively. Indeed, there exists an excellent match between
the numerical and analytical results.

To take into account the individual effect of slip length on
the surface mode in the moderate Reynolds number regime,

TABLE II. Comparison between the analytical and numerical
values of the critical Reynolds number for the surface mode when
the Marangoni number varies. Here θ = π/4, Ca = 2, Pe = 2, and
β = 0.

Comparison Ma = 0 Ma = 1 Ma = 2 Ma = 3

Analytical (Rec) 1.2500 2.1875 3.1250 4.0625
Numerical (Rec) 1.2498 2.1875 3.1251 4.0626

these flow parameters θ = π/4, Ca = 2, Pe = 2, and Ma =
1 are kept constant except slip length. The neutral curve for
the surface mode is computed numerically for several values
of the slip length and displayed in Fig. 4(a). Basically, such
curves are obtained from the numerical experiment when the
imaginary part of the most unstable eigenvalue corresponding
to the surface mode vanishes. Note that two different scenarios
of instability are manifested in the neutral diagram as pre-
dicted by Samanta et al. [21] in the context of an uncontami-
nated film flow over a slippery inclined plane. In the vicinity
of the threshold of instability, wall slip shows a destabilizing
effect [see inset of Fig. 4(a)], but it shows a stabilizing effect
far from the threshold. In other words, wall slip plays a dual
role on the primary instability. This result is further justified
through the temporal growth rate kci (when k ∈ R and c ∈
C, R is the set of real numbers, and C is the set of com-
plex numbers) of an infinitesimal disturbance. Thereby, we
choose two distinct Reynolds numbers from the destabilizing
and stabilizing zones, respectively, and compute the temporal
growth rate numerically for different values of the slip length.
Indeed, the temporal growth rate corresponding to the surface
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FIG. 4. (a) The variation of the neutral curve for the surface
mode in the (Re, k) plane for different values of the slip length when
θ = π/4, Ca = 2, Pe = 2, and Ma = 1. Here “U” and “S” indicate
unstable and stable regions, respectively. (b) The variation of the
temporal growth rate kci for the surface mode with wave number k

when Re = 2.5 (top) and Re = 15 (bottom). Here solid, dashed, and
dotted lines stand for β = 0, β = 0.04, and β = 0.08, respectively.
The circles show the results of Blyth and Pozrikidis [25].
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FIG. 5. (a) The variation of the neutral curve for the surface mode in the (Re, k) plane for different values of the Marangoni number
when θ = π/4, Ca = 2, Pe = 2, and β = 0.04. Here “U” and “S” indicate unstable and stable regions, respectively. (b) The variation of
the temporal growth rate kci for the surface mode with wave number k when Re = 15. Here solid, dashed, and dotted lines stand for Ma =
1, Ma = 2, and Ma = 3, respectively. (c) The variation of the spatial growth rate −ki for the surface mode with the wave number kr when
θ = 4◦, β = 0, Ka = 13.3, and Re = 20. Here solid, dashed, and dotted lines stand for Ma = 0, Ma = 0.05, and Ma = 0.1, respectively.
The circles are the results of Samanta et al. [21]. (d) The variation of the spatial growth rate −ki for the surface mode with the wave number kr

when θ = 4◦, β = 0, Ka = 13.3, and Re = 40. Here solid, dashed, and dotted lines stand for Ma = 0, Ma = 1, and Ma = 2, respectively.

mode intensifies [see Fig. 4(b), top] in the destabilizing zone
but attenuates [see Fig. 4(b), bottom] in the stabilizing zone
with the increasing value of the slip length. This fact is fully
consistent with the results reported in Fig. 4(a). In particular,
the flow rate or equivalently, the Reynolds number enhances
with the increasing value of the slip length and causes a
destabilizing effect close to the onset of instability. On the
other hand, for a fixed value of the Reynolds number, the
base film thickness reduces to compensate the effect of slip
length, which strengthens the impact of the capillary term on
the primary instability far from the onset region and leads to a
stabilizing effect.

