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Capillary forces on a small particle at a liquid-vapor interface: Theory and simulation
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We study the meniscus on the outside of a small spherical particle with radius R at a liquid-vapor interface.
The liquid is confined in a cylindrical container with a finite radius L and has a contact angle /2 at the
container surface. The center of the particle is placed at various heights along the central axis of the container.
By varying L, we are able to systematically study the crossover of the meniscus from nanometer to macroscopic
scales. The meniscus rise or depression on the particle is found to grow as In(2L/R) when R « L < k!
with «~! being the capillary length and saturate to a value predicted by the Derjaguin-James formula when
R <« k~!' « L. The capillary force on the particle exhibits a linear dependence on the particle’s displacement
from its equilibrium position at the interface when the displacement is small. The associated spring constant
is found to be 27y In"'(2L/R) for L « «~" and saturate to 2y In"'(3.7«~' /R) for L > «~'. At nanometer
scales, we perform molecular dynamics simulations of the described geometry and the results agree well with
the predictions of the macroscopic theory of capillarity. At micrometer to macroscopic scales, comparison to

experiments by Anachkov et al. [Soft Matter 12, 7632 (2016).] shows that the finite span of a liquid-vapor or

liquid-liquid interface needs to be considered to interpret experimental data collected with L ~ «
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I. INTRODUCTION

Recently, the drying of colloidal suspensions has attracted
great attention as it provides a facile procedure to generate dry
colloidal films and superstructures with controlled arrange-
ments of particles [1]. To understand the structural formation
in colloidal suspensions induced by solvent evaporation, much
effort has been made to model such systems using molecular
dynamics (MD) simulations [2—7]. In these simulations, one
key aspect is the representation of the solvent. In a few works,
the solvent is modeled explicitly as Lennard-Jones liquids
[6,7]. However, such simulations are extremely expensive and
the parameter space that can be explored is rather limited
[6]. In others, an implicit solvent model is adopted and a
liquid-vapor interface is modeled as a confining potential for
all the solutes in the solution [2-5]. Usually, a harmonic
potential is used with the potential minimum indicating a
particle’s equilibrium position relative to the interface [8]. The
evaporation process of the solvent is mimicked by moving
the interface in a controlled manner. In this moving interface
method of modeling the evaporation process of a suspension, a
spring constant has to be assumed in the harmonic potential to
capture the confining effect of the interface on the particles in
the liquid solvent. Though a harmonic potential for a particle
adsorbed at an interface is intuitively sensible and has been
widely used [8,9], there lacks a systematic physical interpreta-
tion of the associated spring constant. A deeper understanding
is thus needed on the effective potential experienced by a
particle when it is displaced out of its equilibrium position
at a liquid-vapor interface.
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Understanding the behavior of a particle at a liquid-vapor
interface (or more generally, a fluid-fluid interface) is also
important in many fields such as interfacial self-assembly of
particles [10-13], emulsion and foam stabilization [14-16],
fabrication of colloidal gels [17], interfacial particle adsorp-
tion [9,18], flotation processing of minerals [19], and granular
materials [20]. A comprehensive review of this topic can be
found in Ref. [21]. Because of its practical importance, the
detachment of a particle from a planar liquid surface has been
studied for a long time [19,22-32]. The problem of the qua-
sistatic removal of a sphere from a liquid surface has a strong
connection with the meniscus on the outside of a cylinder in a
liquid bath, which is governed by the Young-Laplace equation
[33]. White and Tallmadge [34] and Huh and Scriven [35] nu-
merically studied the meniscus on a cylinder vertically pene-
trating an unbound liquid surface. A formula for the meniscus
height was proposed by James for this case [36], which was
actually suggested earlier by Derjaguin [37] (see the note at
the end of Ref. [36]). We call this result the Derjaguin-James
formula, which is very accurate for small cylinders. A similar
formula for the meniscus height on a sphere at the surface
of a large liquid bath has been widely used in later research
[19]. Pitois and Chateau studied the work of detachment of
removing a small particle from an interface both experimen-
tally and analytically using a theory based on the Derjaguin-
James formula [27,28]. Anachkov et al. recently refined Pitois
and Chateau’s theory by correcting the filling angle at which
a capillary bridge ruptures and compared the theory with
experimental data collected with a colloidal-probe atomic
force microscope (AFM) [30]. During the review of this paper,
experimental efforts have been reported where the capillary
force and meniscus shape were examined by a laser scanning

