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Enhanced slip properties of lubricant-infused grooves
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We ascertain the enhanced slip properties for a liquid flow over lubricant-infused unidirectional surfaces. This
situation reflects many practical settings involving liquid flows past superhydrophobic grooves filled with gas,
or past grooves infused with another, immiscible, liquid of smaller or equal viscosity, i.e., where the ratio of
lubricant and liquid viscosities, μ � 1. To maximize the slippage, we consider deep grooves aligned with the
flow. The (normalized by a texture period L) effective slip length, beff , is found as an expansion to first order in
protrusion angle θ about a solution for a flat liquid-lubricant interface. Our results show a significant increase in
beff with the area fraction of lubricant, φ, and a strong decrease with μ. By contrast, only little influence of θ on
beff is observed. Convex meniscus slightly enhances and concave meniscus slightly reduces beff relative to the
case of a flat liquid-lubricant interface. The largest correction for θ is found when μ = 0, it decreases with μ,
and disappears at μ = 1. Finally, we show that lubricant-infused surfaces of small θ can be modeled as flat with
patterns of local slip boundary conditions, and that the (scaled with L) local slip length at the liquid-lubricant
interface is a universal function of φ and μ only.
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I. INTRODUCTION

The design and fabrication of slippery lubricant-infused
surfaces that provide a significant enhancement in drag re-
duction for a flowing liquid have received much attention in
recent years. Enhanced slip properties of the solid texture
are normally promoted by an infused lubricant [1–4]. The
best-known example of such a lubricant is probably a gas
trapped by superhydrophobic (SH) textures, but it could also
be another liquid, such as oil or water. Such liquid-infused
(LI) surfaces present their own scientific challenges, being
potentially much more stable and robust compared to SH
surfaces for use in various applications, including antibiofoul-
ing [5] and ice-phobicity [6].

Another active area of current research includes investi-
gations of unidirectional textures [7,8] since it is relevant
to a variety of micro- and nanofluidics applications where
such surfaces do not only dramatically reduce viscous re-
sistance [9,10], but could also be employed to separate par-
ticles [11,12] or enhance their mixing rate [13,14]. Since
the enhanced slip properties of surfaces are induced by
the presence of an infused lubricant in a contact with liq-
uid, an important ongoing challenge is of quantifying their
effective slip. Bazant and Vinogradova [15] have proven
that regardless of the complexity of the texture there ex-
ists the ‘fast’ direction of the greatest effective slip. For
unidirectional surfaces it obviously corresponds to longitudi-
nal alignment with the shear stress. There is a large litera-
ture describing attempts to provide a satisfactory theoretical
model to describe slippage properties of longitudinal grooves.
We mention below what we believe are the more relevant
contributions.

A pioneering paper published by Philip [16] applied ide-
alized shear-free local boundary conditions at the lubricant
sectors. This has led to a simple analytical equation, which
relates an effective longitudinal slip length (normalized by
texture period L), beff , to the area fraction φ of perfect slip
stripes,

bP
eff = 1

π
ln

[
sec

(
πφ

2

)]
. (1)

During the past decade several papers have tried to cal-
culate corrections to this solution caused by a meniscus cur-
vature. Sbragaglia and Prosperetti [17] have calculated the
first-order correction to bP

eff assuming that the curvature of the
meniscus is small. Crowdy [18,19] has studied the same longi-
tudinal problem in the limit of small φ but without restriction
on the protrusion angle. Schnitzer [20] has extended these
results to find asymptotic formulas valid at larger no-shear
fractions. There have also been numerical calculations, which
are directly relevant [21,22]. All these subsequent attempts
at improvements of an earlier model [16] have shed some
light on the role of the meniscus curvature. We should recall,
however, that none of these papers have tried to relax the
assumption of shear-free liquid-gas interface. In other words,
the effect of gas or of another lubricant confined in the grooves
has been fully ignored.

