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Long-time behavior of three-dimensional gravity-capillary solitary waves on deep water
generated by a moving air-blowing forcing: Numerical study
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Long-time simulations are conducted on a forced three-dimensional (3D) nonlinear viscous gravity-capillary
wave equation that describes the surface wave pattern when the forcing moves on the surface of deep water
with speeds less than the linear phase speed cmin = 23 cm/s. Three different states are identified according to
forcing speeds U below cmin. At relatively low speeds below a certain speed (c1), a steady circular dimple is
observed below the moving forcing. At relatively high speeds above a certain speed (c2), “symmetric” shedding
phenomena of 3D depressions are observed behind the moving forcing. At intermediate speeds (c1 � U � c2),
steady 3D gravity-capillary solitary waves are generated behind the moving forcing and are maintained for
some time. After long-time simulations, however, those gravity-capillary solitary waves break up and 3D local
depressions are shed asymmetrically behind the moving forcing. In more detail, when the forcing speed (U) is
very close to c1, the asymmetric shedding is “almost regular” and when the forcing speed (U) is very close to
c2, the asymmetric shedding is “regular antisymmetric,” after a transient period of an “irregular” asymmetric
shedding from the steady state of 3D gravity-capillary solitary waves. On the contrary, for the remaining cases
of the entire forcing speeds (c1 < U < c2), the asymmetric shedding is “irregular.”

DOI: 10.1103/PhysRevE.98.033107

I. INTRODUCTION

On deep water, the linear phase speed of a gravity-capillary
wave features a minimum cmin = 23 cm/s at a nonzero wave-
length λmin = 1.71 cm. Below the minimum phase speed cmin,
two-dimensional (2D) or three-dimensional (3D) gravity-
capillary solitary waves of depression types can theoretically
exist [1–11]. At low speeds below cmin, they are fully local-
ized disturbances with finite-amplitude depressions. At speeds
close to cmin, they are wavepacket-type disturbances with
small-amplitude depressions. 2D gravity-capillary solitary
waves are stable to longitudinal perturbations [12–14]. How-
ever, when subject to transverse perturbations, they are unsta-
ble and will eventually be transformed into finite-amplitude
3D gravity-capillary solitary waves [13–19]. Compared to
their 2D counterparts, 3D gravity-capillary solitary waves
have different stability characteristics. While finite-amplitude
3D gravity-capillary solitary waves are stable to longitudinal
perturbations, small-amplitude 3D gravity-capillary solitary
waves of wavepacket types are unstable to longitudinal per-
turbations [13,17,20,21]. Therefore, only finite-amplitude 3D
gravity-capillary solitary waves are expected to be physically
relevant and they really were observed in the experiments.
The first observation of finite-amplitude 3D gravity-capillary
solitary waves, although not definitive, was made by Zhang
[22] in a wind-wave experiment. Recently, more definitive
observations of finite-amplitude 3D gravity-capillary solitary
waves were made from the experiments using a moving 3D
air-blowing forcing [23–27] or a moving 3D air-suction forc-
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ing [28]. In the works using 3D air-blowing forcings [23–25],
three different states are identified according to forcing speeds
U below cmin. At relatively low speeds below a certain speed
c1(U < c1), a steady circular dimple is observed below the
moving forcing (termed as “state I” in Refs. [23–25]). At
relatively high speeds above a certain speed c2(c2 < U <

cmin), symmetric shedding phenomena of 3D depressions are
observed behind the moving forcing (termed as “state III”
in [23–25]). At intermediate speeds (c1 � U � c2), steady
3D gravity-capillary solitary waves are generated behind the
moving forcing (termed as “state II” in Refs. [23–25]). In
all these works, however, observations of long-time behaviors
of forced 3D gravity-capillary solitary waves were not made
mainly due to the spatial limitation, i.e., finite length of the
wave tank which is short for a long-time experiment. There-
fore, this became the subject of the present numerical work,
where the focus is put on the long-time behavior of forced
finite-amplitude 3D gravity-capillary solitary waves on deep
water generated by a moving air-blowing forcing. Relevant
numerical simulation was recently performed in the work of
Masnadi and Duncan [26] using a model equation described
in Ref. [25]. By solving this model equation numerically, for
some early time (a few seconds), they observed a stable con-
figuration where steady forced 3D gravity-capillary solitary
waves are formed behind the moving air-blowing forcing.
After a longer-time simulation, however, this configuration
becomes unstable and an irregular asymmetric shedding of
3D local depressions behind the moving forcing are identified.
No direct comparison of this numerical result with a corre-
sponding experiment is made due to the finite length of the
wave tank which is short for a long-time experiment. Instead,
during a relatively short time, they experimentally observed an
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irregular asymmetric shedding of 3D local depressions behind
the moving forcing, when the forcing speed is within the sharp
boundary between two different states, state II and state III
(termed in Refs. [23–25]). Motivated by their works, in the
present paper, more definitive numerical results are reported
to investigate the long-time irregular asymmetric shedding
behavior of forced finite-amplitude 3D gravity-capillary soli-
tary waves for the speed range, c1 < U < c2 (termed as “state
II” in Refs. [23–25]). Furthermore, when the forcing speed
(U) is very close to c1, the present numerical simulation will
show that the “almost regular” shedding is finally observed
after a transient period of an “irregular” asymmetric shedding
from the steady state of 3D gravity-capillary solitary waves.
Similarly, when the forcing speed (U) is very close to c2,
the present numerical simulation will show that the “regular
antisymmetric” shedding is finally observed after a transient
period of an “irregular” asymmetric shedding from the steady
state of 3D gravity-capillary solitary waves.