©2018 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.98.032802&domain=pdf&date_stamp=2018-09-24
https://doi.org/10.1039/C6SM01716A
https://doi.org/10.1039/C6SM01716A
https://doi.org/10.1039/C6SM01716A
https://doi.org/10.1039/C6SM01716A
https://doi.org/10.1103/PhysRevE.98.032802

YANFEI TANG AND SHENGFENG CHENG

PHYSICAL REVIEW E 98, 032802 (2018)

confocal microscope for a microparticle detaching from a
liquid surface [38].

Pulling a small sphere from a liquid surface can be used
as a technique known as sphere tensiometry to measure the
surface tension of the liquid and its contact angle on the
surface of the sphere [22,25]. This method is based on the fact
that surface tension is the physical origin of the capillary force
on a particle that controls its detachment behavior. Depending
on the size of the particle, gravity and buoyancy force may
also come into play [23,24]. To the best of our knowledge,
in most studies reported so far on particle detachment from
a liquid surface, the surface was assumed to be unbound
laterally [19,22-28,30,32,39]. This assumption is valid when
the lateral size of the liquid bath L is much lager than the
capillary length of the interface x ~!. However, in recent AFM
experiments the size of the particle is at the scale of microm-
eters and the lateral span of the meniscus can be comparable
or even smaller than x ~! [30]. De Baubigny et al. showed that
the lateral size of a liquid bath can affect the capillary force
and meniscus rise on a nanofiber [40]. Recently, we studied
the meniscus on a small cylinder located at the center of a
liquid-vapor interface that is confined in a cylindrical con-
tainer of a finite radius L [41]. Our results show the crossover
from nanometer/micrometer scales where the meniscus rise
grows with L logarithmically to macroscopic scales where the
meniscus rise saturates to a value predicted by the Derjaguin-
James formula. Similar crossover is expected to occur for a
small sphere at a liquid-vapor interface as well.

In a seminal work on contact angle hysteresis, Joanny and
de Gennes showed that the capillary force associated with
contact line pinning on a defect exhibits a linear dependence
on the deformation of the contact line, and the resulting spring
constant has a logarithmic dependence on a length scale,
which can be interpreted as the average distance between
the defects [42]. An experiment by Nadkarni and Garoff on
the contact line pinning on a single defect confirmed the
theoretical prediction of Joanny and de Gennes and revealed a
relation between the pinning of a contact line and the removal
of a particle from a liquid surface [43]. A similar connection
was discussed by O’Brien as well [26]. Later works by Preuss
and Butt [44], and by Ettelaie and Lishchuk [45,46] showed
that a linear force-displacement curve emerges not only for a
particle detaching from a planar liquid surface but also in the
case of a surface with an overall curvature. A similar behavior
was observed for spheroidal particles by Davies et al. [47].

In this paper our goal is to study the force-displacement
curve for a particle at a liquid-vapor interface with a finite
lateral extent ranging from nanometer to macroscopic scales.
To achieve this goal, we study a small particle with radius R
at a liquid-vapor interface with both the macroscopic theory
of capillarity and MD simulations, the latter of which has
been widely used recently to study capillary phenomena at
nanometer scales [48-52]. In particular, we place the liquid
in a cylindrical container with radius L (> R) and the particle
along the central axis of the container. The meniscus around
the particle and the capillary force on it are computed when
it is placed at different heights across the liquid-vapor inter-
face. This geometry allows us to systematically explore the
crossover from a region where L < « ', and thus gravity can
be ignored, to a region where L > «x~' and gravity starts to

Wall
R

YoN T A

? T /gl Vapor A:h
I'E/ \\/6) !