The body of theoretical and experimental work investigat-
ing flows past more general LI surfaces is much less than
that for SH surfaces, although there is a growing literature in
this area. Ng et al. [23] have investigated lubricant-infused
grooves and shown that even small lubricant viscosity may
affect the effective slip length predicted by Philip [16]. We
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remark that these authors have not included a meniscus curva-
ture into consideration. To account for a dissipation within the
lubricant several groups suggested to replace the two-phase
approach with a single-phase problem with partial slip bound-
ary condition imposed at the flat lubricant areas [24–27].
Belyaev and Vinogradova [28] have derived an expression for
a longitudinal effective slip length of surfaces decorated by
partially slipping stripes,

bBV
eff � 1

π

ln
[
sec

(
πφ

2

)]
1 + 1

πbc

ln
[
sec

(
πφ

2

) + tan
(

πφ

2

)] , (2)

where bc is a constant local slip length (scaled with L). In
the limit bc → ∞, which is equivalent to shear-free boundary
conditions, Eq. (2) reduces to the solution by Philip [16],
but it predicts smaller beff when bc is finite. Ng and Wang
[29] have assumed that the curved meniscus interface has
a constant partial slip length bc, and then calculated the
effective slip semianalytically. Neither papers attempted to
properly connect bc with the viscous dissipation in the infused
lubricant, but since bc ∝ μ−1, where μ is a ratio of the dy-
namic viscosities of the lubricant and the liquid, we consider
they shed some important light on the role of a lubricant
viscosity.

Several theoretical papers have been concerned with the
infused lubricant effect on the local slip length. Hocking [30]
has concluded that the local slip length of lubricant-infused
irregularities is proportional to their depth if shallow and to
their spacing if deep. Schönecker et al. [31] and Schöenecker
and Hardt [32] have argued that the distribution of a local
slip length across the lubricant-fluid interface is nonuniform.
Nizkaya et al. [2] have elucidated a mechanism which trans-
plants the flow in the lubricant to a local slip boundary
condition at the fluid-lubricant interface. This study has con-
cluded that the nonuniform longitudinal local slip length of
a shallow texture is defined by the viscosity contrast and
local thickness of a thin lubricating films, similarly to infinite
systems [33,34]. By contrast, a (divided by L) nonuniform
local slip length at a lubricant interface of a deep texture, b,
can be expressed as [2]

b � φβ(y/φ)

μ
. (3)

Here β denotes the nonuniform slip coefficient. These papers
appear to have made an important contribution to the subject,
but again, no attempt has been made to include the meniscus
curvature in the analysis.

Thus, a quantitative understanding of liquid friction past
LI (and even SH) grooves remains challenging. Although it
is now clear that both dissipation in the lubricant and the
curvature of the liquid-lubricant interface may simultaneously
affect lubricating properties of the surfaces, the investigation
of these two effects in the current literature is decoupled.
Researchers studying the role of meniscus appear to fully
ignore the viscous dissipation, while others investigate the
viscous dissipation by excluding the meniscus from the anal-
ysis. We are unaware of previous work that has addressed
the question of effective and local slip calculations in the
situation when both the lubricant viscosity and meniscus

curvature may be important. The only exception is probably
a very recent study [35], where integral expression for the
correction to Eq. (1) due to weak meniscus curvature has been
proposed. However, this has been done for μ � 1, which is
the case of SH surfaces only, and the viscosity ratios in real
experiments and applications involving LI surfaces can be
much larger [3,4].

In this paper we offer theoretical insights on the gen-
eral situation, where both weak meniscus curvature and the
viscosity contrast between liquid and lubricant phases are
taken into account. We consider shear flow past unidirectional
periodic texture, varying on scales smaller than the channel
thickness. The geometry of deep rectangular grooves [36] and
their longitudinal alignment [15] with the shear stress have
been chosen to maximize the effective slip length of a flat
interface. Our focus here is on a situation, when a lubricant
is of smaller viscosity than a liquid, which is expected to
induce enhanced slip properties [3,4]. Another special topic
here is LI surfaces, where a lubricant and a liquid are of
the same viscosity, and we compare their friction properties
with predicted for a situation, when the liquid follows the
topological variations of the surface [37]. Our theory is based
on a perturbation approach [17], and we construct the first-
order corrections due to a meniscus curvature to a longitudinal
effective slip length of a flat unidirectional lubricant-infused
surface.

The paper is organized as follows. In Sec. II we formulate
the governing equations and boundary conditions for two-
phase and single-phase problems of calculation of veloc-
ity fields. The details of calculations of the effective slip
length are given in Sec. III. Section IV contains results of
our numerical calculations. We conclude in Sec. V with a
discussion of our main results and their possible extensions.
Appendix A contains a derivation of boundary conditions at
a curved liquid-lubricant interface. In Appendix B we derive
an analytical expression, which describes a correction to the
effective slip length in the shear-free case.