To take into account the individual effect of the Marangoni
number on the surface mode, the neutral curve for the sur-
face mode is computed numerically for several values of
the Marangoni number when the other flow parameters θ =
π/4, Ca = 2, Pe = 2, and β = 0.04 are fixed. The ensuing
results are displayed in Fig. 5(a). Note that the unstable
region reduces significantly with the increasing value of the
Marangoni number. This result ensures the stabilizing effect
of the Marangoni number on the primary instability. As
discussed by Frenkel and Halpern [33], Halpern and Frenkel
[34], Blyth and Pozrikidis [43], and Wei [26], the surfactant
concentration is higher in the crest region in comparison with
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FIG. 6. (a) The variation of the neutral curve for the surface mode in the (Re, k) plane for different values of the Péclet number when θ =
π/4, Ca = 2, Ma = 1, and β = 0.04. Here solid, dashed, dotted, and dash-dotted lines stand for Pe = 2, Pe = 10, Pe = 20, and Pe = 100,
respectively. Here “U” and “S” indicate unstable and stable regions, respectively. (b) The variation of the temporal growth rate kci for the
surface mode with wave number k when Re = 5 (top). The variation of the temporal growth rate kci for the surface mode with wave number k

when Re = 60 (bottom). Here solid, dashed, dotted, and dash-dotted lines stand for Pe = 2, Pe = 10, Pe = 20, and Pe = 100, respectively.

the trough region of a deformed free surface because the
surface deformation and the perturbation surfactant concen-
tration are in the same phase. Therefore, a local flow induced
by the Marangoni traction generates from the crest toward the
trough and leads to a stabilizing effect on the primary instabil-
ity. However, if the surface deformation and the perturbation
surfactant concentration are out of phase, then the surfactant
concentration is higher in the trough region in comparison
with the crest region of a deformed free surface. Therefore,
a local flow induced by the Marangoni traction generates
from the trough toward the crest and leads to a destabilizing
effect [26,33,34,43]. This result is further justified through
the temporal growth rate kci of an infinitesimal disturbance
and depicted in Fig. 5(b). Indeed, the temporal growth rate
corresponding to the surface mode attenuates in the presence
of an insoluble surfactant, which is consistent with the result
reported in Fig. 5(a). Furthermore, this result is strengthened
by producing the spatial growth rate −ki (when c ∈ R and
k ∈ C) for several values of the Marangoni number when
Re = 20 and Re = 40. Therefore, we require the complex
input for the wave number k in the numerical experiment
rather than the real input used to compute the temporal
growth rate. The spatial growth rate for the surface mode is
depicted in Figs. 5(c) and 5(d), respectively, for a silicon oil

with Ka = 13.3, where Ka = Re2/3[(1 + 2β )/2]1/3/Ca, the
Kapitza number, depends on the physical properties of a given
fluid. Note that the spatial growth rate also attenuates with the
increasing value of the Marangoni number, which indicates
the stabilizing effect of the Marangoni number on the surface
mode. In addition, the spatial growth rate recovers the result
of Samanta et al. [21] very well in the limit Ma → 0.

To take into account the individual effect of the Péclet
number on the surface mode, the neutral curve for the sur-
face mode is computed numerically for several values of the
Péclet number when the other flow parameters θ =
π/4, Ca = 2, Ma = 1, and β = 0.04 are fixed. The results
can be found in Fig. 6(a). Obviously, all neutral curves
emerge from the critical Reynolds number as k → 0, which
supports the analytical expression of the critical Reynolds
number given in (72). In fact, the critical Reynolds num-
ber does not depend on Pe. It is noteworthy to point out
that the Péclet number also exhibits a dual role on the
primary instability as predicted by the slip length. The
unstable region enhances in the vicinity of the critical
Reynolds number [see inset of Fig. 6(a)] but reduces far
from the critical Reynolds number with the increasing value
of the Péclet number. In addition, there occurs a signifi-
cant reduction of the unstable region far from the criticality
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FIG. 7. (a) The variation of the spatial growth rate −ki for the surface mode with the wave number kr when θ = π/4, β = 0.04, Ca =
2, Ma = 1, and Re = 5. Here solid, dashed, dotted, and dash-dotted lines stand for Pe = 2, Pe = 10, Pe = 20, and Pe = 100, respectively.
(b) The variation of the spatial growth rate −ki for the surface mode with the wave number kr when θ = π/4, β = 0.04, Ca = 2, Ma = 1,
and Re = 60. Here solid, dashed, dotted, and dash-dotted lines stand for Pe = 2, Pe = 10, Pe = 20, and Pe = 100, respectively.

as soon as the Péclet number switches from Pe = 2 to Pe =
10. However, if Pe is enlarged continuously after that, the
unstable region no longer reduces significantly. It seems that
the impact of the Péclet number, or equivalently, the impact of
surfactant diffusivity approaches a saturation limit. At the free
surface, surfactant diffuses due to the presence of a diffusive
term in the transport equation (8). In particular, surfactant
diffuses from the higher concentration regime (crest regime)
to the lower concentration regime (trough regime). Therefore,
if Pe exists in the transport equation, the surfactant diffuses
from the crest regime to the trough regime and inhibits the
Marangoni flow, which results in a destabilizing effect. Now,
if Pe is enlarged continuously, the surfactant diffusive effect
becomes negligible, which supports the Marangoni flow from
the crest regime toward the trough regime of a deformed
free surface and leads to a stabilizing effect. For this reason,
the unstable region initially decreases with the increasing
value of the Péclet number, but it almost remains the same
at high value of the Péclet number (Pe � 10). These results
are further justified through the temporal growth rate kci