p i | Y 27 ik
D—?—‘—ﬁ- tiquid "o [ A
% o - v |y

P
%

FIG. 1. (a) Sketch of a spherical particle at the center of the
surface of a liquid bath in a cylindrical container: particle at an
equilibrium height (dashed light yellow sphere) and being pulled
upward (solid orange sphere). (b) Snapshot from MD simulations
of a system with a spherical particle pulled from a liquid-vapor
interface.

play a role. We systematically study this crossover with the
macroscopic theory of capillarity based on the Young-Laplace
equation. At nanometer scales, we perform MD simulations
and compare the simulation results on the meniscus profile
and capillary force with the predictions of the macroscopic
theory. A good agreement is found between the two. At
micrometer to macroscopic scales, we compare the theory
with the experimental data by courtesy of Anachkov [30]
and show that the finite extent of the menisci involved in the
experiments needs to be considered in order to understand the
experimental results.

This paper is organized as follows. In Sec. II we present
a complete theory of a meniscus on the outside of a sphere
with the lateral span of the meniscus varying from nanome-
ter to macroscopic scales. The MD simulation methods are
introduced in Sec. III. In Sec. IV we discuss and compare
the results from the theory, simulations, and experiments. We
conclude the paper in Sec. V by summarizing the results on
the effective confining potential on a particle from a liquid-
vapor interface, which provide a physical foundation of the
moving interface method of modeling solvent evaporation.

II. MACROSCOPIC THEORY OF CAPILLARITY

A. General theory

The geometry of the systems studied in this paper, as well
as a snapshot from MD simulations, is sketched in Fig. 1,
where a particle of radius R straddles a liquid-vapor interface.
The liquid bath is placed in a cylindrical container with
radius L. The central axis of the container is taken as the z
axis, along which the particle’s center is located. A bottom
wall at z =0 is used to confine the liquid from below. To
study the crossover from a system where L is larger than but
comparable to R to a system where the meniscus is unbound
(i.e., L — 00), we set the contact angle of the liquid on the
container surface to be 7 /2. First, this choice guarantees the
flatness of the liquid-vapor interface far away from the particle
when L — oo, which is expected for an unbound meniscus
[34,35]. Second, with this choice the analytical solution of
the Young-Laplace equation is greatly simplified for L <«

«~! and the numerical treatment of the equation at L ~ x !,
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where the gravitational contribution to the local pressure jump
across the liquid-vapor interface has to be taken into account,
is much easier to implement [41].

The contact angle of the liquid on the particle surface is
denoted as 6;. Here we do not consider any pinning effect
of a contact line on the surface of either the particle or the
container. When the particle is in its equilibrium location, the
liquid-vapor interface is flat and intersects with the particle
surface at a filling angle ¢ = & — 6, as shown in Fig. 1(a).
We denote the height of this flat interface in equilibrium as
ho. The equilibrium position of the particle center is then at
ho — R cos 6 [53].

When the particle is pulled upward or pressed down-
ward vertically (i.e., along the central axis of the cylindrical
container), the liquid-vapor interface will bend and form a
meniscus, as shown in Fig. 1 for pulling. If we denote the
distance from the bottom of the particle to the bottom wall
as D, then its value for a particle in the equilibrium location
is Dg=hy— R(14+cosf))and Az=D — Dy=D — hy +
R(1 + cos 6) is the displacement of the particle from its equi-
librium height. In this paper, our main goal is to understand
how the capillary force on the particle depends on Az. For
this purpose, we must solve the meniscus profile z(r). For
simplicity, we define zo(r) = z(r) — h, where h is the height
at which the meniscus meets the container surface. The range
of zp is then [0, Ah] (or [Ah, Q]), where Ah denotes the
meniscus rise (or depression).

Considering that a meniscus can develop a neck where | ‘% |
is infinite, the function zo(r) becomes double-valued for a
range of r near the neck. It is therefore more convenient to
represent the meniscus as r(zg), which is always a single-
valued function of zo € [0, Ah] for a rising meniscus (or
z0 € [Ah, 0] for a depressed meniscus). The function r(zp) is
the solution of a form of the Young-Laplace equation studied
by Bashforth and Adams before [54],

r’ 1 Ap  Apgzo

- i 1

(] +r/2)3/2 r(] +r/2)l/2 y y ( )

where r' = jT’U, r’ = Z—Z, Ap is the pressure jump from the
< 0

vapor to the liquid phase at r = L (i.e., the pressure on the
vapor side minus that on the liquid side across the liquid-
vapor interface at r = L), y is the surface tension of the
liquid, Ap = p; — p, is the difference of the liquid and vapor
densities, and g is the gravitational constant. Equation (1) is
for a rising meniscus that may have a neck. To describe a
depressed meniscus, the left hand side of Eq. (1) should be
multiplied with —1.