II. GOVERNING EQUATIONS

Figure 1 shows a schematic of our system. We consider
a longitudinal flow of a liquid of viscosity μ∗ and density
ρ∗ past a unidirectional texture infused with a lubricant of

FIG. 1. (a) Longitudinal semi-infinite shear flow of liquid of
viscosity μ∗ over a periodic array of rectangular grooves containing
a lubricant of viscosity μ∗

l . (b) Single period window for the grooves.
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viscosity μ∗
l , and assume the viscosity ratio

μ ≡ μ∗
l

μ∗ � 1. (4)

The period of the texture is L, so that the meniscus occupies
width φL. In our model the contact line is pinned to the sharp
edge of the rectangular grooves, which are chosen to be deep
to maximize the slippage. We treat the case of a thick channel
(or of a single interface), so that the liquid velocity profile
sufficiently far from the meniscus may be considered as a
linear shear flow of a rate G.

We use L as a reference length scale, so that all variables
are dimensionless and fluid velocities are scaled by GL. We
focus on a flow of low Re = ρ∗GL2/μ∗, where μ∗/ρ∗ is the
kinematic viscosity.

Since the flow is periodic our attention is restricted to the
single period window. We use Cartesian coordinate system (x,
y, z) with the x axis parallel to the groove. The cross-plane
coordinates are y and z. We locate y = 0 at the midplane of
the groove and define the flat solid-liquid interface at

φ/2 < |y| < 1/2, z = 0. (5)

We denote the protrusion angle with respect to the hori-
zontal as θ . It is defined as positive, when a lubricant protrudes
into the liquid (convex meniscus), and as negative when liquid
protrudes inside the groove (concave meniscus). We assume
that the meniscus is only weakly deformed from the flat state,
so that |θ | � 1. Therefore, the curved meniscus interface is
expressed as

|y| � φ/2, z = θη, (6)

where dimensionless function η(y) describes the shape of
the meniscus, which represents the arc of the circle of the
dimensionless radius R = φ/(2θ ) 	 1: (θη + R cos θ )2 +
y2 = R2. For small θ we then easily obtain

η = φ/4 − y2/φ, (7)

which can be substituted into Eq. (6).
The problem is homogeneous in x direction (∂x = 0). In

this case the velocity field u(y, z) of both phases can be
determined by solving the Laplace equation

�u = 0. (8)

We stress that since Eq. (8) does not contain a pressure term,
its solution remains valid for any capillary number, Ca.

At the solid-liquid interface, which location is defined by
Eq. (5), we apply the no-slip boundary conditions for the
liquid velocity field, u = 0. The lubricant velocity at the side
walls also satisfies the no-slip conditions.

At a curved interface, defined by Eqs. (6) and (7), we
impose the boundary conditions of the continuity for the
velocity and tangential stress,

u = ul, (n · ∇)u = μ(n · ∇)ul, (9)

where ul is the velocity of an infused lubricant and

n � (0,−θ∂yη, 1) (10)

is the unit normal vector, and ∂yη = 2y/φ is an outward
normal derivative on the curved meniscus.

FIG. 2. (a) Viscous flow near a flat liquid-lubricant interface
located at z = 0. The leading-order velocities u0 and u0

l at this
boundary are equal; (b) schematic illustration of u1 and u1

l at the
lubricant-meniscus interface, z = θη.

For a small protrusion angle, θ � 1, the velocity can be
expanded about u0 and, to first order in θ :

u � U + u0 + θu1, (11)

where U = z is the velocity of an undisturbed linear shear
flow, u0 is the zero-order solution for a flat liquid-lubricant
interface [shown schematically in Fig. 2(a)], and θu1 is the
first-order correction due to a meniscus curvature. Both u0 and
u1 vanish as z → ∞, i.e., in the bulk liquid.

Let us first formulate boundary conditions, which should
be imposed to obtain the zero-order solution for a velocity
field [see Fig. 2(a)]. In this case n0 = (0, 0, 1), so the bound-
ary conditions Eq. (9) for two-phase problem can be written
as

u0 = u0
l , (12)

∂zu
0 − μ∂zu

0
l = −∂zU = −1. (13)

Note that when μ = 1, the shear rates at the liquid-lubricant
interface in both phases are equal, ∂z(U + u0) = ∂zu

0
l . This

means that the problem is fully identical to that of a
single-phase flow over grooved surface considered earlier by
Wang [37]. When μ = 0, we have ∂zu

0 = −1, i.e., the liquid-
lubricant interface is shear-free, and we recover the problem
of Philip [16].