In Sec. II, the adopted numerical method is described to
solve a model equation of forced 3D gravity-capillary solitary
waves on deep water [25]. In Sec. III, numerical results of
long-time simulations of the model equation are presented ac-
cording to various forcing speeds. In Sec. IV, the asymmetric
shedding is analyzed based on the linear stability analysis.
Finally, Sec. V is the summary.

II. NUMERICAL METHOD

In the frame of reference moving left with a di-
mensionless forcing speed α (= U/cmin, where U is a

dimensional forcing speed), the dimensionless theoretical
model equation in terms of dimensionless wave elevation
(η) for forced finite-amplitude 3D gravity-capillary solitary
waves on deep water under the influence of viscosity is as
follows [16,25,28]:

ηt + αηx︸ ︷︷ ︸
Convection

−ν̃(ηxx + ηyy )︸ ︷︷ ︸
Viscous dissipation

−1

2
ηx − 1

4
H {ηxx + 2ηyy − η}︸ ︷︷ ︸
Dispersion

−β(η2)x︸ ︷︷ ︸
Nonlinear steepening

= Apx︸︷︷︸
Forcing

. (1)

The derivation of the dimensionless equation Eq. (1)
starts from the dimensionless dispersion relation of gravity-
capillary waves on deep water based on the charac-
teristic length L = (σ/ρg)1/2 and the characteristic time
T = σ 1/4/(21/2ρ1/4g3/4). The detailed derivation is given
in Appendix. In Eq. (1), the dimensionless viscosity
is ν̃ = Cν(4g)1/4(ρ/σ )3/4 = 0.003C (ν = 10−6 m2 /s, g =
9.81 m/s2, ρ = 1000 kg/m3, σ = 0.073 N/m), the dimen-
sionless coefficient of the quadratic nonlinearity is β =√

11/2/8, the dimensionless forcing magnitude is A = 0.23
and the dimensionless forcing function is p(x, y) =
exp(−2x2 − 2y2), whose shape is hinted from the relevant
experiments [24,25]. The operator H is the Hilbert transform
and the parameter C is set to be 2.4 such that numerical results
best fit experimental results [24,25]. If one wishes to obtain
the dimensional version of Eq. (1), t = t ′/T , x = x ′/L, y =
y ′/L, and η = η′/L (primed variables denote dimensional
ones) can be substituted in Eq. (1) as follows:

η′
t ′ +

L

T
αη′

x ′︸ ︷︷ ︸
Convection

−L2

T
ν̃(η′

x ′x ′ + η′
y ′y ′ )︸ ︷︷ ︸

Viscous dissipation

− L

2T
η′

x ′ − L2

4T
H

{
η′

x ′x ′ + 2η′
y ′y ′ − 1

L2
η′

}
︸ ︷︷ ︸

Dispersion

− β

T
(η′2)x ′︸ ︷︷ ︸

Nonlinear steepenging

= L2A

T
px ′︸ ︷︷ ︸

Forcing

. (2)

For numerical computations, by taking the spatial Fourier
transform of Eq. (1),

η̂t = {−ν̃(k2 + l2)−ik
(
α− 1

2

)+ 1
4 isgn(k)(k2+2l2 + 1)

}
η̂

+βikFT {η2} + Aikp̂, (3)

FT {η} = η̂(k, l, t ) =
∫ ∞

−∞

∫ ∞

−∞
η(x, y, t )e−ikx−ilydxdy,

(4)

FT {p} = p̂(k, l) =
∫ ∞

−∞

∫ ∞

−∞
p(x, y)e−ikx−ilydxdy, (5)

η(x, y, t ) = FT −1{η̂(k, l, t )}

= 1

2π

∫ ∞

−∞

∫ ∞

−∞
η̂(k, l, t )eikx+ilydkdl, (6)

FT {η2} = FT {(FT −1{η̂})2}. (7)