A physical solution of Eq. (1) for a given D needs to satisfy
the constraint that the volume of the liquid bath,

Ah
V= JT/ r*(z0)dzo + wL*h
0

3
— %(2—3cosw+cos31p), 2)

is fixed at a constant set by parameters kg, L, R, and 8;, which
set up the physical problem at hand. Since for the particle in
its equilibrium location, Ah =0, h = hy, and ¥ =7 — 6,

the fixed volume is

2 R 3
V=nL ho—T(2+3C0891—COS‘ 61). 3)
Equations (1)—(3) actually provide an implicit relation for the
filling angle ¥, which in turn determines the meniscus profile
on the outside of the particle. For a given Az, we have

D = Az+ho— R(1 +cosby). 4)

The procedure of solving the meniscus profile for the given
Az starts with an assumed filling angle . Then Eq. (1)
is solved either analytically or numerically to obtain the
meniscus profile 7(zq), including the meniscus height AA. The
height of the liquid-vapor interface at r = L is furthermore
given by

h =D+ R(l1 —cosy)— Ah. (5)

With r(zg), Ah, and h determined, the volume of the liquid
bath can be computed with Eq. (2) and compared to Eq. (3)
until for the given Az, a filling angle ¥ is found to satisfy the
volume constraint.

After the meniscus profile is determined at a given Az, i.e.,
after the filling angle ¥ is found for the given Az using the
self-consistent procedure described above, the total capillary
force on the particle can be computed as

F =2nyRsinysin(0; + ) — (Ap + ApgAh)

22 7R’ _ 3
X 7T R* sin” ¢ ApgT(Z 3cos iy + cos” ¥r),

(6)

where the first term is a direct contribution from the surface
tension of the liquid at the contact line on the particle surface,
the second term captures the contribution of the Laplace
pressure with the gravitational effect included, and the last
term is a buoyancy force.

The full Eq. (1) is hard to solve analytically. The main diffi-
culty is the presence of the gravitational term, the importance
of which is captured by a capillary length defined as k! =

AL/)g. For water at room temperature, « ' A~ 2.7 mm. In this

paper, we are mainly concerned about a small particle with
size ranging from nanometer to micrometer scales. Therefore,
it is always the case that R < «~!. In the limit of R < L <
k~!, the gravitational term in Eq. (1) is negligible and the
equation can be solved analytically with the elliptic integrals.
In the opposite limit where R <« k! « L, the approximate
Derjaguin-James formula can be used to estimate Ak [36,37].
In the crossover region where L ~ « !, we recently found an-
other approximate formula [41], based on numerical solutions
of Eq. (1), to predict Ah. In the following we first discuss a
way to transform Eq. (1) that allows numerical treatments in
general and then analyze the different regions in detail.

Equation (1) can be made dimensionless via a change of
variables,

X =kr, y=kK2p. @)
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The result is the following nonlinear differential equation for
a rising meniscus:

x" 1 _ 2H
(1 +x’2)3/2 x(1 +x’2)1/2 Tk

+, 3

X 1

where x’ = Z—y, x' = dyz’ and 2H = Ap/y. Again, the two
terms on the left hand side need to flip signs for a de-
pressed meniscus. This second-order differential equation can
be rewritten into two coupled first-order differential equa-
tions for which numerical treatments are much easier. To
this end, we take the local normal vector of the liquid-vapor
interface pointing toward the liquid phase and introduce an
angle parameter ¢, which is the angle of rotating the z axis
counterclockwise to the local normal vector, as shown in
Fig. 1. It is easy to show that ¢ always changes from 7 at
the surface of the container to 6 + i on the particle surface.
For a rising meniscus, 6; + ¥ < 7 while for a depressed one,
oh+¢ >m.
Equation (8) can be rewritten in terms of 7 as

dsint  sint 2H

—_— = — . 9
dx +x K Y ©)