We now formulate the boundary conditions, which have to
be applied to calculate u1. For the solid-liquid interface we
should naturally impose the condition u1 = 0. For the menis-
cus [schematically shown in Fig. 2(b)] we obtain the following
boundary conditions (see Appendix A for a derivation)

u1 = u1
l + (1/μ − 1)η(∂zu

0 + 1), (14)

∂zu
1 − μ∂zu

1
l = (1 − μ)∂y (η∂yu

0). (15)

Thus, the boundary conditions to the zero- and first-order
solutions formulated for z = 0 are similar [cf. Eqs. (12), (13)
and (14), (15)]. The only difference is the velocity jump in
Eq. (14) and the shear rates inducing flows [right-hand sides
in Eqs. (13) and (15)].

Alternatively, we can replace the two-phase approach with
a single-phase problem with spatially dependent partial slip
boundary condition, and express the lubricant shear rate in
terms of a local slip length [2],

∂zu
0
l = u0

l

φβ
. (16)
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The conditions Eqs. (12) and (13) can then be reduced to

∂zu
0 − μu0

φβ
= −1. (17)

For the first-order problem Eqs. (14) and (15) can be also
formulated in terms of the local slip length,

u1 = u1
l + (1 − μ)

ηu0

φβ
, (18)

∂zu
1 − μu1

φβ
= (1 − μ)

[
∂y (η∂yu

0) − μηu0

φ2β2

]
. (19)

Here to transform Eq. (15) to Eq. (19) we made an assumption
that the disturbances of the velocity and of the shear rate in the
lubricant are related as φβ∂zu

1
l = u1

l , similarly to Eq. (16).
Equation (19) allows us to replace again the two-phase prob-
lem by the single-phase one using the same profile of the local
slip length as for the flat interface.

We note that when μ = 0, both conditions Eqs. (15) and
(19) reduce to derived by Sbragaglia and Prosperetti [17] in
the shear-free limit,

∂zu
1 = ∂y (η∂yu

P ). (20)

We also stress that when μ = 1 the terms in the right-hand
sides of Eqs. (14) and (15), which induce the disturbance flow,
vanish, so that we get u1 = u1

l = 0. This implies that inde-
pendently on the shape of a meniscus the flow remains fully
identical to a single-phase flow over grooved surfaces [37].
This case can also be described in terms of a local slip
length [2].

III. CALCULATIONS OF EFFECTIVE SLIP LENGTHS

We calculate the dimensionless effective slip length at z =
0 as an expansion,

beff � b0
eff + θb1

eff . (21)

Here b0
eff is the zero-order solution for a flat liquid-lubricant

interface, and θb1
eff is the first-order correction due to a

meniscus curvature, which is related to the liquid velocity at
the liquid-lubricant interface as

b1
eff =

∫ φ/2

−φ/2
u1(y, 0)dy. (22)

To find u1 we construct the solution of Stokes equations in
terms of Fourier series. Since the velocity is an even function
of y, a general solution of the Laplace equation decaying at
infinity has the form

u1 = c0

2
+

∞∑
n=1

cn cos (kny) exp (−knz), (23)

with kn = 2πn.
To solve a two-phase problem we should similarly expand

the solution for a lubricant flow within grooves in Fourier
series, but with km = 2π (2m − 1)/φ:

u1
l =

∞∑
m=1

cl
m exp

(
kl
mz

)
cos

(
kl
my

)
. (24)

Since cos (kl
mφ/2) = 0 for any kl

m, the expansion Eq. (24)
enables us to satisfy the no-slip condition at the side walls
automatically. The vector of normal derivatives ∂zu

1
l (yj ) at

collocation nodes yj can be connected to the vector of ve-
locities u1

l (yj ) via the Dirichlet-to-Neumann matrix derived
in Ref. [2]. Then the coefficients cn and cl

m are found by
applying boundary conditions given by Eqs. (14) and (15).

To calculate the Fourier coefficients cn within the single-
phase approach we apply a collocation method on a uniform
grid spanning |y| < 1/2, and by satisfying boundary condi-
tions Eq. (19) pointwise. In these calculations we use

β = 0.4 − 1.29(y/φ)2 − 1.24(y/φ)4, (25)

which is obtained by fitting the local slip coefficient of deep
grooves found before [2].