of an infinitesimal disturbance. Consequently, we select two
values of the Reynolds number Re = 5 and Re = 60 from the
destabilizing and stabilizing zones, respectively. The temporal
growth rate for the surface mode is computed numerically
for different values of the Péclet number and displayed in
Fig. 6(b). Indeed, the temporal growth rate enhances at Re =
5 but attenuates at Re = 60 with the increasing value of the
Péclet number and supports the results reported in Fig. 6(a),
i.e., the temporal growth rate increases close to the criticality
but decreases far from the criticality and almost remains the
same at the high value of the Péclet number (Pe � 10). This
result is further strengthened by producing the spatial growth
rate −ki corresponding to the surface mode for several values
of the Péclet number when Re = 5 and Re = 60. The ensuing
results are displayed in Figs. 7(a) and 7(b), respectively. Note
that the spatial growth rate also follows the same trend as
predicted by the temporal growth rate with the increasing
value of the Péclet number, which ensures the dual behavior
of the Péclet number on the surface mode.

B. Convergence of spectrum

In this section, we check convergence for the spectrum as
determined by the eigenvalue problem (75) when the flow
parameters vary. To this end, the relative error is introduced
as proposed by Tilton and Cortelezzi [44] and Samanta [37]:

EN = ‖cN+1 − cN‖2/‖cN‖2, (77)

where ‖ · ‖2 specifies the L2 norm. In particular, the relative
error EN is computed numerically by considering 20 least
stable eigenvalues and illustrated in Fig. 8. It is observed
that the relative error for all different cases (see Fig. 8)
approximately saturates in the range [O(10−7), O(10−5)] for
N � 80 when Re = 104, k = 1, and θ = 4◦ are fixed. This
fact implies that the accurate numerical result can be achieved
as long as the number of Chebyshev polynomials in the
series expansion (76) is greater than or equal to 80. Further,
the spectrum of the eigenvalue problem (75) is displayed
in Fig. 9 for different values of the slip length as well as
for different values of the Marangoni number. In the first
case, the slip length is varied while the other parameters
are fixed. If β = 0, the most unstable mode appears at c =
0.156 646 89 + i0.005 054 89 when Re = 21 000, k = 1.2,
θ = 1′ = (1◦/60), Ka = 51 269.45, and Ma = 0 [12]. How-
ever, the most unstable mode shifts to c = 0.183 050 73 +
i0.000 329 76 if β = 0.03. Obviously, ci , or equivalently, the
growth rate decays with β and thereby, one can expect the sta-
bilizing effect of slip length on the shear mode. In the second
case, the Marangoni number is varied while the other param-
eters are fixed. If Ma = 0, the most unstable mode appears
at c = 0.191 431 97 + i0.000 821 54 when Re = 7000, k =
2.3, θ = 1′, Ka = 51269.45, and β = 0. However, the most
unstable mode shifts to c = 0.191 568 66 + i0.000 220 69 at
Ma = 20. Obviously, ci , or equivalently, the growth rate de-
creases with Ma and thereby, in the second case also, one can
expect the stabilizing effect of the Marangoni number on the
shear mode.
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FIG. 8. The variation of the relative error EN with the number of Chebyshev polynomials N when θ = 4◦, Ca = 2, Re = 104, and k = 1.
(Top) Solid, cross, and star points stand for β = 0, β = 0.04, and β = 0.08, respectively, when Ma = 0 and Pe = 2. (Middle) Solid, cross,
and star points stand for Ma = 0, Ma = 1, and Ma = 3, respectively, when β = 0 and Pe = 2. (Bottom) Solid, cross, and star points stand for
Pe = 2, Pe = 10, and Pe = 20, respectively, when β = 0 and Ma = 1.