In the real computation of the Fourier and inverse Fourier
transforms, at each time step, for input data x(n1, n2)

(n1 = 1, 2, · · · ,M , n2 = 1, 2, · · · , N ) and X(r1, r2) (r1 =
1, 2, · · · ,M , r2 = 1, 2, · · · , N ), following FFT (fast Fourier
transform) pairs are used:

FT {x(n1, n2)} =
M∑

n1=1

N∑
n2=1

x(n1, n2)

× e−j 2π
M

(r1−1)(n1−1)e−j 2π
N

(r2−1)(n2−1)

= X(r1, r2), (8)

FT −1{X(r1, r2)} = 1

MN

M∑
r1=1

N∑
r2=1

X(r1, r2)ej 2π
M

(r1−1)(n1−1)

× ej 2π
N

(r2−1)(n2−1)

= x(n1, n2), (9)

where j is the complex number satisfying j 2 = −1. Equation
(3) is the first-order ordinary differential equation in terms of
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FIG. 1. Time histories of the maximum depressions of the solutions to Eq. (1) with the initial still-water condition according to forcing
speeds α.

time and can be written in the following canonical form:

η̂t ≡ F (η̂). (10)

Equation (10) is solved using the explicit Euler time
stepping combined with the predictor-corrector scheme as
follows:

η̂(i+1)
p = η̂(i) + �tF (η̂(i) ) (Predictor), (11)

η̂(i+1) = η̂(i) + �t

2

{
F

(
η̂(i+1)

p

) + F (η̂(i) )
}

(Corrector), (12)

where the superscript denotes the discrete time.

III. NUMERICAL RESULTS

In the numerical simulations, the time step �t = 0.001 and
spatial resolutions of �x = 0.15, �y = 0.3 in the domain
−12π < x < 12π, −12π < y < 12π (M = 512, N = 256)
are used for a stable computation for a long time (∼t =
800). The initial condition is a still-water condition (zero
everywhere). The boundary conditions are periodic boundary
conditions in both x and y directions. If the domain size is not
large enough, disturbances propagating toward one boundary
will come out from the opposite boundary due to the periodic
boundary conditions. To minimize this, a sufficiently large
domain size (−12π < x < 12π,−12π < y < 12π ) is used
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FIG. 2. Steady wave solution corresponding to Fig. 1(a) (α = 0.9). The left moving forcing is located at the origin (x = 0, y = 0). A steady
dimple is formed just below the moving forcing. (a) Slanted view, (b) Cross-sectional view (solid line: profile on the y = 0 plane, dashed line:
profile on the plane which passes through the minimum of the profile on the y = 0 plane).

such that disturbances propagating towards one boundary
can have enough time to be dissipated due to the viscosity
before the arrival at the boundary. For dimensional results, the
characteristic length L = (σ/ρg)1/2 = 2.73 mm and the char-
acteristic time T = L/cmin = σ 1/4/(21/2ρ1/4g3/4) = 0.0118 s
are multiplied to dimensionless results. Figure 1 shows the
time history of the maximum depression of the wave solution
to Eq. (1) according to forcing speeds 0.9 � α = U/cmin �
1.01. In the large, there are four different types of wave so-
lutions (three different types of wave solutions below α = 1).
First, when α � 0.9 [Fig. 1(a)], the wave solution is the steady
dimple just below the moving forcing as shown in Fig. 2 (α =
0.9). As the forcing speed increases (0.91 � α � 0.98) as in
Figs. 1(b)–1(g), steady 3D gravity-capillary solitary waves are
generated behind the moving forcing for some time. These
steady wave solutions can actually be predicted by solving the
following equation by ignoring the time dependent term in
Eq. (1) as follows:

αηx − ν̃(ηxx + ηyy ) − 1
2ηx − β(η2)x

− 1
4 H {ηxx + 2ηyy − η} = Apx. (13)

The adopted numerical method is the pseudoarclength
continuation method [29]. Since Eq. (13) is a nonlinear PDE,
multiple solutions can exist for a certain value of α. To find
multiples solutions for η, the dimensionless forcing speed
α is treated as an unknown rather than as a known fixed
parameter. To find these two unknowns (α, η), the following
two equations are considered:

G(α, η) = αηx − ν̃(ηxx + ηyy ) − 1
2ηx − β(η2)x

− 1
4 H {ηxx + 2ηyy − η} − Apx = 0, (14)

F (α, η) = sT (η − η0) + σ (α − α0) − �S = 0. (15)

