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Structure and fragility in a macroscopic model of a glass-forming liquid based on
a nonvibrating granular system
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We studied glass transition in a nonvibrating granular system composed of magnetic steel beads under an
unsteady magnetic field. In this model system, particle concentration and effective temperature can be changed
independently. We analyzed several particle concentration cases. As concentration increases, the system goes
from a fragile to a strong glass-forming liquid behavior and the regularity factor increases showing that the
system becomes more regular. As the effective potential shows deeper wells, the fragility index decreases, and
the regularity factor increases.
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I. INTRODUCTION

When a glass-forming liquid is quickly cooled, it un-
dergoes a glass transition. In the glassy state, the system
is out of thermodynamic equilibrium and particles exhibit
a slowed-down dynamic. Thus far, a direct study of the
dynamics and structural characteristics of this transition has
not been possible since we cannot currently track molecular
particles. Consequently, macroscopic models such as colloidal
and granular systems are being used to obtain information
about the detailed particle behavior occurring inside the glass-
forming liquid as it approaches the glassy state [1–9]. In these
systems, the inverse of the particle concentration plays the
role of the effective temperature. The interactions between
particles are mainly due to hard sphere interactions and the
structural configurations change resulting from various parti-
cle concentration. In these systems, the particles only interact
when they are close enough to collide, reaching states near
jamming [5,6].

In some experiments, using vibrating granular systems to
model glass transition, a fragile glass-forming liquid behavior
has been found [7,8]. Additionally, in Ref. [10] we have found
that a nonvibrating granular system could behave as a strong
glass-forming liquid. In this model system, the inter-particle
interactions can be modulated by an active control, thus the
interparticle interactions are strong enough to interact at long
distances. From these previous findings, we infer that the
length and strength of the particle interaction in granular
models for a glass-forming liquid, determine its fragility.
Therefore, changing particle concentration or interparticle
interactions it could be possible to modify fragility in these
model systems.

In this work, we studied the dynamical and structural
properties of a nonvibrating granular system in series of exper-
iments where it is suddenly quenched; it goes from a gaslike
state to a lower temperature state that could be a fluid state or
a solid state. We determined the glass transition temperature
and studied the behavior of the effective viscosity near glass

transition. We determined the fragility of the system for each
one of several different particle concentration cases. Further-
more, we studied the structural properties of the system by
means of the regularity factor obtained from Voronoi polygon
area distributions. The regularity factor, which is a parameter
in a two-parameter γ distribution, shows differences in struc-
tures belonging to a gas, liquid, glass, crystal, or gel such as
those that have been shown in Refs. [11–17].

II. EXPERIMENTAL SETUP

The system is composed of stainless steel particles con-
fined within a circular plate measuring 72 mm in diameter.
The particle concentration is given by the surface fraction
occupied by the particles, φs = πNσ 2

4A
, where N is the average

number of particles within the field of view of area A, and σ is
the particle diameter. The system is located horizontally in the
middle of a pair of Helmholtz coils of 150 mm in diameter,
which produce a homogeneous magnetic field perpendicular
to the container. Figure 1 shows the experimental setup used
in the experiments. Previously to the experiments, particles
were subjected to the magnetic field for 1 h to assure that
during the experiments no further changes in the behavior
of the particles in the system were observed. The applied
magnetic field is a superposition of a constant component and
a sinusoidal component given by

B = Bc + Bo sin(2πf t ), (1)

where Bc is a static magnetic field fixed at 75 G, Bo and f are,
respectively, the amplitude and frequency of the unsteady part
of the magnetic field. Bo takes values from 0 G to 66 G, and
f is kept at 9.25 Hz. The steady component of the magnetic
field prevents particles from forming chains and crystals as
particles did in Refs. [18,19]. Trajectories of the particles were
obtained using ImageJ and its plugin Mosaic [20], and from
these, the mean square displacement, W , was determined. We
also used ImageJ to obtain the radial distribution function g(r )
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FIG. 1. Scheme of the experimental setup.

and the effective potential UE (r ), we used image stacks to
obtain average values.