C. Effect of slip length on the shear mode

In order to decipher an independent effect of slip length
on the shear mode, the numerical experiment is carried out
for large values of the Reynolds number. In particular, the
shear mode is detected in the numerical experiment when the
inclination angle is very small. To take into account this fact,
the results are produced for a water flow with θ = 1◦, Ka =
13 096.3, and Ma = 0 [11]. Figure 10(a) illustrates the neutral
curve for the shear mode in the (Re, k) plane for different
values of the slip length. It should be noticed that the unstable
region corresponding to the shear mode decreases signifi-
cantly with the increasing value of the slip length, which is fol-
lowed by the successive amplification of the critical Reynolds
number. The result can be found in the inset of Fig. 10(a).
Further, this result is strengthened by producing the temporal
growth rate kci corresponding to the shear mode as shown
for a surface mode in the previous Sec. IV A. Consequently, a
Reynolds number Re = 15 000 is selected from the unstable
zone and the temporal growth rate for the shear mode is
computed numerically when the slip length varies. As soon as
the slip length is enlarged, the temporal growth rate attenuates

significantly with the slip length [see Fig. 10(b)] and supports
the result reported in Fig. 10(a). There is evidence that the
temporal growth rate fully disappears from the unstable zone
at β = 0.027. Therefore, one can conclude that the slip length
has a stabilizing effect on the shear mode. This result also
agrees with the behavior of the spectrum of the eigenvalue
problem (75) where the temporal growth rate of the most
unstable shear mode decays with the increasing value of the
slip length (see Fig. 9). In addition, the present result is
verified with that of Chin et al. [11] when the slip length
vanishes (β = 0). Indeed, an excellent agreement is achieved.

D. Effect of Marangoni number on the shear mode

In order to decipher an independent effect of the
Marangoni number on the shear mode, the numerical ex-
periment is repeated for a water flow with θ = 1′, Ka =
51 269.45, and β = 0 [12]. The results are produced for
different values of the Marangoni number when the other flow
parameters are fixed. Figure 11(a) illustrates the neutral curve
for the shear mode in the (Re, k) plane when the Marangoni
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FIG. 9. (a) The spectrum of the eigenvalue problem (75) when Re = 21 000, k = 1.2, θ = 1′, Ka = 51 269.45, and Ma = 0. Here circles,
stars and squares represent the results of β = 0, β = 0.02, and β = 0.03, respectively. (b) The spectrum of the eigenvalue problem (75) when
Re = 7000, k = 2.3, θ = 1′, Ka = 51 269.45, and β = 0. Here circles, stars, and squares represent the results of Ma = 0, Ma = 10, and
Ma = 20, respectively.

number varies. It should be noticed that the unstable region
corresponding to the shear mode reduces with the increasing
value of the Marangoni number when the inclination angle is
very small, i.e., θ = 1′. This fact is followed by the successive
amplification of the critical Reynolds number, which is shown
in the inset of Fig. 11(a). Therefore, one can predict that
the Marangoni number has also a stabilizing influence on
the shear mode when the inclination angle is sufficiently
small. Further, this result is strengthened by determining the
temporal growth rate kci corresponding to the shear mode.
Accordingly, a Reynolds number Re = 7400 is selected from

the unstable zone, and the ensuing temporal growth rate for
the shear mode is computed numerically when the Marangoni
number varies successively. Indeed, the temporal growth rate
attenuates with the increasing value of the Marangoni number
[see Fig. 11(b)] and supports the result reported in Fig. 11(a).
This fact indicates the stabilizing effect of the Marangoni
number on the shear mode. Further, there is evidence that the
temporal growth rate completely diminishes from the unstable
zone at Ma = 62. In addition, the present result captures the
result of Floryan et al. [12] very well when the Marangoni
number Ma is set to zero. From the above result we can also
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FIG. 10. (a) The variation of the neutral curve for the shear mode in the (Re, k) plane for different values of the slip length when θ =
1◦, Ka = 13 096.3, and Ma = 0. Solid, dashed, and dotted lines stand for β = 0, β = 0.01, and β = 0.02, respectively. Here “U” and “S”
indicate unstable and stable regions, respectively. The circles are the results of Chin et al. [11]. (b) The variation of the temporal growth rate
kci for the shear mode with the wave number k when Re = 15 000. Solid, dashed, and dotted lines stand for β = 0, β = 0.01, and β = 0.02,
respectively.
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FIG. 11. (a) The variation of the neutral curve for the shear mode in the (Re, k) plane for different values of the Marangoni number when
θ = 1′, Ka = 51 269.45, and β = 0. Solid, dashed, and dotted lines stand for Ma = 0, Ma = 10, and Ma = 20, respectively. Here “U” and
“S” indicate unstable and stable regions, respectively. The circles are the results of Floryan et al. [12]. (b) The variation of the temporal
growth rate kci for the shear mode with the wave number k when Re = 7400. Solid, dashed, and dotted lines stand for Ma = 0, Ma = 10, and
Ma = 20, respectively.

conclude that the slip length has a stronger influence on the
shear mode than that of the Marangoni number.