Equation (9) is actually more general than Eq. (8) as Eq. (9)
applies no matter whether the meniscus is rising or depressed
while Eq. (8) only describes a rising meniscus, though both
can deal with a meniscus with a neck. It is thus advantageous
to use Eq. (9) to describe an (axisymmetric) meniscus on the
outside of a spherical partlcle ata 11qu1d -vapor interface.
Rewriting Eq. (9) for 4* 4, and using d = tant, we obtain a
pair of coupled first-order nonlinear differential equations,

dx 2H sint\
—=—|—4+y+— cost, (10a)
dt K X
dy 2H sint\ )
— == —4+y+— sint, (10b)
dt K X

with the following boundary conditions:
t=6i+y¢Y at x =kRsiny, (11a)
t=m at x=«L and y=0. (11b)

Generally, numerical solutions of Eq. (10) can be obtained
by the shooting method [55]. It should be emphasized that
Eq. (10) provides a unified description for a rising or de-
pressed meniscus with or without a neck. The difference
only shows up in the boundary condition in Eq. (11a). For
a meniscus rising on the particle surface, 6, + ¢ < 7 while
for a depressed one, 8; + ¥ > m. Moreover, if 6; + ¥ < /2
or 61 + ¥ > 3m/2, then the meniscus has a neck.

B. L « «~! limit

In the limit of R < L <« «~', the Bond number Bo =
gL>Ap/y = «k?>L? is much smaller than 1, indicating that
gravity can be ignored in the treatment of the meniscus.
Equation (1) for a rising meniscus can be simplified as

r’ 1

A+ r( 42 2H (12)

with 2H = Ap/y. For a depressed meniscus, the right hand
side of Eq. (12) should be —2H. Equation (12) can be solved
analytically for the boundary condition sketched in Fig. 1. The
derivation below benefits from a seminal paper of Orr et al.
on the theory of pendular rings [56] and a recent work by
Rubinstein and Fel [57].

We first make Eq. (12) dimensionless by introducing new
variables X =r/R and Y = zo/R. Defining u = sint with
the angle parameter ¢ introduced previously, we can rewrite
Eq. (12) as

=2 13

“xtx (13

where H = RH is the dimensionless mean curvature of the
meniscus. The boundary conditions are

t=1n at X;=siny,
and Y, =0 at

(14a)

X, =1, (14b)

wheret; =0, +¥,t, =m,and/ = L/R > 1 is the scaled ra-

dius of the bucket. Like Eq. (9), Eq. (13) applies to both rising

and depressed menisci and is more general than Eq. (12).
The solution for Eq. (13) is

c
T 4HX (13
The boundary condition Eq. (14a) indicates that
¢ =4H siny[H siny + sin(6; + ¥)]. (16)
The other boundary condition Eq. (14b) yields
c=4H?1. (17)
As aresult, H is given by
H— sin ¢ sin(0; + 1//). (18)

12 — sin® ¢

Note that / = L/R > 1 and therefore the denominator in
Eq. (18), I* — sin? v, is always positive. For a rising menis-
cus, H >0 as 0 < 0, +¢ < m while for a depressed one,
H <0asm <6+ < 2r. When the particle is in its equi-
librium location, 6; + v = w and H = 0, which is expected
for a flat liquid-vapor interface. Generally, H asymptotically
approaches O when/ = L/R — oo.

