
PHYSICAL REVIEW E 98, 032803 (2018)

Stability and nonlinear evolution of electrolyte films on substrates with spatially
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The stability of a thin electrolyte film on a substrate characterized by a spatially periodic electrical charge
density is considered. Using the Debye-Hückel approximation to model the electrostatic potential and the
lubrication-type framework for the viscous flow description, we derive a strongly nonlinear evolution equation
for the film thickness. Linear stability analysis is carried out using a combination of numerical techniques
for finding the eigenvalues of the discretized stability problem, asymptotic methods valid for small charge
density variation, and Floquet theory. Substrate charge nonuniformity can have either stabilizing or destabilizing
effect. For the important practical case of a liquid film with boundary charge densities of opposite signs and
thickness comparable to the Debye length, transition from stabilizing to destabilizing influence is observed as the
patterning wavelength is decreased. A simple analytical estimate of the condition for such transition is provided.
Weakly nonlinear regime is studied using analytical techniques. Numerical simulations of the strongly nonlinear
evolution of the film are conducted, with emphasis on competition between patterns induced by substrate charge
nonuniformity and by the intrinsic nonlinearity present even for uniformly charged substrate.
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I. INTRODUCTION

The rupture of thin liquid films on solid surfaces is im-
portant to numerous current and emerging engineering ap-
plications. In microfluidics, the efficient transport of drops,
bubbles, or biological cells through microchannels is essential
for proper operation of many microscale devices [1,2]. In
order for high transport rates to be achieved and maintained,
the drop, bubble, or cell must remain separated from the wall
by a liquid film; this cannot be achieved if there is an occur-
rence of film rupture. For cooling of electronic devices [3,4]
and thermal management systems for outer space applications
[5,6] avoiding film rupture is essential for the prevention of
extreme change of heat flux due to the appearence of dry
patches on hot surfaces.

Viscous flows in thin liquid layers have been investigated
by numerous authors and in various frameworks following the
foundational work of Reynolds [7] on the theory of lubrica-
tion. Thorough reviews by Oron et al. [8] and Craster and
Matar [9] discuss thin liquid films that have been exposed to
various mechanical, thermal, or structural factors. Under such
circumstances, phenomena such as thermocapillary spread-
ing, fingering instabilities, and dry spot formation can occur.
The conditions of rupture are considered to be well understood
for a film bounded by a deformable fluid interface and a
homogenous flat solid substrate. Ruckenstein and Jain [10]
established the linear stability criteria for such films under the
action of London–van der Waals dispersion forces. Williams
and Davis [11] and Burelbach et al. [12] considered the non-
linear evolution of such thin liquid films and found that system
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nonlinearities speed up the development of the instability
driven by London–van der Waals forces. Similarity solutions
near the point of rupture under the action of London–van der
Waals forces were found by Zhang and Lister [13], who also
conducted simulations of the nonlinear evolution of the film
thickness showing that instability leads to film rupture in a
finite amount of time.

While previous studies focused on film rupture driven by
London–van der Waals forces, another mechanism to consider
is rupture due to electrostatic effects. These effects, which
have been encountered experimentally [14], show readily
since many liquids contain ions and electrical double layers
can form near charged interfaces as shown in Graciaa et al.
[15] and Li and Somasundaran [16]. In a recent study, Ketelaar
and Ajaev [17] consider the stability of a thin electrolyte film
on a uniformly charged solid substrate within the framework
of the Debye-Hückel approximation for electrostatic potential.
The effects of charge regulation parameters at interfaces and
electrolyte properties are used to formulate stability criteria.
It is shown that there is a critical film thickness related to
the Debye screening length at which the film ruptures and
this critical film thickness depends on the charge regulation
conditions at the interfaces.

The stability of liquid films on patterned or structured
solid surfaces has been an active area of research for sev-
eral decades [18]. A patterned surface is a flat surface with
periodic variation in chemical properties, such as alternating
squares or stripes. A structured surface is characterized by
periodic variations in topography, such as periodic arrays of
parallel grooves or arrays of pillars. Unstable films on chem-
ically patterned surfaces were studied extensively [19–23]
in the context of fabrication processes based on dewetting of
heterogeneous surface, e.g., when polymer films break up and

2470-0045/2018/98(3)/032803(10) 032803-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.032803&domain=pdf&date_stamp=2018-09-25
https://doi.org/10.1103/PhysRevE.98.032803


MAHNPRIT S. JUTLEY AND VLADIMIR S. AJAEV PHYSICAL REVIEW E 98, 032803 (2018)

form a regular pattern on a silicon surface with an array of
metal stripes [24]. The regularity of the pattern obtained by
this method depends on the relative magnitude of the instrinsic
wavelength of the instability and the scale of the substrate
heterogeneity.

Structured surfaces have been discussed in the context of
drag reduction in various microfluidic devices [25], with the
main focus on the so-called Cassie-Baxter state corresponding
to the case when gas is trapped inside the structure, e.g.,
in the grooves or in spaces between the pillars. As with
nonstructured walls, efficient transport of drops and bubbles in
channels with structured walls is only possible if they remain
separated from the walls by a liquid film. Stability of such
film was investigated by Ajaev et al. [26] under conditions
when the cause of film rupture is the action of London–van
der Waals disjoining pressure. The stabilizing role of surface
tension leads to a characteristic instability wavelength which
can differ significantly from the wavelength of the structure.

