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Curvature dependence of heat transfer at a fluid-solid interface
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This study reports an opposing effect of curvature on the interfacial heat transfer, which implies a monotonic
increase in the temperature jump over a convex surface and, conversely, a monotonic decrease in the temperature
jump over a concave surface, as the curvature of the surface increases. The study shows that this effect is present
at both gas-solid and liquid-solid interfaces. The curvature dependence of the interfacial thermal conductance is
also investigated and the opposing effect is elucidated by the change in the thermal conductivity of the fluid-solid
interface.
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I. INTRODUCTION

At a gas-solid interface, a Knudsen layer forms and man-
ifests itself as a deviation from the conventional continuum
description of the fluid, creating a temperature jump and
a velocity slip over a solid boundary. While the transport
properties within this layer have been extensively studied
for flows associated with flat surfaces [1–3], the formation
and effects of this layer over curved surfaces have been
poorly understood. The Knudsen number, Kn, is an important
parameter that relates the thickness of the Knudsen layer to
the length scale of the flow domain. The Knudsen number is
defined as Kn = λ/L, where λ is the mean free path of the
gas molecules and L is the characteristic length scale of the
flow. As the Knudsen number increases, the Knudsen layer
becomes increasingly influential on the heat flow behavior
and causes a considerable temperature jump at a gas-solid
interface. It is also known that higher-order velocity slip and
temperature jump models are less accurate at a convex gas-
solid interface [4,5]. A recent investigation has shown that the
Knudsen layer is thicker over a convex surface compared with
a flat surface and it expands further with curvature [6]. This
expansion creates an additional deviation from the continuum
description of the fluid and amplifies the temperature jump.
Conversely, it is suspected that the Knudsen layer shrinks over
a concave surface as the curvature increases [5], but this is not
fully explored yet.

For liquid-solid interfaces, a similar rise in the temperature
jump over a convex surface has also been shown [6]. At a
liquid-solid interface, the temperature jump is often related to
the interfacial thermal conductance GK , and estimating the
magnitude of GK between dissimilar materials is the subject
of intense research [7,8]. The interfacial thermal conductance
is defined as GK = q/�T , where q is the heat flux and �T is
the temperature jump at the boundary. The boundary thermal
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resistance is one of the major contributors to the overall
thermal resistance [7] and is defined as 1/GK . Despite its
striking importance in nanoscience, the curvature dependence
of interfacial transfer coefficients has so far received little
attention [7–15].

The present study investigates the temperature jump and
interfacial thermal conductance through curved fluid-solid
interfaces. The study initially uses a direct simulation Monte
Carlo (DSMC) method for argon gas at various Knudsen
numbers and curvatures to demonstrate the opposing effect of
curvature over convex and concave surfaces. The study then
employs molecular dynamic simulations and reveals that the
opposing effect is also present at a liquid-solid interface.

II. SIMULATIONS

A thin, heated cylindrical shell is located in the middle of
the gap between two coaxial stationary cylinders, as shown in
Fig. 1(a). For the gas-phase simulations, the Knudsen number
is defined by the annular clearance between the shell and the
confining (inner or outer) cylinder, i.e., Kn = λ/(R2 − RS ) for
the convex side and Kn = λ/(RS − R1) for the concave side of
the shell, where R1 and R2 are the radii of the inner and outer
cylinders, respectively, and RS is the radius of the shell. The
Knudsen numbers are set to be equal on both sides of the shell.
In this setting, the convex and concave sides of the shell have
identical surface area and curvature. The temperature jumps
over the convex and concave sides of the shell are obtained
separately. A standard direct simulation Monte Carlo (DSMC)
algorithm has been implemented with a small modification
in the calculation of the maximum collision number in a cell
[16]. Fully diffusive boundary conditions have been employed
at both cylinders and the shell, where particles are reflected
from the surface according to the Maxwellian distribution.
The thermal and momentum accommodation coefficients are
set to unity at all walls. Since the temperature profiles between
cylinders are axially symmetric, a two-dimensional simula-
tion, i.e., heat transfer problem between concentric rings,
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FIG. 1. Comparison of gas temperature profiles over the concave
and convex surfaces of a cylindrical shell obtained from DSMC sim-
ulations. The bold vertical line in the middle of Fig. 1(b) represents
the location of the shell. The shell is positioned midway between two
cylinders. The shell has a radius of 5λ, where λ is the mean free path.
The left- and right-hand sides of the shell have concave and convex
surfaces, respectively. The Knudsen number is Kn = 0.25.