Equation (15) is the equation of the plane perpendicular
to t̂ = (σ, s) at a distance �S from (α0, η0), where t̂ = (σ, s)
is a unit-length psuedoarc or tangent at (α0, η0) on the solu-
tion branch and �S is the pseudoarclength. The discretized
simultaneous system Eqs. (14) and (15) are solved using the
Newton’s method. For interested readers, more details can be
found in Ref. [29]. Figures 3(a) and 3(b) show the resultant
diagram between |ηmin| and α, on which the steady solutions
in Figs. 1(a)–1(g) are marked [Figs. 3(c)–3(h)]. Although the
nonlinear solitary-wave solutions are found from the steady

equation, Eq. (13), they, however, are only temporarily steady
in the long-time simulation of the unsteady equation, Eq. (1),
as shown in Figs. 1(b)–1(g). The duration times of steady
3D gravity-capillary solitary waves increase as the forcing
speeds α increase; about 3, 3, 4, 5, 8, 13s for α = 0.91,
0.92, 0.95, 0.96, 0.97, 0.98, respectively. After long-time
simulations, however, those gravity-capillary solitary waves
break up and 3D local depressions are shed asymmetrically
behind the moving forcing. In more detail, for the forcing
speeds (0.92 � α � 0.96), the asymmetric shedding is irregu-
lar [Figs. 1(c)–1(e)]. On the contrary, when the forcing speed
(α) is very close to 0.9, the asymmetric shedding is “almost
regular” after a transient period of an “irregular” asymmetric
shedding from the steady state of 3D gravity-capillary solitary
waves [Fig. 1(b)]. When the forcing speed (α) is very close
to 0.99, the asymmetric shedding is “regular antisymmetric”
after a transient period of an “irregular” asymmetric shedding
from the steady state of 3D gravity-capillary solitary waves
[Figs. 1(f) and 1(g)]. For example, for the forcing speed
α = 0.97, Fig. 1(f) shows the time history of the maximum
depression of the solution to Eq. (1). After the first transient
period (∼4 s), the solution approaches a steady 3D gravity-
capillary solitary wave solution (Fig. 4). This solitary wave
solution maintains its stability for some time (4 ∼ 13 s),
after which an “irregular” asymmetric shedding of 3D local
depressions occurs during the second transient period (13 ∼
35 s) (Fig. 5). Although the alternate left- and right-shedding
can be seen, this shedding is irregular in that there is no
period which can be clearly defined as shown in Fig. 1(f).
As mentioned in the Introduction, this state is probably the
one observed by Masnadi and Duncan [26]. Finally, after the
second transient period, the final state becomes a “regular
antisymmetric” shedding of 3D local depressions (Fig. 6). In
Fig. 6(a), one can see the obliquely shed 3D local depression
on the left side of the left-moving forcing. At the same time,
near the forcing position, the growth of a new 3D local
depression is seen which is going to be obliquely shed on
the right side of the left-moving forcing. Then, as shown in
Figs. 6(b) and 6(c), the left-side 3D local depression gradually
disappears due to viscous dissipation while the new 3D local
depression is being obliquely shed on the right side of the
left-moving forcing under the influence of viscous dissipation.
The same dissipation-growth phenomena are repeated for the
shed and the newly growing 3D local depressions; Figs. 6(a)–
6(d) are the same as Figs. 6(e)–6(h), respectively, and the
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FIG. 3. Steady wave solutions from Eq. (13). (a) |ηmin| vs α diagram, (b) magnified version of Fig. 3(a) near α = 1. (c)–(h) Cross-sectional
view (solid line: profile on the y = 0 plane, dashed line: profile on the plane which passes through the minimum of the profile on the y = 0
plane) of steady solitary-wave solutions for α = 0.9, 0.91, 0.92, 0.95, 0.96, and 0.97 corresponding to the dot points (1)–(6) in (a) and (b).
These solutions are the same as steady wave solutions in Figs. 1(b)–1(g).
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FIG. 4. Steady wave solution corresponding to Fig. 1(f) (α = 0.97, t = 4 ∼ 13 s). The left moving forcing is located at the origin (x = 0,
y = 0). Steady solitary waves are formed behind the moving forcing. (a) Slanted view, (b) cross-sectional view (solid line: profile on the y = 0
plane, dashed line: profile on the plane which passes through the minimum of the profile on the y = 0 plane).
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FIG. 5. Irregular asymmetric shedding of 3D local depressions corresponding to Fig. 1(f) (α = 0.97, t = 13 ∼ 35 s). The left moving
forcing is located at the origin (x = 0, y = 0).

shedding period is about 1.3 s. As the forcing speed further
increases (0.99 � α � 1), regular symmetric shedding of 3D
local depressions are observed as shown in Fig. 7 (α = 0.99),
which corresponds to Fig. 1(h). In Fig. 7(a), one can see the
obliquely shed 3D local depressions on both sides of the left-
moving forcing. At the same time, near the forcing position,
the growth of a new 3D local depression is seen that is going
to be obliquely shed on both sides of the left-moving forcing.
Then, as shown in Figs. 7(b) and 7(c), the shed 3D local
depressions gradually disappear due to viscous dissipation
while new 3D local depressions are obliquely shed on both
sides of the left-moving forcing under the influence of viscous
dissipation. Finally, when the forcing speed exceeds 1 (α > 1),
steady “V”-shaped surface waves are observed behind the
moving forcing as shown in Fig. 8, which corresponds to
Fig. 1(j).