While there is a significant amount of work on film break-
up on patterned and structured surfaces, the situation when
film break-up is driven by electrostatic forces and the substrate
charge is nonhomogeneous received very little attention, de-
spite its importance for applications. For example, in biologi-
cal systems, the boundary condition of uniform charge density
is almost never realized [27]. The objective of the present
study is to investigate the effect of boundary charge nonunifor-
mity in the context of a simple configuration of a liquid layer
on a charged substrate. We note that the main challenges here
stem from the fact that the base state for the corresponding
stability problem is not homogeneous. In the present study, we
address this challenge though a combination of numerical and
analytical approaches, resulting in comprehensive analysis of
the stability conditions.

We consider a model with fixed spatially periodic substrate
charge density. Both types of substrates discussed above,
patterned and structured, are relevant under the scope of spa-
tially periodic charge density. Since materials with different
chemical properties often have inherently different charge
densities, a patterned surface can be represented by a substrate
with spatially periodic charge density. Also, our study leads to
a way of representing a structured surface in the Cassie-Baxter
state, and that is to consider a thin electrolyte film in which
the charge density of the menisci of the gas-filled grooves
differs from that of the solid surface. While we expect our
approach to have a wide range of applications, it is also
important to recognize its limitations. They mostly stem from
the fact that we focus on the instabilities which are driven by
electrostatic effects and consider other factors, such as surface
roughness and chemical heterogeneity not related to charge
variation, to be secondary. These factors are neglected in our
formulation.

The paper is organized as follows. In Sec. II, the model is
presented and formulated nondimensionally and an evolution
equation for film thickness is discussed, valid when the liquid
layer thickness is much smaller than the relevant horizontal
length scales. Section III begins with a review of the linear sta-
bility results for the special case of spatially uniform substrate
charge density. The case of spatially periodic substrate charge
density is then tackled in Secs. III and IV using a combination
of asymptotic expansions, Floquet theory, weakly nonlinear
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FIG. 1. Sketch of the electrolyte film on substrate with periodic
spatial variation of charge density.

analysis, and numerical simulations. Discussion of the results
and conclusions are contained in Sec. V.

II. FORMULATION

A thin film of liquid with viscosity μ and surface tension
σ is on a solid substrate that is characterized by a periodic
spatial variation of the charge density, q̃∗, with the average
value equal to q∗

a . The system is modeled in Cartesian co-
ordinates x∗ and y∗, where (*) will denote all dimensional
variables. The geometric configuration is illustrated in Fig. 1.
The liquid is an electrolyte with N different types of ions of
valencies zk and bulk concentrations n

(0)
k (k = 1, 2, . . . , N ).

Near electrically charged interfaces, formation of electrical
double layers can be expected. Their characteristic width is
defined by the Debye length λD ,

λD =
√

εkBT

e2
∑N

k=1 n
(0)
k z2

k

, (1)

where ε is the electric permittivity of the liquid, kB is the
Boltzmann constant, and T is the temperature. The electro-
static potential, ψ∗, is found using the Debye-Hückel approx-
imation formulated together with the Stokes flow equations
for incompressible liquid. The electrostatic effects related to
the presence of the substrate charge and the liquid surface
charge (q̂∗) can cause film instabilities. The case is considered
where the disjoining pressure is dominated by the electrostatic
effects with the London–van der Waals contribution being
negligible for the range of film thickness values considered
here. The nondimensional charge densities and electrostatic
potential are defined as

q̂ = q̂∗

q∗
a

, q̃ = q̃∗

q∗
a

, ψ = ελ−1
D ψ∗

q∗
a

. (2)

The base state of the film has an average thickness d. The
characteristic velocity U of the viscous flow induced by the
instability is found from the balance among electrostatic,
capillary, and viscous contributions to stresses during film
deformation,

U = q∗3
a

μσ 1/2

(
d

ε

)3/2

. (3)

The capillary number for this flow, Ca = μU/σ , is typically
small, which, together with the assumption of small aspect
ratio for the liquid layer, allows us to apply the standard tools
of the lubrication-type analysis. The corresponding derivation,
described in Appendix A, leads to a nondimensional evolution
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equation for film thickness h(x, t ) of the form

ht + [h3(hxxx − q̂q̂x )]x = 0. (4)

The scaled liquid surface charge density q̂ can now be ex-
pressed in terms of h using the Debye-Hückel approximation
to the Poisson-Boltzmann equation. Using the scales and
assumptions formulated in Appendix A, the equation for the
electric potential in the film is

ψyy = κ2ψ, κ = d

λD

. (5)

At the liquid-air interface, the electrostatic potential will be
considered to be fixed such that ψ (x, h) = ψ̂ . Thus, we con-
sider a situation when charge transport and regulation results
in redistribution of charges, so that q̂ is nonuniform. At the
liquid-substrate interface, the effect of substrate charge on the
electrical field in the film is represented by

ψy (x, 0) = −κq̃, (6)

where q̃ is the spatially periodic substrate charge density. Note
that the contribution from the electrical field in the substrate
is neglected here. While solving the equations for the electric
field in the substrate could be added in the formulation, as is
done in some studies [28], the assumption of small thickness
of the liquid film together with high relative dielectric per-
mittivity of liquids such as water compared to that of typical
dielectric substrates allow one to justify our approach.