is sufficient for the DSMC simulations. The shell surface
temperature is assumed to be twice the temperature of the
confining inner and outer cylinders; i.e., TS = 2T1 = 2T2 =
600 K. The simulations consider a hard-sphere model for
argon at STP conditions and the fluid domain is divided into
200 cells in the radial direction with each cell containing
approximately 1000 simulation particles on average. The time
step is set to 0.025 λ/Vmp (≈4.64ps), where λ/Vmp is the
mean collision time and Vmp is the most probable speed. The
simulation has been run for 3 × 105 time steps.

For liquid-solid interfaces, molecular dynamics (MD) sim-
ulations are employed to investigate the interfacial heat trans-
fer phenomena. In the MD simulations, a Lennard-Jones fluid
fills the gap between the cylinders, and in a manner similar
to the DSMC simulations, the convex and concave sides of
the shell are simulated separately. A typical three-dimensional
MD simulation is performed with the fluid-fluid and surface-
fluid interactions described by the Lennard-Jones 12-6 po-
tential V (r ) = 4ε[(r/σ )−12 − (r/σ )−6] for r < 2.5σ , where
ε and σ represent the energy and length scales. The study
uses reduced Lennard-Jones units [17], where all quantities
are multiples of mass, ε, σ , and the Boltzmann constant. The
energy scale εff = ε controls the attraction between fluid
atoms, while εf s = α ε describes the relative strength of fluid-
solid bonding. The value of α is set to unity throughout the
study.

Microcanonical ensemble simulations (NVE) are run with
a time step, �t = 0.005τ , where τ = σ (m/ε)1/2 is the dimen-
sionless time and m is the particle mass. The temperatures
of the inner and outer cylinders are kept constant at T1 =
T2 = ε/kB and the shell temperature is kept at TS = 2ε/kB .
The Langevin thermostat is employed for the cylinders whose
walls are composed of atoms of the same type as the fluid.
The Nosé-Hoover thermostat (NVT) has also been used with
a relaxation time of 0.1τ , for comparison. Surface atoms are
tethered to the lattice positions by a spring constant of 100.
The number density is ∼0.91 and a face-centered cubic (fcc)
lattice is employed in the simulations. A periodic boundary
condition is used in the axial direction and 200 values are
sampled in the radial direction for the analysis. To reach
steady state, 2 × 106 time steps are simulated and then a
further 2 × 106 time steps are performed for time averaging.

FIG. 2. Temperature jumps over the convex and concave sur-
faces of the shell as a function of shell curvature, κSλ. The data
have been obtained using DSMC simulations for a gas-solid inter-
face at Kn = 0.5. The temperature jump is normalized as �T =
(TS − T )/(TS − T1).

III. RESULTS

The temperature profiles of the gas obtained from the direct
simulation Monte Carlo (DSMC) are shown in Fig. 1(b).
The bold vertical line in the middle of Fig. 1(b) represents the
location of the shell, which has a radius of 5λ, where λ is the
mean free path. The temperature jump over the shell is defined
as �T = (TS − T )/(TS − T1) except for the calculation of the
interfacial thermal conductance where it is not nondimension-
alized. The profiles on the left- and right-hand sides of the
shell are associated with the concave and convex surfaces,
respectively. Figure 1(b) shows that the temperature jump over
a convex surface is considerably larger than the temperature
jump over a concave surface. In contrast, the equivalent planar
case would exhibit equal temperature jumps on both sides of
the shell. The inside and outside surfaces of the shell have
identical surface curvatures and surface areas. Therefore, the
significant difference in the magnitudes of the temperature
jumps can be attributed to the effect of surface shape (i.e.,
convex or concave). In this setting, the magnitude of the heat
flux on the convex side is slightly higher than the heat flux
on the concave side. The temperature jump increases with the
magnitude of the heat flux but the change is estimated to be
less than 5% in our cases. The magnitudes of the heat fluxes
are taken into account in the calculation of the interfacial
thermal conductance.