IV. LINEAR STABILITY ANALYSIS
FOR THE ANTISYMMETRIC SHEDDING

In the present transient simulation with a still-water initial
condition, no intentional perturbation is given, while there
is unavoidable accumulated numerical perturbations during
the time-marching process. These accumulated numerical
perturbations are believed to play roles as longitudinal and
transverse perturbations to the generated 3D gravity-capillary
solitary waves. Since the numerically generated solitary waves
are steep with finite-amplitude maximum depressions, they
are stable to longitudinal perturbations [13,17,20,21]. For
a transverse perturbation, however, the stability of gravity-
capillary solitary waves will depend on the symmetry of
the perturbation. If the perturbation is symmetric, gravity-
capillary solitary waves will be stable. If the perturbation is
antisymmetric, gravity-capillary solitary waves will become
unstable, and, as a result, irregular asymmetric or regular
antisymmetric shedding phenomena of 3D local depressions

will be identified behind the moving forcing. To confirm this
conjecture, first, we will perform a linear stability analysis
based on the forced model equation, Eq. (1), to identify plau-
sible symmetric and antisymmetric perturbations. Then, these
perturbations will be added to steady gravity-capillary solitary
wave solutions to Eq. (13). The simulation results of Eq. (1)
with these initial conditions will reveal that anti-symmetric
perturbations are the cause of the irregular asymmetric or
regular anti-symmetric shedding of 3D local depressions. The
present approach is not mathematically rigorous, but it gives
an idea of what is occurring. From the forced model equation,
Eq. (1),

ηt − ν̃(ηxx + ηyy ) + (
α − 1

2

)
ηx − 1

4H {ηxx + 2ηyy − η}
−β(η2)x = Apx. (16)

Now, let us assume that, at some point, a perturbation is
introduced (say t = 0−) and vanished (t = 0+) in the forcing,

p =
{
p̄(x, y) + p′(x, y)(t = 0)

p̄(x, y)(t > 0)
; p′ → 0 as x, y → ±∞,

(17)

and, as a result, the resultant wave elevation afterwards is
decomposed as follows:

η = η̄(x, y) + η′(x, y, t ); |η′/η̄| � 1,

η′ → 0 as x, y → ±∞, (18)
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FIG. 6. Regular antisymmetric shedding of 3D local depressions corresponding to Fig. 1(f) (α = 0.97, t > 35 s). The left-moving forcing
is located at the origin (x = 0, y = 0). Figures 6(a)–6(d) are the same as Figs. 6(e)–6(h), respectively, and the shedding period is about 1.3 s.

where p̄ = exp(−2x2 − 2y2), and η̄ and η′ satisfy the follow-
ing equations, respectively:

−ν̃(η̄xx + η̄yy ) +
(

α − 1

2

)
η̄x − 1

4
H {η̄xx + 2η̄yy − η̄}

−β(η̄2)x = Ap̄x (Eq. (13)), (19)

η′
t − ν̃(η′

xx + η′
yy ) +

(
α − 1

2

)
η′

x − 1

4
H {η′

xx + 2η′
yy − η′}

− 2β(η̄η′)x =
{
Ap′

x (t = 0)

0 (t > 0)
, (20)

where η̄ is the intermediate steady wave solution (for example,
Fig. 4 for α = 0.97) which is symmetric in y. Now, let
us assume the following localized form of the perturbation
term η′:

η′(x, y, t ) = ϕ(x, y)eλt ; ϕ → 0 as x, y → ±∞. (21)

Then, from Eqs. (20) and (21),

λϕ − ν̃(ϕxx + ϕyy ) +
(

α − 1

2

)
ϕx − 1

4
H {ϕxx + 2ϕyy − ϕ}

− 2β(η̄ϕ)x =
{
Ap′

x (t = 0)
0 (t > 0) . (22)
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FIG. 7. Regular symmetric shedding of 3D local depressions corresponding to Fig. 1(h) (α = 0.99). The left-moving forcing is located at
the origin (x = 0, y = 0).