Using condition (6) and the fixed free surface potential
condition for the electrostatic potential governed by Eq. (5),
the expressions for the electrostatic potential distribution in
the film and the free surface charge density are

ψ = [ψ̂ + q̃(x)(cosh κh + sinh κh)]
cosh κy

cosh κh

− q̃(x)(cosh κy + sinh κy), (7)

q̂(x, h) = [ψ̂ sinh κh − q̃(x)] sech κh. (8)

Thus, q̂ appearing in Eq. (4) is now expressed in terms of
the function h(x, t ) and the specified substrate charge density
q̃(x). In most of our derivations and simulations we use

q̃(x) = 1 + δ cos(πx/L), (9)

although we also verified that using a superposion of several
sinusoidal functions instead of the second term on the right-
hand side of Eq. (9) does not alter any of the key conclusions
presented below. Two new nondimensional parameters enter
the formulation through Eq. (9), the amplitude δ and the length
scale L of the spatial variation of the substrate charge density.
Together with the ratio κ of the film thickness to the Debye
length, these represent the key parameters we vary in our
scaled model.

III. LINEAR STABILITY

A. Linear stability of uniform film

Let us briefly review the classical linear stability analysis
results for the limiting case when the substrate charge density
is uniform (δ = 0). Although Eq. (4) is nonlinear, it has a
simple steady-state solution that corresponds to a uniform film
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FIG. 2. Stability diagram for the liquid film on a uniformly
charged solid substrate.

thickness, h(x, t ) = 1. The behavior of a small perturbation
ζ (x, t ) to this solution is described by the linearization of
Eq. (4),

ζt + ζxxxx − Gζxx = 0, G ≡ [q̂q̂h]h=1. (10)

Based on Eq. (10), the growth rate γ of a small sinusoidal
perturbation with wave number k is determined to be

γ (k) = −k2(G + k2). (11)

A perturbation of an arbitrary wave number will always decay
for a non-negative G, indicating stability. The film becomes
unstable when the condition G < 0 is satisfied.

By substituting the expression for G based on q̃(x) from
(9) with δ = 0 into Eq. (11), a quadratic equation with respect
to ψ̂ is formed of which its two roots

ψ̂ = − sinh κ,
1

sinh κ
, (12)

are the stability branches for the ψ̂-κ plane. These are shown
in Fig. 2.

In order to interpret this stability diagram, it is useful to
recall that according to (8) the scaled liquid surface charge
density in the limit of uniform substrate charge is

q̂ = (ψ̂ sinh κ − 1) sech κ, (13)

where according to (2) q̂ can be interpreted as the ratio of
dimensional charge densities for the two interfaces. We note
that it is not immediately obvious that having oppositely
charged surfaces should lead to instability and vice versa
since such simplified view does not account for interactions of
surface charges with ions in the screening layers in the liquid
near charged interfaces. The analysis leading to the stability
curves shown in Fig. 2 accounts for all these interactions. The
stability region seen above the upper curve (ψ̂ sinh κ > 1) cor-
responds to q̂ > 0, as readily seen from the above expression
for q̂. This is consistent with the rule of repulsion of charged
surfaces of the same sign across electrolyte, established in the
classical studies of Langmuir [29] and Parsegian and Gingell
[30] and since confirmed by numerous experimental and
theoretical studies. The justification for this rule is based on
the following argument from the classical theory of electrical
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double layers [31]. Consider a flat uniformly charged in-
terface. Then, a cloud of screening charge of the opposite
sign will be formed in the liquid near the interface resulting
in gradients of ion concentration and thus creating osmotic
pressure gradient. It is this osmotic pressure gradient that
compensates for the electrostatic attraction between the inter-
facial charges and the screening charges. As two double layers
start overlapping, the high osmotic pressure in the liquid layer
between the interfaces is the key factor that ensures repulsion
between them and thus leads to a stable liquid film.

For the oppositely charged surfaces, i.e., under the top
curve, Fig. 2 shows instability for a range of conditions. For
example, if ψ̂ = 0, the system is always unstable. This can
be explained by the method of images. All charges, including
the ones on interface and the ions in the solution, interact
with their electrostatic images with respect to the liquid-gas
interface. Since that interface is at a constant potential of
ψ̂ = 0, the images are of the opposite charge and thus the
interaction is attractive, leading to destabilization. However,
the condition of q̂ < 0 does not always guarantee instability.
Clearly, there is a region of stability under the bottom curve in
Fig. 2. This stabilization occurs when sufficient concentration
of ions is reached in the liquid layer so that the total interfacial
charge is neutralized. This effect becomes stronger as the layer
thickness is decreased, i.e., below a certain critical value of κ ,
as indeed is seen in Fig. 2 (lower curve).