The variation of the temperature jump over the concave and
convex sides of the shell is shown in Fig. 2 as a function of the
shell curvature for a Knudsen number of 0.5. The Knudsen
number is identical on both sides of the shell, i.e., RS −
R1 = R2 − RS . The shell temperature is twice the temperature
of the inner and outer cylinders; i.e., TS = 2T1 = 2T2. The
radius of the shell is set to 5λ, 12.5λ, 20λ, 25λ, 35λ, and
50λ. The nondimensionalized curvature of the shell is defined
as κSλ = λ/RS . Figure 2 demonstrates that the temperature
jump over a concave surface decreases with curvature whereas
the temperature jump over a convex surface increases with
curvature. This can be interpreted as an “opposing curvature
effect” on the temperature jump. The temperature jump for the
equivalent planar case is found to be �T = 0.302 and defines
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FIG. 3. (a) Difference between the temperature jumps over con-
vex and concave surfaces. The temperature jump difference is de-
fined as (�T )concave − (�T )convex. (b) Variation of the temperature
jump difference with the annular gap, where �R = RS − R1 = R2 −
RS is the distance between the shell and the inner or outer cylinder.

the effective upper and lower limits for the temperature jump
over concave and convex surfaces, respectively.

The thickness of the Knudsen layers relative to the annular
gap increases with the Knudsen number. The Knudsen layers
are expected to be increasingly influential in the temperature
jump as the Knudsen number is increased. In Fig. 3(a),
the opposing effect of curvature is investigated at three
additional Knudsen numbers; Kn = 0.1, 1.0, and 5.0. The
shell radii are set to 5λ, 12.5λ, 20λ, 25λ, 35λ, and 50λ as
in Fig. 2. The temperature jump difference is defined as
(�T )concave − (�T )convex. It is important to note that the
opposing effect is also observed at these additional Knudsen
numbers. For a given Knudsen number, the temperature jump
over the convex side of the shell is always found to be larger
than the temperature jump over the concave side. Figure 3(a)
shows that at lower Knudsen numbers, the temperature jump
difference is increasingly more prominent. The data demon-
strate that the difference in the temperature jumps diminishes
as the curvature decreases and the jump value approaches the
temperature jump of the equivalent planar case. Temperature
jumps of the equivalent planar cases are �T = 0.1376,
0.302, 0.3736, and 0.4926 for Knudsen numbers of 0.1, 0.5,
1.0, and 5.0, respectively. Moreover, the influence of the
confinement is examined in Fig. 3(b) against the gap distance,
�R = R2 − RS = RS − R1. The gap is varied from 0.1λ to
10λ, while the shell radius is kept constant at 12λ. Figure
3(b) shows that the temperature jump difference increases
when the confining cylinders are positioned further away
from the shell. Thus, it is concluded that the opposing effect
is not due to the confinement. In other words, the temperature
jump decreases at the concave side of the shell are not due
to the existence of the inner (convex) cylinder, and similarly,
the temperature jump increases at the convex side are not
due to the existence of the outer (concave) cylinder. Since
the difference between the jumps becomes more prominent
at lower values of Kn, this phenomenon can be related to the
effects of the surface scale rather than rarefaction.

Figure 4 demonstrates that the opposing effect of curvature
also exists at a liquid-solid interface. The gap between the
shell and the confining (inner or outer) cylinder is taken as 3σ .
The height of the shell and cylinders is set to 3σ . The shell

FIG. 4. Temperature jump at a liquid-solid interface as a func-
tion of curvature, κSσ . The temperature jumps have been obtained
using molecular dynamics simulations and are normalized as �T =
(TS − T )/(TS − T1).