E. Effect of Péclet number on the shear mode

In order to decipher an independent effect of the Pé-
clet number on the shear mode, the numerical experi-
ment is performed again for large values of the Reynolds
number when the inclination angle is very small. The re-
sults are computed for θ = 1′, Ca = 2, β = 0, and Ma = 1.
Figures 12(a) and 12(c) exhibit the neutral curve for the shear
mode in the (Re, k) plane for different values of the Péclet
number. It should be noticed that the results are produced
beyond the reasonable range of the Péclet number to see
its impact on the shear mode in the high Reynolds number
regime. The reasonable range of the Péclet number is quite
high even for the low viscous liquids. For the typical val-
ues of Us = 1 m/s, d = 10−3 m, ν = 10−6 m2/s, and Ds =
10−9 m2/s, Re ∼ O(103) and Pe ∼ O(106) [46,47]. It is ob-
served that the unstable region reduces with the Péclet number
in the range Pe ∈ [0, 3.5] approximately, which is followed by
the successive amplification of the critical Reynolds number
[see inset of Fig. 12(a)]. As soon as the Péclet number crosses
the upper limit, the unstable region no longer reduces but
eventually enhances with the Péclet number, and ultimately
approaches a saturation domain. This fact is followed by the
successive reduction of the critical Reynolds number. Finally,
the critical Reynolds number approaches a saturation value
Rec = 5376 approximately in a similar fashion as observed
in the case of the unstable region at large Pe [see inset of
Fig. 12(c)]. Obviously, the Péclet number exhibits a dual role
on the shear mode as in the case of the surface mode. How-
ever, the result corresponding to the shear mode is completely
opposite to that of the surface mode. Further, the above result
is strengthened by producing the temporal growth rate kci cor-
responding to the shear mode as shown for the surface mode in
the previous Sec. IV A. Consequently, we choose a Reynolds

number Re = 5450 from the unstable zone and compute the
temporal growth rate numerically when the Péclet number
varies gradually. Indeed, the temporal growth rate for the
shear mode attenuates with Pe in the range Pe ∈ [0, 3.5] [see
Fig. 12(b)]. As soon as Pe exceeds this range, the temporal
growth rate no longer attenuates but eventually enhances with
Pe [see Fig. 12(d)], and ultimately the maximum value of the
temporal growth rate approaches a saturation value kcimax =
1.596 × 10−4 approximately. In this case, the maximum tem-
poral growth rate does not disappear from the unstable zone
with the increasing value of the Péclet number. This fact is
fully consistent with the results reported in Figs. 12(a) and
12(c) respectively. Therefore, one can conclude that the Péclet
number has stabilizing as well as destabilizing roles on the
shear mode.

F. Competition between surface and shear modes

In this section, we shall focus on the competition between
shear and surface modes as discussed by De Bruin [10]. In
fact, the surface and shear modes compete with each other to
dominate the primary instability when the inclination angle
is quite small. In order to explore this physical phenomenon
in the presence of slippery wall and surface surfactant, the
numerical experiment is performed again for a water flow
with θ = 3′, Ka = 35 548.25 [12]. In the first case, we vary
the slip length while the Marangoni number is set to zero.
The results are displayed in Fig. 13(a). It is noticed that the
surface mode initially dominates the primary instability. As
soon as the Reynolds number corresponding to the shear mode
exceeds the critical Reynolds number (Rec = 3800 approxi-
mately at β = 0), the shear mode appears in the neutral dia-
gram along with the surface mode to control the primary in-
stability. Further, the unstable region increases corresponding
to the surface mode but decreases corresponding to the shear
mode with the increasing value of the slip length. Therefore,
in this case, the shear mode has no chance to dominate the
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FIG. 12. (a) The variation of the neutral curve for the shear mode in the (Re, k) plane for different values of the Péclet number when
θ = 1′, Ma = 1, Ca = 2, and β = 0. Solid, dashed, and dotted lines stand for Pe = 1, Pe = 2, and Pe = 3, respectively. (b) The variation
of the temporal growth rate kci for the shear mode with the wave number k when Re = 5450. Solid, dashed, and dotted lines stand for
Pe = 1, Pe = 2, and Pe = 3, respectively. (c) The variation of the neutral curve for the shear mode in the (Re, k) plane for different values
of the Péclet number when θ = 1′, Ma = 1, Ca = 2, and β = 0. Solid, dashed, dotted, dash-dotted, and thin lines stand for Pe = 10, Pe =
20, Pe = 50, Pe = 80, and Pe = 100, respectively. (d) The variation of the temporal growth rate kci for the shear mode with the wave
number k when Re = 5450. Solid, dashed, dotted, dash-dotted, and thin lines stand for Pe = 10, Pe = 20, Pe = 50, Pe = 80, and Pe = 100,
respectively. Here “U” and “S” indicate unstable and stable regions, respectively.