Let us now discuss the question of film stability when the
substrate charge density is nonuniform. The naive approach
to solving this problem would be to use the average value of
the substrate charge density and look up the corresponding
point on the stability diagram of Fig. 2. Our analysis will
identify situations when such approach is reasonable (stability
threshold does not change significantly as a result of spatial
nonuniformity) versus situations where it fails to accurately
predict the threshold. In other words, we consider the ques-
tion of how sensitive the system is to nonuniformity of the
substrate charge under different conditions.

Our objective in the rest of this Section will be to determine
how the stability diagrams will change as a result of spatial
variation of the substrate charge density. We note that under
these conditions, the steady state is no longer that of uniform
thickness. Let us first discuss the steady states and then study
their stability.

B. Nonuniform base state

The solution corresponding to liquid film of uniform thick-
ness (h(x, t ) = 1), used as the base state in the classical stabil-
ity analysis above, is not consistent with the spatially periodic
variation of the substrate charge density. However, steady-
state solutions still exist in that case and can be obtained by
setting all temporal derivatives in our formulation to zero.
Finding such solutions is the main objective of the present
subsection. Whether or not such solutions can be observed
experimentally depends on their stability, which is the subject
of the analysis in the subsections to follow.

Steady-state solutions of Eq. (4) with q̂(x, h) and q̃(x)
given by (8) and (9), respectively, have been found by first
discretizing the spatial derivatives on the domain [−L,L] and
then solving the resulting system of first-order differential

(a)

(b)

-5 x
0

0.5

1

1.5

2

2.5

h

0 0.1 0.

0 5

2 0.3
0

0.2

0.4

0.6

0.8

1.0

A

FIG. 3. (a) Steady interface shapes for L = 5, κ = 1, ψ̂ = −1,
and the values of δ increasing in the direction of the arrow: δ = 0.1
(black line), δ = 0.5 (green), and δ = 1 (blue). (b) Amplitude of the
interface deformation as a function of δ obtained from the numerical
solution (solid line) and from the linearized equation (dashed line).

equations in MATLAB using the ode15s subroutine until
the change in the solution norm falls below the specified
tolerance. Figure 3(a) shows steady interface shapes for three
different values of δ. Note that at larger δ, simple sinusoidal
variation of substrate charge density does not translate into an
equally simple shape of the interface. This is clearly a sign of
the intrinsic nonlinearity of the system.

For small values of δ, an approximate expression for the
base state can be derived. Since the steady-state solution im-
plies constant pressure in the liquid, Eq. (A7) from Appendix
A can be used to formulate a simplified equation for the steady
state,

h0xx − 1

2
q̂2 = C. (14)

By substituting an asymptotic expansion

h0 = 1 + δh
(1)
0 + δ2h

(2)
0 + ... (15)

into Eq. (14) and neglecting the O(δ2) contributions, we
obtain

h
(1)
0 = A cos(πx/L), A = ψ̂ sinh κ − 1

cosh2 κ

(
π2

L2
+ G

)−1

,

(16)
where the same definition of the nondimensional parameter
G is used as above in Eq. (10). The result can be compared
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with the numerical solution, providing a useful validation test.
The comparison of solution amplitudes is given in Fig. 3(b).
Clearly, the asymptotic method gives accurate approximation
of the interface deformation up to δ ≈ 0.1.

Once the steady-state solution is found on the domain of
length 2L, periodic extension can be used to define the base
state, h0(x), on the entire computational domain. Let us now
turn to the important issue of the stability of this solution.

C. Linear stability: Discrete eigenvalue problem approach

A small time-dependent perturbation ζ (x, t ) of the base
state h0(x) satisfies the linearized version of the Eq. (4), which
can be conveniently written in the form

ζt + h3
0ζxxxx + 3h2

0h0xζxxx − h3
0Qζxx − [

2h3
0Qx

+ 3h2
0h0xQ

]
ζx − 3h2

0h0xQxζ = 0, (17)

where we define Q ≡ q̂(h0)q̂h(h0). The numerical method for
solving Eq. (17) is described in Appendix B. The resulting
stability curves will be plotted in the same coordinates as in
Fig. 2 to facilitate easier comparison with the case of uniform
charge density. In the discussion below, our focus is on the
modification of the lower stability curve of Fig. 2 for the
following two reasons: (i) reported experimental observations
of film rupture by electrostatic forces typically involve in-
terfacial charges of opposite sign, which in our formulation
corresponds to negative ψ̂ , and (ii) the modification of the
upper stability curve by the charge patterning tends to be much
smaller than that of the lower stability curve.

The choice of the parameter L, the nondimensional length
scale of the substrate charge density variation, requires special
discussion. It has been shown in the previous studies that when
the instability wave number is equal to the substrate patterning
wave number or one of its integer multiples, dramatic changes
in the instability growth rate can occur, a phenomenon known
as resonance. This phenomenon has been well studied [23,32].
However, due to the long-wave nature of the instability con-
sidered here, the most unstable modes are likely to have a
wavelength which is orders of magnitude larger than the scale
of the patterning, the latter typically corresponding to micro-
and nanoscale. In this regime, which is the focus of the present
study, the effect of resonant interaction is negligible but, as we
shall see, the effect of substrate charge patterning is not. To
explore this regime, let us start with LT = 50 and L = 5 and
then gradually reduce L to account for finer scales of charge
patterning.