radii are set to 6σ , 12σ , 24σ , and 48σ . Similar to the DSMC
simulations, the annular clearances on either side of the shell
are kept equal. The temperature profiles have axial symmetry
and inclusion of the third dimension is unnecessary in DSMC,
because of the way the walls are modeled and the boundary
conditions are imposed. On the other hand, the walls are
composed of atoms and interaction potentials describe the
heat and momentum transfer between the fluid and surface
atoms in MD. Thus, two- (2D) and three-dimensional (3D)
data may differ in MD, although the temperature jumps in
both 2D and 3D simulations are expected to have a similar
trend [9]. In this study, typical 3D simulations are performed.
In agreement with the gas-phase simulations, the MD data
reveal the opposing effect of curvature on the temperature
jump in Fig. 4. The temperature jump for the equivalent
planar case is approximately �T = 0.32. Table I shows that,
in a fashion similar to the gas-solid interface, the temperature
jump difference at a liquid-solid interface increases with
the annular clearance and the temperature jump difference
diminishes as curvature decreases.

The opposing effect implies that heating from a concave
surface improves with curvature, while, in contrast, heating
from a convex surface decreases with curvature. This has a
direct effect on the average fluid temperature in the gap. In
the case of classical (macroscopic) heat conduction problems
between concentric cylinders, the ratio between the inner
and outer cylinder radii is a key parameter in describing the

TABLE I. Difference between the temperature jumps over the
convex and concave sides of a cylindrical shell at a liquid-solid
interface. The data have been obtained from MD simulations for shell
radii of 20σ , 30σ , and 50σ .

(�T )concave − (�T )convex

Shell radius Gap = 5σ Gap = 10σ

RS = 20σ 0.16535 0.26255
RS = 30σ 0.13451 0.16460
RS = 50σ 0.10350 0.11971
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FIG. 5. Variation of the temperature jump as a function of curva-
ture for a fixed value of χ at a liquid-solid interface. The ratio χ is
R2/RS on the convex side of the shell and χ is RS/R1 on the concave
side of the shell. The data have been obtained by molecular dynamics
simulations with (a) Langevin, and (b) NVT thermostats.

temperature distribution in the annular gap [18]. The average
fluid temperature in the gap is solely a function of the ratio
between the cylinder radii, and is not directly dependent on
the curvature of the heated cylinder. However, Fig. 5 shows
the influence of shell curvature when χ = Rout/Rin is equal on
both sides of the shell. The shell radii have been selected as
10σ , 20σ , 30σ , and 50σ . The MD simulations have been run
with both the Langevin and the NVT thermostats for intercom-
parison purposes. Figure 5 shows that the temperature jump
on the convex side exceeds the jump on the concave surface.
Moreover, the temperature jump difference increases with
curvature at constant χ . The results imply that the average
temperature of a fluid heated by a concave surface monotoni-
cally increases, while the average temperature of a fluid heated
by a convex surface monotonically decreases, as the shell
curvature increases. The average temperatures of the equiv-
alent macroscopic problem (in the absence of a temperature
jump) are obtained as Tave/T1 = (2χ − 1)/(χ − 1) − 1/ln χ

and Tave/T2 = (χ − 2)/(χ − 1) + 1/ln χ on the concave and
convex sides, respectively. These values define a lower and an
upper limit for the average fluid temperature in the gap over
concave and convex surfaces, respectively.

To understand the opposing effect, the interfacial thermal
conductance has also been investigated over the shell surface.
It was previously shown that the thermal accommodation
coefficient and the Kapitza length only slightly depend on the
curvature [6]. To find the interfacial thermal conductance GK ,
heat fluxes are calculated from the MD simulations of Fig. 4
by measuring the added and subtracted energies into the walls
[15,19]. When the steady-state condition is established, the
tally option of the Langevin thermostat has been employed
to evaluate the heat fluxes. The thermal conductance of the
gas-solid interface has also been obtained by computing the
heat flux and temperature jumps from the DSMC simulations.
Figure 6 shows that curvature has an opposing effect on the
thermal conductivity of the fluid-solid interface.