primary instability by competing with the surface mode. In
addition, the current result is verified with that of Floryan
et al. [12] at β = 0, and an excellent agreement is achieved. If
the inclination angle is switched to θ = 0.25′ in the numerical
experiment, the shear mode dominates the primary instability
rather than the surface mode [see Fig. 13(b)]. However, as
soon as the Reynolds number corresponding to the surface
mode crosses the critical Reynolds number (Rec = 17 188 ap-
proximately at β = 0), the surface mode appears in the neutral
diagram along with the shear mode to control the primary
instability. In this case also, the unstable region increases
corresponding to the surface mode [see inset of Fig. 13(b)] but
decreases corresponding to the shear mode with the increasing

value of the slip length. Consequently, the surface mode may
dominate the primary instability as the slip length increases
gradually. There is evidence that the surface mode dominates
the primary instability at β = 0.03, which is demonstrated
by a dash-dotted line in Fig. 13(b). In this case, the critical
Reynolds number (Rec = 16 668 approximately at β = 0.03)
of the surface mode is lower than the critical Reynolds number
of the shear mode (Rec = 19 313 approximately at β = 0.03).
Therefore, for each inclination angle, we can find out a slip
length for which the critical Reynolds numbers corresponding
to the shear and surface modes are equal, which can be
found in Fig. 13(c). In other words, we can recognize a
phase boundary in the plane of inclination angle and slip
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FIG. 13. (a) The variation of the neutral curves for the surface and shear modes in the (Re, k) plane for different values of the slip length
when θ = 3′, Ka = 35 548.25, and Ma = 0. Solid, dashed, dotted, and dash-dotted lines stand for β = 0, β = 0.01, β = 0.02, and β = 0.03,
respectively. The circles are results of Floryan et al. [12]. (b) The variation of the neutral curves for the surface and shear modes in the (Re, k)
plane for different values of the slip length when θ = 0.25′, Ka = 81 385.18, and Ma = 0. Solid, dashed, dotted, and dash-dotted lines stand
for β = 0, β = 0.01, β = 0.02, and β = 0.03, respectively. (c) The critical Reynolds numbers Rec corresponding to the surface and shear
modes. (d) The phase boundary between the surface and shear modes.

length, that demarcates the regimes of the surface and shear
modes. The result is depicted in Fig. 13(d). Therefore, if we
select parameters above the boundary, the surface mode will
dominate the primary instability. Otherwise, the shear mode
will trigger the primary instability once the parameters are
chosen below the boundary.

In the second case, we vary the Marangoni number while
the slip length is set to zero. The results are displayed in
Fig. 14(a) for a water flow with θ = 1′, Ka = 51 269.45 [12].
Obviously, the surface mode dominates the primary instability
at the beginning of the numerical experiment. As soon as the
Reynolds number corresponding to the shear mode is beyond
its critical value (Rec = 5990 approximately at Ma = 0), the
shear mode appears in the neutral diagram along with the
surface mode to control the primary instability. In this case,
the unstable region decreases corresponding to both surface

and shear modes with the increasing value of the Marangoni
number [see inset of Fig. 14(a)]. However, the effect of the
Marangoni number on the surface mode is more prominent
than that on the shear mode. As a consequence, the shear
mode may get a chance to dominate the primary instability by
competing with the surface mode. For this reason, we continue
to increase the Marangoni number. It is observed that the shear
mode dominates the primary instability at Ma = 10 because
in this case, the critical Reynolds number (Rec = 7468 ap-
proximately at Ma = 10) of the surface mode is higher than
the critical Reynolds number of the shear mode (Rec = 6423
approximately at Ma = 10). The result is demonstrated by a
dash-dotted line in Fig. 14(a). Furthermore, if the inclination
angle is reduced to θ = 0.25′ as in the previous case, the shear
mode dominates the primary instability rather than the surface
mode [see Fig. 14(b)]. However, as soon as the Reynolds
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FIG. 14. (a) The variation of the neutral curves for the surface and shear modes in the (Re, k) plane for different values of the Marangoni
number when θ = 1′, Ka = 51 269.45, and β = 0. Solid, dashed, dotted, and dash-dotted lines stand for Ma = 0, Ma = 0.5, Ma = 1, and
Ma = 10, respectively. The circles are results of Floryan et al. [12]. (b) The variation of the neutral curves for the surface and shear modes
in the (Re, k) plane for different values of the Marangoni number when θ = 0.25′, Ka = 81 385.18, and β = 0. Solid, dashed, and dotted
lines stand for Ma = 0, Ma = 0.5, and Ma = 1, respectively. (c) The critical Reynolds numbers Rec corresponding to the surface and shear
modes. (d) The phase boundary between the surface and shear modes.