Figure 4 illustrates the changes in the lower stability branch
of Fig. 2 as a result of patterning. According to Fig. 2, when
the scaled potential ψ̂ is decreased for a fixed κ , transition
to the stable regime takes place at a certain critical value of
the potential denoted by ψ̂c here and below. The magnitude
of this quantity is shown in both parts of Fig. 4 by the
dashed blue lines. When substrate charge nonuniformity is
introduced according to Eq. (9) with δ = 0.05 and L = 5,
the new magnitude of the critical potential corresponds to the
black solid line in Fig. 4(a). Let us discuss the result shown
in the figure. First, in the limit of κ → 0 the Debye length
is much larger than the film thickness and the electric field
in the film becomes nearly uniform. This implies essentially
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FIG. 4. The magnitude of the negative scaled potential at the
transition between the stable and unstable films plotted for δ = 0.05
(black solid lines) and two values of the nondimensional charge
patterning length: (a) L = 5, (b) L = 2.5. The uniformly charged
substrate results are shown by blue dashed lines for comparison.

no double layer structure, and the neutral stability condition
should be ψ̂ = 0. This is indeed seen in the figure. However,
as κ is increased, the correction to the stability criterion
quickly comes into play and the effect of charge patterning
is found to be stabilizing for a range of κ . In relative terms,
stabilization tends to be more significant at smaller values of
κ . For example, at κ = 0.5, the critical value changes from
0.521 to 0.350, a significant drop given the relatively small
value of δ. The effect becomes weaker as κ is increased
and eventually slightly destabilizing influence is observed at
κ near 1.5 and above. This destabilization, however, may
be difficult to see experimentally since it requires the fluid
interface charge density to be significantly larger than that of
the solid substrate, which is an unlikely scenario.

To investigate the effect of the length scale of the charge
patterning, we reduced the value of L for fixed δ and found
that the correction to the stability criterion decreases with L.
Furthermore, for a given κ , the effect changes sign at some
critical value of L. As the value of L is decreased further, the
interface becomes destabilized by the patterning over a range
of κ previously showing stabilization. This result is illustrated
for L = 2.5 in Fig. 4(b). Note that reducing the pattern length
by a factor of two while keeping all other parameters the
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same resulted in the dramatic qualitative change in how the
patterning affects film stability: from mostly stabilizing in
Fig. 4(a) to mostly destabilizing in Fig. 4(b). It is intuitive
to expect that higher amplitude of charge nonuniformity can
potentially lead to a more significant shift in the stability
conditions. However, the scale of charge variation is often
considered a secondary factor unless such variation happens
to produce a resonant interaction between the substrate pattern
and the perturbation of the free surface of the liquid layer [23].
Our simulations indicate that even in the nonresonant case,
the effect of change of the wavelength of substrate charge
variation can be significant. This shows that for practical
applications, not only the amplitude but also the spatial scale
of substrate charge variation has to be specified to determine
the liquid layer stability conditions on such substrates.

D. Linear stability for small δ

For the case of small δ and nonresonant interaction, the
shift in the instability threshold due to substrate charge pat-
terning can be found analytically using asymptotic methods.
Before presenting the results of such analysis, let us discuss
the general expectations of the behavior at small δ. It may
seem that in the absence of resonance, the correction to
stability criterion should stem from a shift in the average
values of the coefficients in the linearized problem, implying
that at small δ it is of the order of δ2. However, using such an
estimate at κ = 0.5 results suggests a correction ∼10−3 rather
than the actually observed shift of about 0.171. The apparent
paradox is explained by the fact that the argument leading
to δ2 estimate is flawed: It actually does not account for the
possibility of significant change in the characteristic wave
number of the most unstable perturbation. In order to illustrate
how such a change can happen, consider a model problem in
which Eq. (10) is modified by an addition of the term δ2ζ on
the left-hand side, resulting in the disperion relation

γ (k) = −k2(G + k2) − δ2. (18)

It may appear that the extra term leads to an O(δ2) change
in the stability criterion compared to the case of δ = 0, but
in reality the change is O(δ), as becomes clear from the
sketch in Fig. 5(a). First, the blue dashed line in the sketch
corresponds to the dispersion curve at G above but very close
to G = 0, which would be enough to induce the instability at
δ = 0. However, for the modified problem, Eq. (18), all points
on the dashed dispersion curve are well below the instability
threshold. It is only when G is increased to the point where the
corresponding dispersion curve, the black solid line, touches
the horizonal axis, that the instability can be observed at the
critical wave number k2

c ∼ δ, indicating that G should also be
of the same order. Thus, the shift in the stability threshold G

compared to the original value of G = 0 is in fact a linear
function of δ.