Equation (15) yields a parametric relation X(¢), which
must be positive definite. Then the solution of the meniscus
profile Y (¢) can be determined by noting that dY /d X = tant.
The results are

X(@¢) = %(—Sint + Vsin?7 + ¢), (19)

n2

¢
Y(t) = + d¢, (20
) ZH/( sing s1n ¢+c> ¢ 20

where the 4+ (—) sign is for a rising (depressed) meniscus.
Hereafter, when the sign £ or F appears in an equation, the
upper sign is always for a rising meniscus while the lower sign
is for a depressed one. In general, t, = 37w /2 — 6, where 6, is
the contact angle of the liquid on the container surface. For
the systems considered here, 8, = /2 and therefore t, = 7.
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Equation (20) can be evaluated by the elliptic integrals and
the result is

1
Y(t)= ﬁ(cost —costh) =+ %[E(t,j) — E(t, j)
—F(, j)+ F(n, j)] (21)

where j2=—1 E(t, j)= [;V1— j2sin®¢d¢ is the in-
complete elliptic integral of the second kind, and F(¢, j) =

" ——L__ d¢ is the incomplete elliptic integral of the first
0 1—j2 2 ¢
—j?%sin

kind, respectively. The meniscus height Ah is given by Y (¢;)
with #; = 0; 4+ ¥ and the result is
RJe

R
Ah = Sleos®) + ) + 1] & Z—HC[E(el Y- )

—FOi+v —m )l (22)

Equation (22) holds as long as k ~! > L > R. An approx-
imate formula can be derived for A/ in the limit of x~! >
L > R using the series expansions of the elliptic integrals and
the asymptotic behavior H = S0¥sin@+¥) ~ sinysin@i+y)

ymp = Tty — 12
0. The result is

Ah >~ Rsiny sin(6) + ¢)

{ = }
x { In - — =1, 23)
Rsiny[1 —cos(0) + )] 2

which indicates that Ah ~ RIn(L/R) for x~' > L > R.
Our numerical results indicate that this scaling relationship
holds up to about L < 0.4« ! [41]. Equation (23) is very close
to the result for a catenoid for which H = 0, except for the
—1/2 term in the curly braces [41].

Again, a self-consistent procedure using the constraint that
the volume of the liquid bath is fixed needs to be employed
to determine the filling angle ¢ for a given displacement
Az. This procedure can be facilitated if we note that for the
solution of the meniscus profile given in Egs. (19) and (21),
the volume of the liquid bath can be expressed analytically as

V_ T
R3 ~ 8H3

where

h 1
J, + ;TZZE - §71(2 —3cos Y +cos’ ¥r), (24)

4
Jy =@+ c)(cost; —costy) — 5(0053 f, — cos® b)

8
gc[Em, k) — E(t2, )]

iﬁ{

4
_ %[F(tl, k) — F(t,, k)]}

[sin(2¢; )4/ sin” £; + ¢ — sin(2t )4/ sin® 1> + c].

(25)

W

:F

After ¥ is determined for a given Az, the capillary force in
the limit of k™! > L > R can be computed as

F =2nyR[sinysin(6) + ) — H sin? ¥] (26)
with H given in Eq. (18).

Since for/ = L/R > 1, the dimensionless mean curvature
H — 0, the capillary force is dominated by the surface ten-
sion term,

F >~ 2nxy R siny sin(0) + ¥), 27

and the meniscus height can be approximated as
. . 2L
Ah >~ Rsiny sin(6; + ¢ ) In " (28)

From Egs. (4) and (5), we have
Az = Ah+ h — hy 4+ R(cos6; + cos ). 29)

For /| = L/R > 1, the meniscus height satisfies Ah >
R(cos0; + cos ) and the displacement of the liquid-vapor
interface far away from the particle becomes negligible, i.e.,
h =~ hy. Therefore, we have approximately

Az >~ Ah. (30)

Combining Egs. (27), (28), and (30), we finally arrive at the
Joanny—de Gennes Hookean law [42],

2ry

~ —ln(ZL/R) Az, 3

which yields an effective spring constant for a particle at a
liquid-vapor interface that softens with the lateral span of
the interface as In"!(2L/R). The denominator In(2L/R) in
Eq. (31) was absent in the form derived by Pieranski [8],
which was used in many papers including the recent ones
on modeling solvent evaporation with the moving interface
method [2-5]. This omission is easy to understand since in
Pieranski’s model, the liquid-vapor interface is always flat
even for a particle out of its equilibrium location at the inter-
face [8]. However, in the model discussed here the meniscus
height on the outside of the particle scales with In(2L/R).