number crosses the critical Reynolds number (Rec = 17 188
approximately at Ma = 0) corresponding to the surface mode,
the surface mode appears in the neutral diagram along with
the shear mode to control the primary instability. The un-
stable region decreases corresponding to both surface and
shear modes with the increasing value of the Marangoni
number [see inset of Fig. 14(b)]. In addition, the effect of
the Marangoni number on the surface mode is significant
in comparison with the shear mode. Therefore, in this case,
the surface mode does not have any chance to dominate the
primary instability by competing with the shear mode because
the critical Reynolds number of the shear mode is always
lower than the critical Reynolds number of the surface mode

with the increasing value of the Marangoni number. Unlike
the previous case, for each inclination angle there exists a
Marangoni number such that the critical Reynolds numbers
corresponding to the shear and surface modes are equal,
which can be found in Fig. 14(c). Therefore, in this case
also, we can recognize a phase boundary in the plane of the
inclination angle and the Marangoni number, that demarcates
the regimes of the surface and shear modes. The result is
depicted in Fig. 14(d). Hence, if the parameters are selected
above the boundary, the shear mode will drive the primary
instability. Otherwise, the surface mode will drive the pri-
mary instability once the parameters are chosen below the
boundary.
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V. INVISCID STABILITY ANALYSIS WITHOUT
SURFACTANT

In order to figure out the stabilizing effect of slip length on
the unstable shear wave at sufficiently large Reynolds number
as well as at sufficiently small inclination angle, the OS BVP
(37)–(42) is also tackled analytically. To do that, we first
introduce a new parameter We = σ0/(ρU 2

s d ) = 1/(CaRe),
where We, the Weber number, shows the effect of surface
tension. In the inviscid limiting approximation (Re → ∞,
or equivalently, μ → 0), the fourth-order OS BVP (37)–(42)
simplifies into a second-order boundary value problem

[(U − c)(∂yy − k2) − ∂yyU ]φ = 0, (78)

φ = 0 at y = 0, (79)

[(U − c)2∂y − 2 cot θ/{Re(1 + 2β )} − We k2]φ = 0 at

y = 1, (80)

where c = cr + ici is the complex wave speed. Note that the
term 2 cot θ/{Re(1 + 2β )} is retained in the normal stress
balance equation (80) due to the assumption of a very small
inclination angle (θ → 0), which makes that term finite and
therefore non-negligible. In accordance with Howard [45],
Floryan et al. [12], and Samanta [42], we apply the transfor-
mation φ = (U − c)�, that converts the second-order BVP
(78)–(80) into the following form:

∂y[(U − c)2∂y�] − (U − c)2k2� = 0, (81)

�(0) = 0, (82)

[(U − c)2∂y − 2 cot θ/{Re(1 + 2β )} − k2We]�(1) = 0.

(83)

Multiplying by complex conjugate �∗ with (81), integrating
with respect to y over the liquid layer domain [0, 1], and using
the boundary conditions (82) and (83), finally we obtain∫ 1

0
(U − cr − ici )

2Q dy

= [2 cot θ/{Re(1 + 2β )} + k2We]|�(1)|2, (84)

where Q = (|∂y�|2 + k2|�|2) � 0. Comparing the real and
imaginary parts from both sides of (84), we can write∫ 1

0

[
(U − cr )2 − c2

i

]
Qdy

= [2 cot θ/{Re(1 + 2β )} + k2We]|�(1)|2 (85)

and

ci

∫ 1

0
(U − cr )Q dy = 0. (86)

As we are interested in deciphering the unstable shear mode
(ci > 0), integral (86) will not vanish for cr > 1 unless
�(y) = 0, which implies the existence of a trivial solution.
Thus, for a nontrivial solution, one can predict that there does
not exist unstable shear mode for cr > 1. On the contrary, for
cr < 1, there is a possibility of the existence of the unstable

shear mode, whose phase speed is given by

cr = 1 −
{ ∫ 1

0 (1 − y)2Qdy

(1 + 2β )
∫ 1

0 Qdy

}
. (87)

Obviously, the phase speed increases in the presence of the
slippery wall. Inserting the expression of cr into Eq. (85) and
after doing some mathematical manipulation, we get

c2
i = 1

(1 + 2β )2

⎡
⎣∫ 1

0 (1 − y)4Qdy∫ 1
0 Qdy

−
{∫ 1

0 (1 − y)2Qdy∫ 1
0 Qdy

}2
⎤
⎦

− [2 cot θ/{Re(1 + 2β )} + k2We]|�(1)|2∫ 1
0 Qdy

. (88)

Expression (88) shows that for a given fluid, c2
i , or equiv-

alently, the growth rate for the shear mode attenuates with
the increasing value of the slip length at a sufficiently small
inclination angle. This result is fully consistent with the
stabilizing influence of slip length on the shear mode reported
in Sec. IV C.