For the shear-free limit, we use the analytical solution for
the liquid velocity at a flat interface found by Philip [16]

uP (y, 0) = 1

π
arcosh

[
cos (πy)

cos (πφ/2)

]
, (26)

so that

∂yu
P = − sin (πy)√

cos2 (πy) − cos2 (πφ/2)
. (27)

In this case b1
eff may be determined from [17,35]

b1
eff =

∫ φ/2

−φ/2

[1 − cos (2πy)]η

cos(2πy) − cos(πφ)
dy

= 2
∫ φ/2

0
η(∂yu

P )2dy. (28)

We should like to mention that Teo and Khoo [21] have
calculated the effective slip length for a shear-free case nu-
merically and have shown that the linearized approximation,
Eq. (21), is very accurate when |θ | � π/6. More precisely,
with these values of θ its deviation from exact numerical
results is below 5%. By this reason below we vary θ in this
interval.

IV. RESULTS AND DISCUSSION

We begin by studying velocities u1 and u1
l computed by

using two- and single-phase approaches. Figure 3 shows u1

and u1
l as a function of y/φ calculated at fixed μ = 0.2, which

is the case of a typical oil-water interface, and several φ. We
see that u1 is always positive and increases with φ. In contrast,
u1

l is negative. This result reflects the velocity jump in Eq. (14)
[see also Fig. 2(b)]. Remarkably, the curves for u1 obtained
by using the local slip length concept practically coincides
with the exact solutions of the two-phase problem as seen in
Fig. 3(a), but note that there is some small discrepancy in u1

l

obtained with these two approaches [see Fig. 3(b)]. However,
these results generally suggest that the weakly curved liquid-
lubricant interface can be successfully modeled as a pattern of
a local slip boundary condition imposed at z = 0.

We now fix φ = 0.5 and explore how the viscosity contrast
influences u1. Figure 4 presents the results obtained with sev-
eral typical viscosity contrasts, varying from μ = 0 to μ = 1.
We conclude that at a very small viscosity contrast, μ = 0.02,
which is the situation of a water-air interface, u1 is very close
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-0.5 -0.4 -0.3 -0.2 -0.1 0
y/

0

0.1

0.2
u1

(a)

-0.5 -0.4 -0.3 -0.2 -0.1 0
y/

-0.05

0

u1 l

(b)

FIG. 3. Velocities, u1 (a) and u1
l (b), vs. y/φ computed within

the two-phase approach at fixed μ = 0.2 and φ = 0.5 (circles), 0.75
(triangles), 0.9 (diamonds). Solid curves plot the results obtained
within the single-phase model.

to that for μ = 0, where it is largest. This correction decreases
with μ and vanishes when μ = 1. We note, that near the edge
of the grooves u1 becomes negative, which implies that in this
region θu1 is negative for a convex meniscus and positive for a
concave one. However, since u1 is positive for a major portion
of the liquid-lubricant interface, it is obvious that b1

eff given
by Eq. (22) should always be positive. Therefore, positive θ

do lead to a positive first-order correction to b0
eff , i.e., enhance

the effective slip, but negative θ could only reduce its value.
Since velocity u1 calculated at the water-air interface (see

Fig. 4) is very close to that found in a shear-free case, μ = 0,
it is instructive to compare the velocity profiles obtained for
these two cases in more detail. Velocity u1 takes its maximum
at y = 0, and for the case of μ = 0 and θ = 0 its value can be
easily obtained from Eq. (26),

uP
max = uP (0, 0) = 1

π
arcosh

[
sec

(
πφ

2

)]
. (29)

We now compute u0, u1, and u for several φ and normalize
them by uP

max. The results are presented in Fig. 5. We remark
and stress that u0/uP

max obtained for chosen values of φ nearly
coincide, and in fact they are well described by the elliptic
velocity profile derived by Philip [16] for small φ. We return

-0.5 -0.4 -0.3 -0.2 -0.1 0
y/

0

0.05

0.1

u1

FIG. 4. Velocity u1 calculated at φ = 0.5. Circles show results
for μ = 0. Solid, dashed, dash-dotted, and dotted curves plot results
for μ = 0.02, 0.2, 0.5, and 1.