C. Region with L > k!

Our previous work indicated that the theory presented in
Sec. II B can be used to describe a meniscus on the outside of a
small circular cylinder pretty accurately for L up to ~ 0.4« !
[41]. For L 2 4k~ the interface can be treated as unbound
and the meniscus height is given by the Derjaguin-James
formula,

Ah = R sin ¢ sin(6 + ¥)
{ 4!
X { In - -
Rsiny[1 — cos(0; + ¥)]

where £ = 0.57721 ... is the Euler-Mascheroni constant.
In the crossover region 0.4k ~' < L < 4k~!, our previous
work revealed an approximate expression of A as [41]

E} (32)

Ah = Ah(elliptic)

X {1 — m(KL)(KR sin w[l — COS(@] + 1p.)])O.lZ}’
(33)

where Ah(elliptic) is the expression of the meniscus height
in Eq. (22) based on the elliptic integrals and m(x) is a kink
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function that reads

oy = 0085 explCx - 1.85)%3/0.74] ifx < 1.85,
= 00.085exp [(1.85 — x)/0.875]  if x > 1.85.
(34)

Note that [ = L/R is a key parameter entering the ex-
pression of Ah(elliptic) in Eq. (22). In the Derjaguin-James
formula [Eq. (32)] the term L/R is replaced by x ~'/R. We
can therefore make Eq. (33) applicable for an arbitrary L (as
long as it is larger than R) by using the following definition of
[ for Ah(elliptic):

L [L/R
~ 185« 1/R

if L <1.85¢71,

35
if L > 1.85¢7". (33)

The particular choice of the cutoff 1.85« ! can be understood
by equating Ak in Eq. (23), which is a close approxima-
tion of Eq. (22), to that in the Derjaguin-James formula in
Eq. (32). At L = 2¢'/>7E~1 ~ 1.85¢ ™!, the two expressions
are equal. With / defined in Eq. (35), the meniscus height Ah
in Eq. (33) reduces to the expression in Eq. (22) for L < « ',
while it reduces to the Derjaguin-James formula in Eq. (32)
for L > «~!. It also agrees well with the numerical solutions
of Ah in the crossover region where L ~ kL [41].

It should be clarified that the analytical results in Sec. II B
for L <« «~' and the empirical results [Eqs. (33)—(35)] for
a full range of L are obtained with the assumption that the
contact angle on the container surface, 6,, is fixed at /2.
When L > «~!, the meniscus can be treated as unbound and
the meniscus profile around the central sphere is independent
of 0,. In this limit the meniscus rise is given by the Derjaguin-
James formula. In the opposite limit where L < x~!, the
meniscus profile depends on 6,. However, all different results
on the meniscus rise for different values of 6, at L < k!
will converge to the same limit set by the 6,-independent
Derjaguin-James formula, when L is increased to be much
larger than «~!. The transition to an unbound meniscus at a
general 6, is an interesting problem for future research. Here
we only consider the case 6, = 7 /2.

For L > k™!, the displacement of the liquid-vapor inter-
face (i.e., h — hg) induced by the particle displacement is neg-
ligible and thus i = h¢. As a result, the particle displacement

Az >~ Ah + R(cos0; + cos ). (36)

Equations (36) and (33) together provide an expression of Az
with the filling angle v as a parameter for L > «~' (other
physical quantities, L, R, and 6, are already known when the
problem is set up). In this limit, there is no need to use the
volume constraint of the liquid bath to connect v to Az.

The capillary force in the region with L > «~! becomes

F = 2nyR[sin1p sin(6; + ¥) — %KZA/’ZR sin®
1,2p2 3
— gk"R7(2—3cosy +cos” ¢)]. 37

The Laplace pressure term drops out because H >~ 0 in this
limit. In this paper we are concerned about particles with
R <« k7! and then the buoyancy force and the gravitational
contribution in Eq. (37) are negligible compared to the sur-
face tension contribution. As a result, the capillary force is
dominated by the surface tension term. Equation (37) provides
an expression of the capillary force with ¢ as a parameter.

Combining Egs. (37), (36), and (33), we obtain a force-
displacement curve parametrized by ¥ for L > «~'.