While the model problem corresponding to (18) is much
simpler than the actual linear stability problem defined by
(17), the stability corrections have essentially the same behav-
ior. To verify this, we conducted detailed perturbation analysis
for the full problem and found that for a range of realistic
values of κ , the shift in stability criteria mostly originates from
the last term of (17), i.e., the term −3h2

0h0xQxζ . Based on
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FIG. 5. (a) A sketch illustrating dispersion curve shapes for the
model problem, Eq. (18), at values of G very close to zero (dashed
blue line) and the value of G at the actual instability threshold (black
solid line). (b) Comparison of the analytical stability criterion with
the numerical one at κ = 1.

the nonuniform base state solution given by (16), we find the
following leading-order approximations:

h0x = −δβA sin(βx) + O(δ2), β = π

L
, (19)

Qx = δκβ(tanh κ + κA) sin(βx) + O(δ2). (20)

Substituting these leading-order expressions into Eq. (17), we
obtain results qualitatively similar to the ones illustrated by
the simplified model of Eq. (18). In particular, the modified
critical value of the scaled potential ψ̂ is approximated by

ψc = − sinh κ + δκ−1 cosh κ
√

6κ (κβ−2 − tanh κ ), (21)

which is indeed a linear function of δ. This result corresponds
to the black solid line in Fig. 5(b). Numerical results found
by the method from the previous subsection, shown by the
blue squares, are clearly in excellent agreement with the ap-
proximate model. This provides a useful verification of the
numerical method we use.

Let us now use asymptotic method to explain the destabi-
lizing effect seen in Fig. 4(b). The key to understanding this
effect is that the average value of the leading-order term in the
formula for Qx changes sign at a critical value of the pattern
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(a)

(b)
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2δ

γ
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FIG. 6. (a) A sketch illustrating dispersion curves for positive
average Qx . (b) The plot of critical L for transition between stabi-
lization and destabilization as a function of κ .

length scale,

Lc = π

(
tanh κ

κ

)1/2

. (22)

With positive average Qx , the qualitative change in the dis-
persion curve with δ is no longer described by the sketch
shown in Fig. 5(a). In fact, the change of sign implies a shift
in dispersion curves upward rather than downward, as shown
schematically in Fig. 6(a). While in principle such shift could
mean destabilization at any value of δ, in reality the stability
condition is dictated by the size of the domain, LT . If the
minimum wave number that fits into the domain corresponds
to the vertical dashed line in Fig. 6(a), the dashed curve
corresponds to stability, while the solid line means instability.
This explains the destabilizing effect seen in Fig. 4(b). The
critical value Lc is shown as a function of κ in Fig. 6(b).
We note that the qualitative changes in the dispersion curves
illustrated by the sketches in Fig. 5(a) and 6(a) have not been
captured by the previously published simplified models of
films stability on charged substrates.

E. Floquet theory

In typical applications, the scale of the pattern can be many
orders of magnitude smaller than the scale of the domain,
making the approach from Sec. III B impractical and very
difficult to extend to three-dimensional situations. The pertur-
bation method from the previous subsection is limited by the
condition of small values of δ. However, there is an alternative

0 0.2 0.4 0.6 0.8 1.0
0

0.5

1.0

1.5

2.0

|
c|

FIG. 7. Stability curve obtained using Floquet theory approach
for L = 2, δ = 0.05, with the dashed line showing the result for
uniform charge density.

approach which requires numerical computation only on the
interval of length L, i.e., the scale of the patterning, rather than
on the scale of the instability. This method is based on the
classical Floquet theory (also often called Floquet-Bloch the-
ory) [23] and involves using the well-known theoretical result
about the form of the solution of Eq. (17) as a superposition
of terms ∼eγ t+ikx ζ̂ (x), where ζ̂ is a periodic function on the
interval of periodicity of the patterning. Based on (17), the
equation for ζ̂ is

h3
0D

4
k ζ̂ + 3h2

0h0xD
3
k ζ̂ − h3

0QD2
k ζ̂ − [

2h3
0Qx

+3h2
0h0xQ

]
Dkζ̂ + (

γ − 3h2
0h0xQx

)
ζ̂ = 0, (23)

where Dk = ∂
∂x

+ ik. The equation is then solved numerically
using spectral discretization and with the minimum value of k

chosen to simulate the finite-size domain used in the previous
simulations (LT = 50). Typical results for neutral stability
found from this approach are shown in Fig. 7. The figure
illustrates that the trend toward destabilization seen at larger L

continues as the value of the scaled length is reduced further
into the range where the discrete eigenvalue solution method
becomes inefficient.

IV. NONLINEAR EVOLUTION

A. Limit of the uniformly charged substrate

In the limit of uniformly charged solid substrate, the evo-
lution equation reduces to the classical problem of the form

ht = [h3(ϕ(h) − hxx )x]x, (24)

where for our particular case ϕ(h) = q̂2/2. Weakly nonlinear
analysis for the general equation (24) was carried out by
several authors [23,33,34] in an effort to investigate the possi-
bility of nonlinear stabilization of the instability of initially
uniform base state h ≡ 1. To the best of our knowledge,
this approach has not been applied to the models of stability
of electrolyte films, so we carried out this calculation as
described in Appendix C. The conclusion from the calculation
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FIG. 8. Steady-state strongly nonlinear interface shapes at δ =
0.02 (black solid line) with the result for the uniformly charged
substrate (δ = 0) shown for comparison by the dashed blue line.

shown there is that no finite-amplitude nonlinear solutions are
expected near the instability threshold.