VI. CONCLUSIONS

A viscous incompressible gravity-driven fluid flow down
a slippery inclined plane is investigated in the presence of
an insoluble surface surfactant. The linear stability analysis
is performed for infinitesimal disturbances of arbitrary wave
numbers based on the Orr-Sommerfeld boundary value prob-
lem. The surface and shear modes are analyzed in detail
for different values of the flow parameters. The long-wave
analysis predicts that there exist surface and surfactant modes.
The wall slip destabilizes the surface mode in the vicinity of
the threshold of instability by decreasing the critical Reynolds
number. On the contrary, the insoluble surface surfactant
stabilizes the surface mode in the vicinity of the threshold
by increasing the critical Reynolds number. Further, the long-
wave analysis predicts that the surfactant mode is always
stable at low Reynolds number.

Far from the threshold of instability, the Orr-Sommerfeld
boundary value problem is resolved by using the Chebyshev
spectral collocation method for infinitesimal disturbances of
arbitrary wave numbers, or equivalently, of arbitrary Reynolds
numbers. In the long-wave regime, the numerical results
capture the analytical results accurately for different values
of the flow parameters. It is noteworthy to point out that the
wall slip demonstrates an opposite effect, i.e., a stabilizing
effect on the surface mode in the finite wave-number regime.
However, the insoluble surfactant demonstrates a stabilizing
effect on the surface mode in the finite wave-number regime
as the result of the long-wave regime. Further, it is observed
that the Péclet number demonstrates a dual role on the surface
mode, i.e., the unstable region increases in the vicinity of the
critical Reynolds number but decreases far from the critical
Reynolds number as soon as the Péclet number increases.

If the Reynolds number is increased in the numerical
experiment, the shear mode is identified along with the surface
mode. However, in this case, the inclination angle should be
sufficiently small to detect the shear mode. It is noticed that
the shear mode is stabilized by both wall slip and insoluble
surfactant. However, the impact of slip length on the shear
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FIG. 15. (a) The spectrum of the eigenvalue problem (75) for different values of the slip length when k = 0.9, Re = 30 000, θ = 3′, Ka =
35 548.25, and Ma = 0. Here circles, stars, and squares represent the results of β = 0, β = 0.02, and β = 0.03, respectively. (b) The variation
of the absolute value of the normalized eigenfunction |φ| as a function of y when β = 0.02. The solid and dashed lines represent the
eigenfunctions corresponding to the shear and surface modes, respectively.

mode is more prominent than the Marangoni number. It is
noteworthy to point out that the Péclet number exhibits a
dual behavior on the shear mode as in the case of the surface
mode. However, the result corresponding to the shear mode is
opposite to that of the surface mode, i.e., the Péclet number
initially shows a stabilizing effect in the range [0, 3.5] but
eventually, it shows a destabilizing effect as soon as the Péclet
number crosses the upper limit. Further, it is noticed that both
surface and shear modes are competing with each other to
dominate the primary instability when the inclination angle is
sufficiently small. Therefore, it is possible to find out exact

parameter values for which the critical Reynolds numbers
corresponding to the surface and shear modes are the same.
In other words, new phase boundaries are recognized in the
regimes of flow parameters that separate the domains of shear
and surface modes.
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APPENDIX: SPECTRUM OF THE ORR-SOMMERFELD
EIGENVALUE PROBLEM

In order to reveal the surface and shear modes simultane-
ously in the high Reynolds number regime, the full spectrum
is depicted for two different cases. In the first case, we
vary the slip length while the Marangoni number is fixed
(Ma = 0). The result is shown in Fig. 15(a) for a water flow
with θ = 3′, Ka = 35 548.25 [12]. Indeed, the surface and
shear modes appear in the spectrum because the Reynolds
number is selected from the regime where both modes are

unstable. Figure 15(b) demonstrates the absolute value of
the normalized eigenfunctions corresponding to the surface
and shear modes when β = 0.02. In the second case, the
Marangoni number is varied while the slip length is kept
constant (β = 0). The result is illustrated in Fig. 16(a) for a
water flow with θ = 1′, Ka = 51 269.4 [12]. In this case also,
the surface and shear modes appear in the spectrum because
the Reynolds number belongs to the zone where both modes
are unstable. Figure 16(b) demonstrates the absolute value of
the normalized eigenfunctions corresponding to the surface
and shear modes when Ma = 1.
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