-0.5 -0.4 -0.3 -0.2 -0.1 0
y/

0

0.5

1

u/
u m

ax
p

(b)

-0.5 -0.4 -0.3 -0.2 -0.1 0
y/

-0.1
0

0.25

0.5

u1
/u

m
ax

p

(a)

FIG. 5. (a) Normalized velocities, u1/uP
max, calculated for μ =

0.02. Solid curves from top to bottom plot results for φ = 0.9, 0.75
and 0.5. (b) Corresponding normalized velocities, u/uP

max, computed
with θ = π/6. Symbols show u0/uP

max.

to the importance of this finding later, by discussing the
effective slip length. The normalized velocity, u1/uP

max, grows
with φ, and we also observe that the region of a negative
u1/uP

max decreases with φ. Also included are liquid velocity
profiles u = u0 + θu1 calculated for θ = π/6. We conclude
that they weakly depend on φ and that the effect of θ on
u is well pronounced. In this example, which corresponds
to a convex meniscus, velocities u are well above u0. For a
concave meniscus, they, of course, become smaller than u0.

In Fig. 6(a) we plot the ratio b1
eff/b

0
eff as function of φ.

It is seen that for all μ this ratio increases with φ. In other

0.25 0.5 0.75 1
0

0.25

0.5

b
1 ef

f/b
0 ef

f

(a)

0 0.25 0.5 0.75 1
0

0.25

0.5

b
ef

f
1

/b
ef

f
0

(b)

FIG. 6. (a) The ratio b1
eff/b

0
eff as a function of φ. Solid, dashed,

dash-dotted, and dotted curves correspond to μ = 0, 0.02, 0.2, and
0.5. Symbols show calculations from Eq. (28). (b) The same, but
as a function of μ. Solid, dashed, dash-dotted curves correspond to
φ = 0.9, 0.75, and 0.5.
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0.25 0.5 0.75 1
0
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1

1.5
b

ef
f

(a)

0 0.25 0.5 0.75 1
0

0.25
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0.75

1

b
ef

f

(b)

- /6 - /12 0 /12 /6
0

0.25

0.5

b
ef

f

(c)

FIG. 7. (a) Effective slip length vs. lubricant fraction φ. Calcu-
lations are made for θ = π/6. Solid, dashed, dashed-dotted curves
correspond to μ = 0, 0.02, and 0.2. Symbols show bP

eff given by
Eq. (1). (b) The same as a function of μ. From top to bottom φ = 0.9,
0.75, and 0.5. Solid and dashed curves plot results obtained for
θ = π/6 and 0. Symbols denote bBV

eff calculated from Eq. (2) using
bc = 0.323φ/μ. (c) The same as a function of θ calculated with
μ = 0.2. From top to bottom φ = 0.9, 0.75, and 0.5.

words, the role of meniscus curvature is more pronounced at
larger lubricant area. When μ = 0, results of our calculations
coincide with obtained from Eq. (28), confirming the validity
of our approach. In Appendix B by using the fact that profiles
of u0 are elliptic for all realistic values of φ [Fig. 5(b)]
we derive a simple analytical formula, Eq. (B4), describing
accurately b1

eff in this case up to φ � 0.9. Equation (B4), in
particular, predicts that b1

eff/b
P
eff � 2/3π at relatively small φ,

which is confirmed in Fig. 6(a). At a small viscosity contrast
b1

eff/b
0
eff grows relative to the case of μ = 0 except the case

1 − φ � 1. On increasing μ further b1
eff/b

0
eff decreases and

for all φ becomes smaller than expected at μ = 0. To examine
this effect in more detail in Fig. 6(b) we plot b1

eff/b
0
eff as a

function of μ. We see that all curves have their maxima at
relatively small μ. If we reduce φ, the maximum at b1

eff/b
0
eff is

less pronounced and shifted towards larger μ. When μ � 0.5,
b1

eff/b
0
eff decays linearly with 1 − μ and the slope of these

lines slightly depends on φ. At μ = 1 all curves vanish, which
implies that the first-order correction to the zero-order effec-
tive slip length disappears, so that in this limit the meniscus
does not affect the flow compared to the case of θ = 0.