The results of the weakly nonlinear analysis suggest that
nonlinear stabilization does not occur near the bifurcation
point but do not exclude the possibility of such stabilization in
the strongly nonlinear regime. For many nonlinear equations,
the only approach to investigating such possibility would be
through extensive numerical simulations. However, for the
model discussed here, additional insights into the behavior
can be obtained by observing that if there is a finite amplitude
solution in the strongly nonlinear regime, it has to satisfy the
constant pressure condition along the interface, e.g.,

hxx + ϕ(h) = C, (25)

which is mathematically identical to the classical particle
motion in a given potential (with x playing the role of the
time variable). The situations is qualitatively similar to the
case of thin films dewetting under the action of unbalanced
intermolecular interactions described by disjoining pressure
[35,36]. Using the analogy, we can expect strongly nonlinear
steady-state shapes in our situation; these are indeed observed,
as discussed in the next subsection.

B. Strongly nonlinear patterns

Let us now discuss the strongly nonlinear evolution and
how it is affected by the spatial variation of substrate charge.
We note that adding the nonuniformity introduces a new
length scale (and thus potentially a new length scales of the
pattern) which is independent from the length scale of the pat-
terns discussed in the previous subsection. We conducted ex-
tensive numerical simulations to investigate how the strongly
nonlinear evolution is modified by the effect of substrate
patterning. Simulations are carried out for the original fully
nonlinear equation, (4), using the numerical method described
in the end of Appendix B. Let us first consider the effect of the
amplitude of the charge variation, δ, on the strongly nonlinear
dynamics.

For the case of uniform charge density, δ = 0, we find
steady-state strongly nonlinear solutions which are basically
droplets connected by nearly flat thin film regions, as illus-
trated by the blue dashed line in Fig. 8. This is consistent with

0 0.2 0.4 0.6 0.8 1
x/LT

0

1

2

3

4

5

h

FIG. 9. Snapshots of interface shapes at different times showing
the transition from the original pattern on the scale of substrate
charge variation (black dashed line) to a strongly nonlinear solution
of much larger amplitude; the arrow shows the order of snapshots in
time, all results are for δ = 0.1.

numerous observations reported in the framework of similar
models in the limit of uniform substrate properties [23,36].
Let us now turn to how this solution changes as a result of
underlying substrate patterning by gradually increasing the
value of δ. Our first observation is that for small δ only
minor modifications to the steady film shape are introduced,
as can be seen from comparing the steady-state solution for
δ = 0.02 (solid line) with the case of uniform charge density
in Fig. 8. However, as δ is increased, different dynamics is
observed, which can be characterized by two stages. At the
first stage, the solution rapidly approaches to the shape which
has the same spatial periodicity as the substrate charge density,
shown by a dashed line in Fig. 9 (for δ = 0.1). However, there
is also another stage, at which the interface spontaneously
goes through another set of deformations and eventually
approaches a new shape which is qualitatively similar to the
ones in Fig. 8 except that the thin-film regions connecting the
droplets show stronger deformation.

As the value of δ is increased further, the time for the
transformation of the type shown in Fig. 9 is increased until
the pattern induced by the substrate patterning becomes com-
pletely stabilized. An example of such stable pattern is shown
in Fig. 10.

V. CONCLUSIONS

We use the lubrication-type model of viscous flow coupled
to the Debye-Hückel approximation for the electric field to
investigate steady states, instabilities, and patterns in thin elec-
trolyte films. A strongly nonlinear evolution equation for the
film thickness is derived. Linear stability criteria are obtained
by using the discretized version of the linearized equation for
the interface shape, leading to an eigenvalue problem for the
resulting matrix. Floquet theory is used in the regime when the
domain size greatly exceeds the spatial scale of the substrate
charge variation, L, making the direct numerical approach
impractical and time consuming. Asymptotic expansions valid
in the limit of small charge density variation amplitude δ were
obtained to verify and interpret the numerical stability results.
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FIG. 10. Stable pattern which mimics the pattern of substrate
charge density variation, observed at δ = 0.8.

The main focus of our stability analysis is on the case
of oppositely charged surfaces in the so-called nonresonant
regime, i.e., the situation when evolution of the main in-
stability mode is not affected by the resonant interaction
with the substrate patterning. Several previous studies suggest
that the correction to stability criteria should be very small,
of the order δ2. Surprisingly, we find this to be not the case
in our model. For a range of values of L and κ , the effect is
found to be stabilizing and increasing linearly with δ, based on
both numerical and analytical results. To resolve the apparent
contradiction, we invoke a simplified model which clearly
shows the source of the discrepancy. The usual arguments
regarding the nonresonant interaction implicitly assume that
the correction to the threshold instability wave number is
small. We find this to be not the case, explaining the observed
behavior. We then varied the scaled length of the patterning in
the same range of κ and observed that the effect changes from
stabilizing to strongly destabilizing at some critical value of
L. An analytical formula is derived for this critical value and
is consistent with the numerical results. In practical terms,
this implies that for a fixed amplitude of the charge density
variation, the liquid film can become destabilized when the
length scale of patterning is decreased.