Upon expanding ϕ, λ, and p′ in the ascending power of
0 < ε � 1,

ϕ = ϕ0 + εϕ1 + ε2ϕ2 + · · · , (23)

λ = λ0 + ελ1 + ε2λ2 + · · · , (24)

FIG. 8. Steady wave solution corresponding to Fig. 1(j) (α =
1.01). The left-moving forcing is located at the origin (x = 0, y = 0).
Steady “V”-shaped surface waves are formed behind the moving
forcing.

p′ =
⎧⎨
⎩

∂p̄

∂x
+ ε

∂2p̄

∂x2 + · · · (perturbed in the x direction)

∂p̄

∂y
+ ε

∂2p̄

∂y2 + · · · (perturbed in the y direction)
, (25)

and substituting Eqs. (23)–(25) into Eq. (22), one obtains a
series of equations according to the order of magnitude O(1),
O(ε), · · · . At zeroth order O(1),

O(1) : Lϕ0 = −λ0ϕ0 +
{
Ap̄xx (perturbed in the x direction)

Ap̄xy (perturbed in the y direction)
,

(26)

where L denotes the following linear operator:

L = −ν̃

(
∂2

∂x2
+ ∂2

∂x2

)
+

(
α − 1

2

)
∂

∂x

− 1

4
H

{
∂2

∂x2
+ 2

∂2

∂x2
− 1

}
− 2βη̄x − 2βη̄

∂

∂x
. (27)

A solution to the problem, Eq. (26), is

λ0 = 0, (28)

ϕ0 =
{
η̄x (symmetric in y)

η̄y (antisymmetric in y)
. (29)
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FIG. 9. Time evolution of the energy E = ∫ ∞
−∞

∫ ∞
−∞ η′2dxdy (t vs ln E), for the (a) symmetric initial condition η′(x, y, t = 0) = η̄x and

(b) antisymmetric initial condition η′(x, y, t = 0) = η̄y .

Proceeding to the next order O(ε),

O(ε) : Lϕ1 = −λ0ϕ1 − λ1ϕ0

+
{
Ap̄xxx (perturbed in the x direction)

Ap̄xyy (perturbed in the y direction)
. (30)

Appealing to the usual solvability argument, it is possible
to assess whether this nonhomogeneous equation has a solu-
tion or not. The adjoint operator Ladj to the operator L is

Ladj = −ν̃

(
∂2

∂x2
+ ∂2

∂x2

)
+

(
α − 1

2

)
∂

∂x

− 1

4
H

{
∂2

∂x2
+ 2

∂2

∂y2
− 1

}
− 2βη̄

∂

∂x
. (31)

The solution to Ladjηadj = 0 is ηadj = 0(due to existence of
the viscous operator) and, thus, Eq. (30) is solvable, which,
however, does not provide useful information on the stability.
Therefore, instead of proceeding to higher-order analytics, the
effect of the leading-order perturbation term [Eq. (29)] on the
transverse instability is numerically investigated.

A. Numerical results for the linearized equation
of the perturbation η′

Equation (20) will determine the transient behavior of the
perturbation η′, i.e., growth or decay. For example, for α =
0.97, the following two initial conditions [from Eq. (29)] are
used in the transient numerical simulations for the symmetric
and antisymmetric perturbations, respectively:

η′(x, y, t = 0) = η̄x, (32)

η′(x, y, t = 0) = η̄y . (33)

Figure 9 shows the time evolution of the energy E =∫ ∞
−∞

∫ ∞
−∞ η′2dxdy (t versus ln E), which shows the expo-

nential decay and growth for the symmetric [Fig. 9(a)] and
antisymmetric [Fig. 9(b)] cases, respectively.

B. Numerical results for the full nonlinear equation

The model equation, Eq. (1), is solved numerically using
two initial conditions; symmetrically and antisymmetrically
perturbed steady forced 3D gravity-capillary solitary waves,
η̄(x, y; α) for α = 0.97 [Eq. (13) or (19)]. For a symmetric
perturbation, the initial condition is set as follows:

η(x, y, t = 0) = η̄ + η̄x . (34)

In this case, as expected from the numerical result for
the linearized equation of the symmetric perturbation η′
[Fig. 9(a)], no shedding is observed [Fig. 10(a)]. Therefore,
the steady forced 3D gravity-capillary solitary waves are
stable to a symmetric transverse perturbation. For an antisym-
metric perturbation,

η(x, y, t = 0) = η̄ + η̄y . (35)

Figure 10(b) shows irregular asymmetric shedding of 3D
local depressions according to time. Compare to the still-
water initial condition [Fig. 1(f)], which shows the resultant
regular antisymmetric shedding, the present case with a dif-
ferent initial condition, Eq. (35), does not show a regular
antisymmetric shedding. Therefore, one can conclude that
irregular asymmetric or regular antisymmetric shedding phe-
nomena of 3D local depressions is caused by the onset of
transverse instability of forced 3D gravity-capillary solitary

t (sec)
0 5 10 15 20 25 30

|η
m

in
| (

m
m

)

0

1

2

3

4

5
(a)

t (sec)
0 10 20 30

|η
m

in
| (

m
m

)

1.5

2

2.5

3

3.5
(b)

FIG. 10. Time histories of the maximum depressions of the solutions to Eq. (1) for the (a) symmetric initial condition η′(x, y, t = 0) =
η̄ + η̄x and (b) antisymmetric initial condition η′(x, y, t = 0) = η̄ + η̄y .
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waves, which is originated by an antisymmetric perturbation,
η′ = η̄y , Eq. (33).