Finally, we calculate the effective slip length, beff , and
the results are illustrated in Fig. 7. Fig. 7(a) shows beff as

a function of φ. The results are obtained at fixed θ = π/6
and several μ. The effective slip length, bP

eff calculated from
Eq. (1) is also shown. For typical SH surfaces with small
curvature of a convex meniscus, μ = 0 and 0.02, the effective
slip length is seen to be slightly larger than bP

eff . However,
when μ = 0.2 it is much smaller compared to bP

eff . Note that
in all cases beff strongly increases with φ. It also signifi-
cantly (monotonically) decreases with μ, as it can be seen
in Fig. 7(b), where beff calculated with θ = 0 and θ = π/6
are plotted as a function of viscosity contrast for several fixed
φ. This plot also demonstrates that the effect of θ on beff

is largest when μ = 0 and lubricant area, φ, is large, but it
reduces strongly with μ and with a decrease in φ. It is well
seen that it is getting extremely small when μ is above 0.5, and
it fully disappears at μ = 1. We also stress that the first-order
correction to b0

eff does not seem to be significant enough to
be taken into account at any μ when φ = 0.5 (and, naturally,
smaller). This implies that in many practical situations one can
use Eq. (2) to very accurately predict beff of lubricant-infused
surfaces. Indeed, theoretical curves calculated from Eq. (2)
using bc = 0.323φ/μ [2] are also included in Fig. 7(b), and
we see that they are in a very good agreement with beff

obtained with θ = π/6 in a very large range of parameters.
Finally, to examine the significance of θ more closely, in
Fig. 7(c) we plot beff against θ . The calculations are made
using μ = 0.2 and several area fractions of lubricant. We see
that the effective slip is linear in θ , which is, of course, a
consequence of our first-order perturbation theory. It is also
seen that the value of beff and a slope of these lines decrease
with φ, as could be expected from above results. This plot also
confirms that the effect of θ on the effective slip length is very
little compared to that of φ and μ.

V. CONCLUDING REMARKS

By means of a perturbation theory we have calculated
the (normalized by L) effective longitudinal slip length, beff ,
of a lubricant-infused surface, assuming that the meniscus
protrusion angle, θ , is small and that the viscosity of a
lubricant is smaller or equal to that of liquid. Our the-
ory provides considerable insight into slippage generated at
lubricant-infused surfaces depending on the area fraction of
lubricant, φ, viscosity contrast, μ, and protrusion angle, θ .
We have shown that the value of beff depends strongly on
the viscosity contrast of two phases. In the limit of vanishing
lubricant viscosity, μ = 0, we recover results by Sbragaglia
and Prosperetti [17]. In this case, where the correction to the
effective slip length of a flat interface, θb1

eff , is largest, we have
proposed a simple analytical formula, Eq. (B4), describing it
accurately in a very large range of φ, which probably includes
its all experimentally relevant values. In the opposite case
of equal viscosities of liquid and lubricant, μ = 1, we have
shown that finite θ does not influence the solution obtained by
Wang [37] for filled with liquid grooves. Our work clarifies
that in a very large range of μ and φ, the correction θb1

eff
can be neglected, and beff can be accurately calculated from
Eq. (2) by Belyaev and Vinogradova [28] with a (scaled with
L) local slip length at the lubricant area determined solely by
φ and μ.

033103-6



ENHANCED SLIP PROPERTIES OF LUBRICANT-INFUSED … PHYSICAL REVIEW E 98, 033103 (2018)

Our strategy can be extended to calculations of effective
slip lengths for a liquid flow transverse to lubricant-infused
stripes. Davis and Lauga [38] have found the transverse effec-
tive slip length of the SH surface in the limit of φ � 1 without
restriction on the protrusion angle, θ . Recent work [39] has
concluded that leading order corrections to transverse and
longitudinal effective slip lengths of SH grooves with θ � 1
are identical. We are unaware of any previous theoretical work
that has attempted to calculate transverse beff for grooves with
weakly protruding menisci and finite μ, and the extension of
our approach to this case would appear to be very timely.

Finally, we mention that our approach can be applied to
compute slip lengths of grooves filled by a lubricant of higher
viscosity than that of a liquid. Such LI surfaces can also
reduce viscous drag [3,4], but only slightly, since a viscous
dissipation in a lubricant becomes significant. By combining
perturbation approach with the reciprocity ideas Crowdy [35]
(see his supplementary material) calculated beff in the limit
μ 	 1. It seems to be appropriate to calculate beff in a whole
range of μ � 1 by means of an approach used here.
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APPENDIX A: BOUNDARY CONDITIONS
AT THE LUBRICANT-LIQUID INTERFACE

Here we transform conditions of continuity of velocity
and shear stress at the lubricant-liquid interface, Eq. (9),
to conditions imposed at z = 0, where the effective slip is
defined.