The mechanism for the energy input and the randomizing
of particle motion is described elsewhere [10,21–23] and it
differs from the mechanism observed in vibrating systems
[7,24]. In brief, when a vertical sinusoidal magnetic field is
turned on, a particle tends to align with the magnetic field
to reach a minimum potential magnetic energy. When the
field decreases, the energy also decreases and eventually, the
field points in the opposite direction. In this new condition,
the magnetic energy is at a maximum and its absolute values
increases, therefore the particle rolls to align again with the
magnetic field. Since a sphere has a neutral equilibrium, when
it is on a horizontal plane, the rolling direction is random,
leading to very complex dynamics. Eventually, the particle
meets the initial condition again aligning with the magnetic
field, and then it rolls again in a new unpredictable direction.
For high frequencies (greater than 30 Hz), there is no motion
in most of the particles because of rotational inertia; and for
low frequencies, the motion is not continuous. While rolling,
magnetic energy is transformed into kinetic energy of the
beads, at the same time, part of this energy is lost by friction
with the container and through collisions with other particles.
Although energy is quickly lost, it is compensated by the
energy provided by the unsteady magnetic field, preventing
particle motions from stopping. The system is not in ther-
modynamic equilibrium, however, it does reach a stationary
state. In this condition, particle behavior can be described
by the Ornstein-Uhlenbeck stochastic model, that is, particles
behave as Brownian particles [21]. The effective temperature
is controlled by the intensity of the unsteady part of the
magnetic field Bo [10,21–23]. Hereafter, Bo is referred to as
the effective temperature.

III. FRAGILITY

We carried out quenching experiments from the same
initial effective temperature Bo to a final state with lower
temperature. Figure 2 shows the behavior of the W obtained
for a particle concentration φs = 0.0591, in a time window of
1.66 s immediately after the system was quenched. Each curve
corresponds to a different final temperature. As expected, as

FIG. 2. Mean squared displacement immediately after the sys-
tem was quenched (φs = 0.0591). Each curve corresponds to a
different final temperature. Note the linear behavior of the curves
corresponding to high temperatures. At low temperatures, the emer-
gence of a plateau indicates an arrested behavior in the system.

the temperature decreases, W decreases. In each curve it is
observed that at the beginning, the particles show a ballistic
behavior, i.e., the dependence of W with time is quadratic,
then, it becomes linear, showing that particle motion is diffu-
sive. According to the Einstein relation, in the diffusive regime
in a two-dimensional (2D) system, W = 4Dt , where D is the
diffusion coefficient.

Figure 3 shows the diffusion coefficient as a function of the
effective temperature for different particle concentrations. It
can be observed that as the temperature increases, D remains
low until the temperature is higher than a threshold value,
then the D values grow quickly as the temperature increases;
thus, there are two temperature regimes, low and high. We
determine linear fitting curves for the D values in both the
high and low temperature regimes for each curve (not shown
in the figure), and we identified its intersection as the glass
transition temperature Bog .

According to the Stokes-Einstein equation, in a fluid, the
effective viscosity is proportional to TE/D. In our granular
system TE is proportional to Bo. In Fig. 4, we plot log (Bo/D)
as a function of Bog/Bo for several particle concentrations,
where Bog is the magnetic field when the glass transition

FIG. 3. Diffusion coefficient as a function of the temperature, for
some particle concentrations.
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FIG. 4. log(Bo/D) as a function of Bog/Bo exhibits the same
behavior to that of classical Angell plots for glass-forming liquids
of different fragilities: for high concentrations the system behaves as
strong glass-forming liquid, while at low concentrations it behaves
like fragile glass-forming liquid.

occurs. We only show the data near the glass transition, the
straight lines are linear fittings. These fittings show how fast
the slowing down of the dynamics as a function of the effec-
tive temperature is when it approaches to Bog . We determined
the fragility index by using the definition

m ≡ d[log (Bo/D)]

d(Bog/Bo)

∣∣∣∣
Bo=Bog

. (2)

According to Eq. (2), the slope of linear fittings corresponds
to the fragility index values. We observed that the fragility of
the system depends on particle concentration. Figure 5 depicts
the fragility index for different particle concentrations. As it
is observed, the fragility index is inversely proportional to
particle concentration: the system goes from a fragile to a
strong glass-forming liquid behavior with increasing particle
concentration. For high particle concentrations, the inverse
of the temperature increases at the same rate as log(Bo/D)
far from the glass transition, which is characteristic of strong
glass-forming liquids, an Arrhenius behavior. The Arrhenius
behavior in this case is due to strong interactions because of
the closeness between particles and the repulsive interactions

FIG. 5. Fragility index, m, is inversely proportional to particle
concentration.