V. SUMMARY

The main theme of the present work is the antisymmetric
shedding phenomena of 3D local depressions originated from
the transverse instability of steady forced gravity-capillary
solitary waves generated by a moving air forcing on the sur-
face of deep water, which are numerically investigated based
on a model equation. Although simple relative to the full
water wave equation, the usefulness of this model equation
was experimentally proved in relevant previous works [16,23–
25,28]. Three different states are identified according to forc-
ing speeds U below cmin. At relatively low speeds below a
certain speed c1(U < c1), a steady circular dimple is observed
below the moving forcing. At relatively high speeds above a
certain speed c2 (c2 < U < cmin), symmetric shedding phe-
nomena of 3D depressions are observed behind the moving
forcing. At intermediate speeds (c1 � U � c2), after the first
transient period, the solution approaches a steady 3D gravity-
capillary solitary wave solution. This solitary wave solution
maintains its stability for some time, after which an irregular
asymmetric shedding of 3D local depressions occurs during
the second transient period [26]. Furthermore, when the forc-
ing speed (U) is very close to c1, after the second transient
period of the irregular asymmetric shedding, the final state is
an almost regular shedding of 3D local depressions. When the
forcing speed (U) is very close to c2, after the second transient
period of the irregular asymmetric shedding, the final state
is a regular antisymmetric shedding of 3D local depressions.
In the simulation, no intentional perturbation is given, while
there is unavoidable accumulated numerical perturbations
during the time-marching process. These accumulated numer-
ical perturbations are believed to play roles as longitudinal and
transverse perturbations to the generated 3D gravity-capillary
solitary waves. These gravity-capillary solitary waves are sta-
ble as long as the perturbation is longitudinal. For a transverse
perturbation, however, the stability of gravity-capillary soli-
tary waves depends on the symmetry of the perturbation. If the
perturbation is symmetric, gravity-capillary solitary waves are
stable. If the perturbation is antisymmetric, gravity-capillary
solitary waves become unstable, and, as a result, the irregular

asymmetric or regular antisymmetric shedding phenomena of
3D local depressions are identified behind the moving forcing.
In addition to these long-time numerical simulations, based
on the linear stability analysis, the stability characteristics
are investigated analytically and numerically. For a symmet-
ric perturbation, the initial perturbation decays exponentially
according to time. For antisymmetric perturbations, the ini-
tial perturbation grows exponentially according to time. The
behavior of the perturbation is related to the onset of the
transverse instability of forced 3D gravity-capillary solitary
waves and further explains the resultant irregular asymmetric
or regular antisymmetric shedding phenomena of 3D local
depressions.

ACKNOWLEDGMENT

This work was supported by National Research Foundation
of Korea (NRF) (Grant No. NRF-2017R1D1A1B03028299).

APPENDIX: DERIVATION OF EQ. (1) [16,25,28,29]

From the inviscid dispersion relation of the potential-flow
theory for linear sinusoidal gravity-capillary waves on deep
water,

ω2 = gκ + σ

ρ
κ3, (A1)

where ω is the angular frequency, g is gravitational ac-
celeration, κ is the magnitude of the wave-number vector
κ = √

k2 + l2, k is the wave number in the x direction, l

is the wave number in the y direction, σ is the coefficient
of the surface tension, and ρ is the fluid density. Assuming
a linear wave propagating in positive or negative x direc-
tion, the phase speed c = ±sgn(k)ω/κ features a minimum
cmin = (8σg/ρ)1/4 at a nonzero finite wave number (k, l) =
(±√

ρg/σ , 0). Using the length scale L = √
σ/ρg and the

timescale T = √
σ/ρg/cmin, the dispersion relation, Eq. (A1),

becomes dimensionless,

ω2 = 1
2 (κ + κ3), (A2)

whose phase-speed minimum becomes cmin = 1 at (k, l) =
(km, lm) = (±1, 0). To capture the essential wave phenomena
near the minimum phase speed cmin, Eq. (A2) is Taylor-
expended around (k, l) = (km, lm) [13,23,25,29]:

ω(k, l) = ±sgn(k)

√
1

2
(κ + κ3) = ±sgn(k)

√
1

2

√
(k2 + l2)1/2 + (k2 + l2)3/2

≈ ±sgn(k)