For small meniscus curvature the zero-order liquid velocity
at z = θη can be expanded about U + u0, and to first order
in θ ,

(U + u0)|z=θη � U + u0 + θη∂z(U + u0)|z=0

= u0 + θη(1 + ∂zu
0)|z=0. (A1)

If we extrapolate the zero-order lubricant velocity to z = θη,
an expansion about u0

l gives

u0
l

∣∣
z=θη

� (
u0

l + θη∂zu
0
l

)∣∣
z=0. (A2)

The first-order velocities can be expanded as

θu1|z=θη � θu1|z=0, θu1
l |z=θη � θu1

l

∣∣
z=0. (A3)

Since the velocities of liquid and lubricant at z = θη are equal,
from Eqs. (11) and (12) it follows that at z = 0,

u1 + η(1 + ∂zu
0) � u1

l + η∂zu
0
l . (A4)

Using Eq. (13), this equation can be reduced to Eq. (14).
Similarly, we construct expansions for shear stresses and,

using Eqs. (A1)–(A3), derive

(n · ∇)u|z=θη � 1 + ∂zu
0 + θ

(
η∂2

zzu
0 − ∂yη∂yu

0 + ∂zu
1)∣∣

z=0,

(A5)

(n · ∇)ul|z=θη � ∂zu
0
l +θ

(
η∂2

zzu
0
l − ∂yη∂yu

0
l + ∂zu

1
l

)∣∣
z=0.

(A6)

Since ∂2
zzu

0 = −∂2
yyu

0 and ∂2
zzu

0
l = −∂2

yyu
0
l , and using

Eq. (13), we obtain the condition for a tangential stress given
by Eq. (15).

APPENDIX B: APPROXIMATE FORMULAS
FOR b1

eff AT μ = 0

In this Appendix, we derive a simple formula for b1
eff and

discuss its asymptotics. It has earlier been shown that when
φ � 1, the velocity profile, Eq. (26), is close to elliptic [16]:

uP (y, 0) � uP
max

(
1 − 4y2

φ2

)1/2

, (B1)

∂yu
P (y, 0) � −4uP

maxy

φ2

(
1 − 4y2

φ2

)−1/2

, (B2)

where uP
max is given by Eq. (29). However, our calculations

[see symbols in Fig. 5(b)] suggest that this conclusion remains
valid for much larger φ. We can then calculate the first-order
correction to the slip length given by Eq. (28) as

b1
eff � 8

(
uP

max

)2

φ3

∫ φ/2

0
y2dy =

(
uP

max

)2

3
. (B3)

Therefore,

b1
eff � arcosh2

[
sec

(
πφ

2

)]
3π2

. (B4)

Figure 8 includes predictions of Eq. (28) along with a
theoretical curve calculated from Eq. (B4). The ratio b1

eff/b
P
eff

is also plotted. We note that the fit is extremely good for φ �
0.9, but there is a discrepancy at larger φ. We see that when
solid fraction is getting very small, Eq. (B4) overestimates

0 0.2 0.4 0.6 0.8 1
0

0.25

0.5

b ef
f

1

(a)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

b ef
f

1
/b

ef
f

p

(b)

FIG. 8. (a) The first-order slip length, b1
eff , for the case of μ = 0

plotted against φ. Solid curve is calculated from Eq. (B4), sym-
bols show b1

eff given by Eq. (28). (b) The same b1
eff , normalized

by bP
eff .
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b1
eff . Indeed, in the limit 1 − φ → 0, Eq. (B4) reduces to

b1
eff � 2

3π2
ln2 (1 − φ), (B5)

and b1
eff/b

P
eff ∝ − ln (1 − φ), i.e., diverges logarithmically. We

recall that Sbragaglia and Prosperetti [17] predicted b1
eff ∝

− ln (1 − φ), which implies that b1
eff/b

P
eff is always finite. We

can, therefore, conclude that Eq. (B4) cannot be employed
at a very large φ, and this, of course, indicates that velocity
profiles are no longer elliptic.

We finally note that when φ → 0, Eq. (B4) reduces to

b1
eff � φ2

12
, (B6)

and b1
eff/b

P
eff � 2/3π (1 + π2φ2/24). These formulas, ob-

tained in the low φ limit, are surprisingly accurate up to
φ � 0.5, i.e., have validity well beyond the range of their
formal applicability.
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