FIG. 6. Snapshots of the system for several particle concentra-
tions and their corresponding Voronoi polygons. The snapshots were
taken after the quench.

among them. In samples with low particle concentration, as
the inverse of the temperature increases, log(Bo/D) increases
slowly at first, and then, there is a sudden increase as the in-
verse of the temperature is approaching to the glass transition.
This behavior is typical of fragile glass-forming liquids, where
particles are less correlated with their neighbors. From this,
we conclude that the dynamics of the system is affected by
the length of spatial correlations. The structural characteristics
must be reflected by the degree of order in the configurations.

IV. REGULARITY FACTOR

We are using Voronoi polygon area distributions to char-
acterize the structural arrangement of particles in our sys-
tem and its dependence on the effective temperature and
particle concentration. Figure 6 shows snapshots of samples
with different particle concentration and their corresponding
Voronoi polygons. For low particle concentrations, there are
few polygons and the area distribution is wide. For samples
with high particle concentration, the distribution is narrow
because large polygons are restricted due to the closeness of
the particles. Voronoi polygon areas � were measured in a
sequence of 1000 frames for each particle concentration. We
obtain the Voronoi free area distributions normalized with the
area of the Voronoi polygon corresponding to the close pack-
ing hexagonal lattice �hex. The Voronoi free area is defined as
� − �hex. We defined the normalized free area as X. Figure 7
shows a comparison between the normalized Voronoi polygon
area distributions for two particle concentration, φs = 0.0591
and φs = 0.0118. We have excluded Voronoi polygons on the
edge of the observation area to avoid edge effects. As one
can see here, for low particle concentration, the Voronoi free
area distribution spans over a wider range of values. On the
other hand, for the higher particle concentration, the polygons
are smaller and the distribution becomes narrower, exhibiting
a well-defined main peak. The position of the main peak
shifts toward lower values as particle concentration increases,
approaching the position of zero (the hexagonal lattice) but
still having a non-vanishing width, i.e., the system approaches
to more ordered structure as particle concentration increases.
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FIG. 7. Voronoi area distributions for the highest φs = 0.0591
(black spheres), and the lowest particle concentration φs = 0.0118
(blue spheres), both at high temperature. Solid lines are fits to two-
parameter γ distributions.

In Refs. [25–28] have been shown that the distribution
of the individual Voronoi free area in related systems can
be well fitted by two and three-parameter γ distributions. A
two-parameter γ distribution is given by

f (X) = (β−α/�(α))Xα−1 exp(−X/β ), (3)

where α and β are constants, α is called the regularity factor.
The regularity factor has been used as a measure of the struc-
tural order. It is a measure of how the distributions spread,
where a sharper distribution indicates a more regular structure.
This parameter, as a function of the effective temperature
shows significant changes when the system freezes. Figure 8
shows the regularity factor as a function of the inverse of the
effective temperature for different particle concentration. It
can be observed that as the effective temperature decreases,
the regularity factor increases. Around a threshold value,
the curve stops increasing and the values start decreasing.
Thus, this threshold can be used to determine the tempera-
ture where important structural changes appear. For higher
particle concentrations, the transition is very clear and sharp.
As particle concentration decreases, the transition becomes
diffuse, but it is clear that a change occurs. Figure 9 shows

FIG. 8. Regularity factor as a function of the inverse of the
temperature.

FIG. 9. The maximum of the regularity factor, αmax, as a function
particle concentration.

the maximum peak αmax of each curve of the regularity factor
for the different particle concentrations.

V. ANALYSIS

From Figs. 5 and 9 which show the behavior of fragility
index and the maximum of the regularity factor as functions
of the particle concentration, we obtained Fig. 10. This figure
shows an important relation between fragility index and the
regularity factor and it constitutes the main result of this work.
A strong glass forming system is more ordered than a fragile
glass forming system.