In addition, two further sets of MD simulations have been
run for the same shell geometry. Liquid argon has been
employed in contact with copper and silver surfaces. In these
tests, a shell composed of copper or silver atoms has been
located between cylinders of the same metal. The metal atoms
interact with themselves according to the embedded atom
method (EAM), and are described by Cu_u3 and Ag_u3

FIG. 6. Variation of interfacial thermal conductance as a function
of the curvature of the surface. The data have been obtained by
(a) DSMC at Kn = 0.5, and (b) MD in Lennard-Jones units [19].

potential files. The surface atoms are not tethered with a
spring constant this time, and a default fcc structure has been
used. The lattice constant is 3.615 Å for Cu and 4.086 Å for
Ag. The Ar-Ar, Cu-Ar, and Ag-Ar interactions are modeled
by the 12-6 Lennard-Jones potential and are all truncated at
8.51 Å (≈2.5σ ). The ε and σ parameters of the Lennard-
Jones potentials are taken as 0.01 eV and 3.405 Å for Ar-Ar,
0.064 eV and 2.874 Å for Cu-Ar [20], and 0.06 eV and
2.978 Å for Ag-Ar interactions [21]. The temperature of
the shell is maintained at 150 K, while the confining metal
cylinders are kept at 90 K using the Langevin thermostat. The
shell radii are specified as 11 and 13 nm. The number density
of liquid argon is specified as 0.8, where the radial distribution
function demonstrates liquid behavior. The number density
is calculated from Nσ 3/V , where N is the number of argon
atoms, σ (=0.3405 nm) is the molecular diameter of argon,
and V is the volume of the annular gap. Three-dimensional
simulations are performed. The height of the cylinders is kept
at 1 nm to restrain the computational cost. Investigation of the

FIG. 7. Molecular dynamics simulations demonstrating the op-
posing effect of curvature on the interfacial thermal conductance. κS

is the shell curvature. Liquid argon is interacting with copper and
silver surfaces. The thermal conductance at a concave liquid-solid
interface is found to increase with curvature while the conductance
at a convex interface decreases with curvature.
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opposing effect for varying heights is left for future studies.
The gap between the shell and the inner or outer cylinder is
10 nm. The simulation time step is 1 fs and the simulations
are performed for 2 ns to reach the steady-state condition and
a further 1 ns for averaging. Figure 7 shows the variation of
the interfacial thermal conductance with curvature and again
implies the opposing effect of curvature.

IV. CONCLUDING REMARKS

This study shows the profound effect of curvature and
the surface shape (i.e., whether the surface is convex or
concave) on the fluid temperature profiles over micro- and
nanosurfaces and illustrates an opposing effect of curvature on
the temperature jumps at a fluid-solid interface. At a gas-solid
interface, the expansion of the Knudsen layer over a convex
surface along with the expansion of the S layer was recently
demonstrated theoretically and was related to the increase of
the temperature jump over a convex surface [6]. Formation
of a sublayer over a concave surface at the bottom of the
Knudsen layer, similar to the S layer, was not anticipated [22].
However, a possible shrinkage of the Knudsen layer over a
concave surface might be responsible for the reduction of the
temperature jump.

The existence of the opposing effect can substantially
influence heating or cooling of a fluid in the vicinity of a
curved micro- or nanosurface. The opposing effect of cur-
vature implies that heat transfer from a hot concave surface
improves with curvature, while, in contrast, heat transfer from
a hot convex surface decreases. At an identical curvature,
the temperature jump over a convex surface is found to be
larger than the temperature jump over a concave surface. The

temperature jump for the equivalent planar case defines the
upper and lower limits for the temperature jump over concave
and convex surfaces, respectively. It is shown that the oppos-
ing effect is not a consequence of confinement. In other words,
the temperature jump increases (or decreases) at the convex
(or concave) side of the shell are not due to the existence
of the opposite cylinder. The results show that the opposing
effect becomes more prominent as the gap distance increases,
while it becomes less important as the curvature decreases. An
opposing effect of curvature on velocity slip for liquid 3He at
a superfluid 4He boundary was previously predicted through
an investigation of the slip boundary conditions [23]. For the
first time, the presence of an analogous opposing heat flow
behavior has been reported in this study. To fully explore this
effect, the change in the interfacial thermal conductance has
also been investigated. The results have revealed an opposing
effect of curvature on the interfacial thermal conductance at
both gas-solid and liquid-solid interfaces.
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