(
ω(km, lm) + ∂ω

∂k

∣∣∣∣
(km,lm )

(k − km) + ∂ω

∂l

∣∣∣∣
(km,lm )

(l − lm) + ∂2ω

∂k2

∣∣∣∣
(km,lm )

(k − km)2

+ 2
∂2ω

∂k∂l

∣∣∣∣
(km,lm )

(k − km)(l − lm) + ∂2ω

∂l2

∣∣∣∣
(km,lm )

(l − lm)2

)

= ±1

4
sgn(k)(1 + 2|k| + k2 + 2l2). (A3)

Assuming a left-going wave, the linear dispersion relation is

ω = − 1
4 sgn(k)(1 + 2|k| + k2 + 2l2). (A4)
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The decay of the amplitude of a linear sinusoidal wave
on deep water propagating in the x direction was derived by
Lamb [30] as follows:

A = A(t ′ = 0) exp(−2νk′2t ′)

(primed : dimensional quantities), (A5)

where ν = 10−6m2/s is the kinematic viscosity of wa-
ter. Using the length scale L = √

σ/ρg and the timescale
T = √

σ/ρg/cmin, the decay rate can be expressed as a fol-
lowing dimensionless form:

2νk′2t ′ = 2ν
k2

L2
(T t ) = ν(4g)1/4(ρ/σ )3/4k2t ≡ ν̃0k

2t. (A6)

Therefore, the viscous effect can be reflected in the inviscid
dispersion relation as follows:

ω = − 1
4 sgn(k)(1 + 2|k| + k2 + 2l2) − iν̃(k2 + l2). (A7)

Here, ν̃ = Cν(4g)1/4(ρ/σ )3/4 = Cν̃0 is the dimensionless
kinematic viscosity, where ν = 10−6m2/s is the kinematic
viscosity of water, and C is the parameter (C = 1 for linear
sinusoidal waves, C > 1 for nonlinear solitary waves), which
determines the decay rate of waves [31]. From Eq. (A7), one
can replace variables (ω, k, l) in the temporal and spatial fre-
quency domains with those (t, x, y) in the physical domain:

ω → −i
∂

∂t
, k → i

∂

∂x
, l → i

∂

∂y
, sgn(k) → −iH ,

(A8)

where H {f } = F −1{−i sgn(k)F {f }} stands for the Hilbert
transform, with

F {f } =
∫ ∞

−∞
f (x)e−ikxdx (A9)

being the Fourier transform. Consequently, one obtains the
following model equation for linear viscous gravity-capillary
waves on deep water:

ηt − ν̃(ηxx + ηyy ) − 1
2ηx − 1

4 H {ηxx + 2ηyy − η} = 0, (A10)

where η = η(x, y, t ) is the wave elevation, and the subscript
denotes the partial differentiation. To account for the nonlin-
earity originated from nonlinear free-surface kinematic and
dynamic boundary conditions and the left-moving forcing,
one can add a quadratic nonlinearity term β(η2)x and the
forcing Ap(x + αt ) in the equation:

ηt − ν̃(ηxx + ηyy ) − 1
2ηx − β(η2)x − 1

4 H {ηxx + 2ηyy − η}
= Apx (x + αt ). (A11)

By replacing x with x + αt in Eq. (A11), the wave equa-
tion, which is expressed in the left-moving reference with a
dimensionless speed α = c/cmin, is obtained as follows:

ηt − ν̃(ηxx + ηyy ) + (
α − 1

2

)
ηx − β(η2)x

− 1
4 H {ηxx + 2ηyy − η} = Apx (x). (A12)

To determine the nonlinear coefficient β, one can con-
sider the following inviscid forcing-free model equation from
Eq. (A12):

ηt + (
α − 1

2

)
ηx − β(η2)x − 1

4 H {ηxx + 2ηyy − η} = 0.

(A13)

In the weakly nonlinear small-amplitude limit near α = 1,
the solution to Eq. (A13) can be expressed as

η = 1
2ε{S(X, Y, T )eix + c.c.} + 1

2ε2{S2(X, Y, T )e2ix

+ c.c.} + · · · , (A14)

where α = 1 − ε2(0 < ε � 1), (X, Y ) = ε(x, y ), and T =
ε2t . Substituting Eq. (A14) into Eq. (A13), one obtains the
following nonlinear Schrödinger (NLS) equation:

iST − S + 1
4SXX + 1

2SYY + 4β2|S|2S = 0. (A15)

However, from the full water-wave or Euler equation on
deep water, the NLS equation is derived as [32]

iST − S + 1
4SXX + 1

2SYY + 11
32 |S|2S = 0. (A16)

Finally, by equating Eqs. (A15) and (A16), the nonlinear
coefficient is determined as β = √

11/2/8.
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