Now we proceed to calculate the effective potential to
discuss our result in terms of spatial correlations. First, we
determined the radial distribution function for several temper-
atures at each particle concentration. Then, from these curves
we obtain the effective potential. The procedure to obtain the
effective potential is described elsewhere [10,23]. In brief,
the procedure is as follows. It starts with the use of the two
dimensional version of the Ornstein-Zernike equation [29]

h(r12) = c(r12) + ρ

∫
d2r2 c(r13)h(r32), (4)

FIG. 10. Fragility index as a function of the maximum of the
regularity factor for the cases we analyzed.
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FIG. 11. (a) Radial distribution function for the highest φs =
0.0591 and (b) the lowest particle concentration φs = 0.0118, for
different temperatures.

where ρ = N/A is the average number of particles in the
field of view. In Eq. (4), h(r ) = g(r ) − 1 is the correlation
function and c(r ) is the direct correlation function. By taking
the Fourier transform of Eq. (4), we obtain an algebraic
expression for ĉ(k) in terms of ĥ(k),

ĉ(k) = ĥ(k)

1 − ρĥ(k)
. (5)

Using the experimental values of h(r ), we can obtain ĥ(k)
and then by using Eq. (5) we can obtain ĉ(k). Now, ĉ(k) is
transformed back to the real space to get the direct correlation
function c(r ). The hypernetted chain, among other closure
relations, establishes an approximate relationship between
c(r ) and the effective potential UE (r ), that is [30],

h(r ) − c(r ) = ln g(r ) + UE (r )/TE. (6)

This can be solved for UE (r )/TE . TE is the effective tem-
perature expressed in energy units, as we stated previously,
this is proportional to Bo. For the purpose of the qualitative
discussion of our result in terms of the effective potential, it is
enough to plot UE (r )/TE .

Figure 11 shows g(r/σ ) curves at different temperatures
for a high particle concentration, φs = 0.0591 [Fig. 11(a)],
and a low particle concentration, φs = 0.0118 [Fig. 11(b)]. In
the high particle concentration, as the temperature decreases,
the g(r ) curves evolves from a gas state where a depletion
zone is observed because of particle repulsive interactions, to
a liquid state due to local tendency toward ordered particle
configurations. In the case of low particle concentration, the

FIG. 12. Effective potential for the highest (a) and the lowest
concentration (b).

radial distribution shows a diffuse local order that almost does
not change as temperature goes down. Figure 12(a) shows
the respective effective potential curves for the larger particle
concentration case. The appearance and evolution of a well
that is responsible of the local order as temperature goes down
can be observed. This well becomes deeper and sharper as
the temperature goes down and at the same time others wells
appear and evolve in a similar way. This means that the range
of interaction is larger as the temperature goes down. By
contrast, in Fig. 12(b), for the low particle concentration case,
it can be observed that the effective potential also shows a
short distance of interaction and that the wells are diffuse. In
this case, the range of interaction remains relatively short and
cannot drive the system to more ordered configurations.

VI. COMMENTS AND REMARKS

In this work, we found that our magnetically agitated
2D particle system goes from a fragile to a strong glass-
forming liquid behavior as particle concentration increases.
We observe that fragile glass-forming behavior is associated
with lower local order compared with a strong glass-forming
behavior where the local order is more notable. Thus, fragility
and local order depends upon particle concentration and
in turn this controls the length and intensity of the effec-
tive interaction. As the length of interaction lengthens and
strengthens, the fragility decreases leading the system to a
strong glass-forming liquid behavior and to a more ordered
configuration. This result is accord with recent results based
on the study of hyperuniformity which claims that strong
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glass-forming liquid presents a more hyperuniformity than a
fragile glass-forming liquid [31], if we consider the unifor-
mity represents more order in the system. In Ref. [9] is studied
a system based on a soft colloidal system, the main results
basically are that soft colloids make strong glass-forming
systems and hard spheres make fragile glass-forming systems,
and that the elasticity of the system is directly related with
the fragility. When using soft colloids, because the particles
are deformable to reach a glass transition it is needed a
higher particle concentration than using hard particles. That
is, higher particle concentrations make strong glass-forming

systems according to our results. Finally, this system could
also be used to carry out experiments modifying the in-
tensity of the interaction through the magnetic interaction
intensity.
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