Stronger than expected dependence of the stability thresh-
old on the magnitude of the charge variation may seem
surprising from the physical standpoint. Suppose the average
dimensional substrate charge density q∗

a corresponds to the
instability threshold. Intuitively, it may seem that the desta-
bilizing effect of a region of higher q̃∗ should be compensated
by the stabilizing effect of the region of lower value of the
charge density, so that there is no net shift. However, this
simplified argument ignores the different dependence of the
stabilizing osmotic pressure, discussed above in Sec. III A,
and destabilizing Maxwell stresses on the substrate charge
density [37,38]. Our model is designed to consistently capture
both of these physical effects.

Nonlinear evolution of unstable liquid films is investi-
gated through a combination of weakly nonlinear analysis
and numerical simulations, with the main focus on the types
of patterns observed in the film and their dependence on
the charge density pattern. While at smaller δ, the pattern
wavelength is dictated by the intrinsic instability scale from

the uniform substrate case, the larger δ shows increasingly
dominant effect of the underlying charge pattern in the final
shape of the free surface.

ACKNOWLEDGMENTS

The study was financially supported by the Russian Sci-
ence Foundation (Project No. 16-19-10675). We are grateful
to V. V. Shelukhin for valuable suggestions.

APPENDIX A

Assuming that the layer thickness is much smaller than the
instability wavelength, the Stokes flow equations are reduced
to the lubrication-type equations through the following pro-
cedure. The vertical and horizontal length scales are defined
by d and Ca−1/3d, respectively, where Ca = μU/σ is the
capillary number. The aforementioned scalings lead to the
following nondimensional variables, respectively, for velocity
components u∗ and v∗, pressure p∗, and time t∗:

u = u∗

U
, v = v∗

Ca1/3U
, (A1)

p = εp∗

q∗2
a

, t = Ca1/3Ut∗

3d
. (A2)

After nondimensionalization, the governing equations have
the form

px = uyy + ψψx, (A3)

py = ψψy, (A4)

ux + vy = 0. (A5)

The leading-order stress and kinematic conditions are

uy = 0, (A6)

p0 − p = hxx − 1
2 q̂2, (A7)

1
3ht = v − uhx. (A8)

Integrating Eq. (A3) with the condition (A6) and no slip at the
substrate, the expression for fluid flow velocity is

u(y) = 1
2 (px − ψψx )(y2 − 2hy). (A9)

Using Eqs. (A5), (A7), and (A8), leads to the height evolution
of the film given by (4).

APPENDIX B

The numerical solution of (17) involves spatial discretiza-
tion of the domain [−LT ,LT ] with NT mesh points to reduce
the problem to

zt = Mz, (B1)

where z is the vector of the values of ζ at the mesh points
and the entries of the matrix M are computed based on the
standard centered finite-difference discretization of the spatial
derivatives in (17). The neutral stability then corresponds to
the condition when the maximum eigenvalue of the matrix M

changes sign from negative to positive. We used MATLAB
fzero subroutine to find this condition with the maximum
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eigenvalue computed by eig subroutine; the initial guess for
ψ̂ is provided by the known analytical stability criterion for
δ = 0. Discretization uses NT = 2000 grid points and simula-
tions are conducted on SMU’s High Performance Computing
M2 cluster (306 nodes, 630 TFLOPS).

The numerical solution of the nonlinear equation (4) on the
domain [−LT ,LT ] was carried out using the method of lines
with with finite-difference discretization of spatial derivatives
and CVODE subroutine for time stepping.

APPENDIX C

Following the standard result of the weakly nonlinear anal-
ysis [23,33,34], stable patterns are possible near the instability
threshold with the magnitude of the (complex) amplitude Â

which can be written in our notation as

|Â|2 = − 6�2�0

[ϕ′′(1)]2 + 3ϕ′′′(1)ϕ′(1)
, (C1)

where �2 measures the degree of departure from criticality.
Note that the solution only exists when the right-hand side
of the expression is positive. Formulas for quantities in the
formula above are found by applying the weakly nonlinear
analysis approach to the original nonlinear equation [Eq. (4)].
The resulting expressions are

ϕ′(1) = κ

cosh3 κ
(ψ̂ sinh κ − 1)(ψ̂ + sinh κ ), (C2)

ϕ′′(1) = κ2

cosh4 κ

{
[2 − cos(2κ )](ψ̂2 − 1)

+ 1

2
ψ̂ sinh κ[11 − cosh(2κ )]

}
, (C3)

ϕ′′′(1) = −4κ tanh κϕ′′(1) + κ3

cosh4 κ

(
2 sinh(2κ )(1 − ψ̂2)

+ ψ̂

2
{cosh κ[11−cosh(2κ )]− 2 sinh κ sinh(2κ )}

)
.

(C4)
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