III. SIMULATION METHODS

A snapshot from MD simulations of a particle at a liquid-
vapor interface is shown in Fig. 1(b). In order to address
generic behavior, we consider a molecular liquid consisting
of short linear chains of four spherical beads. This tetramer
model captures many aspects of the behavior of short hydro-
carbon chains [51,52]. All the beads interact with a Lennard-
Jones (LJ) potential,

12 6 12 6
o o o o
-l £) - () () 2]

a a ac ac
(38)
where a is the distance between the centers of beads, o
represents an effective bead diameter, and € is an energy scale.
The LJ potential is truncated at a. = 2.50. Two neighboring

beads on a chain are connected by a bond described by a
finitely extensible nonlinear elastic (FENE) potential [58],

Veone(@) = —-k &2 (1= & (39)
a)=—= nll——),

FENE S Bk R

where the canonical values are adopted with Ry = 1.5¢ and

K = 30¢/0>.

A spherical particle is modeled as a uniform distribution
of LJ mass points. The interaction between the particle and a
LJ bead is determined by integrating the LJ potential between
the bead and all the mass points on the particle [59,60]. The
resulting potential is
V@) 2 R303An
a)=—————

ns 9 (erl _ a2)3

[ (SRS + 45Ra* + 63R2a* + 15a6)66:|
X - 9

15(Ry — a)5(Ry + a)®
(40)

where a is the center-to-center distance between the bead and
particle and the radius of the particle is R;,. In our simulations
R, = 100. If we take o ~ 0.5 nm, then R, is about 5 nm. The
particle-bead potential is truncated at a, = 140. The Hamaker
constant A, controls the wetting behavior of the liquid on the
particle surface.

The liquid bath is placed in a cylindrical container of
nominal radius L,. Two values, L, = 500 and 750, are used
in our simulations. The central axis of the container is along
the z axis. Without the particle, the free liquid-vapor interface
is parallel to the horizontal x-y plane. Two horizontal walls
are used at z =0 and z = 1000 to confine the liquid and
vapor. The interaction between a LJ bead and the top, bottom,
or side wall is governed by a LJ 9-3 potential,

U _ 2 (o)’ o\’ 2 (o)’ a\?
cw=al5(2)-(5) - 5(5) () |
41

where a is the distance from the bead center to the wall
and a. = 2.50, 0.85830, and 3.00 are the cutoff distances at
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the side, top, and bottom wall, respectively. The interaction
strength is set with €, = 2.1€ to yield a 90° contact angle on
the side wall, as confirmed with independent simulations.

The tetramer fluid is thermalized at a constant temperature
T = 0.7¢/kg, where kg is the Boltzmann constant. At this
temperature, the liquid has a density p; = 0.927m /o> and the
vapor density p, = 0. Our motivation to pick this nonvolatile
liquid is to generate a liquid-vapor interface that is sharp and
can equilibrate quickly. To determine the surface tension of
the tetramer liquid, we simulated a liquid film in a cubic
simulation cell with a liquid-vapor interface in the x-y plane,
in which the periodic boundary conditions are used. The liquid
film is in contact with a bottom wall at z = 0 and confined by
a top wall at z = 100c. The liquid-vapor interface is located
at about z = 51¢. The surface tension was computed with the
Kirkwood-Buff formula [61],

_ ! _ P+ py(@)
v=3 f |:pzz(Z) > :|dz, (42)

where p..(2), pyy(2), and p_.(z) are the three diagonal com-
ponents of the stress tensor. The result is y = 1.018¢/0? in
the LJ units. A rough mapping between LJ and real units can
be found in a previous study [51].

The wetting behavior of the tetramer liquid on the particle
surface depends on the Hamaker constant A,,. Considering
the finite radius of the particle, we identified the contact angle
of the liquid on the particle surface directly by placing the
particle at the surface of the liquid film that was used in the
calculation of surface tension. When the particle settles into
its equilibrium location, the liquid-vapor interface is flat and
intersects with the particle surface with a filling angle ¢ =
m — 6,. The particle center is then at distance Ad = R cos 6,
from the liquid-vapor interface. By computing Ad in MD
simulations, we can determine the contact angle as

6, = arccos(Ad/R). 43)

To determine Ad, we need to obtain the location of the liquid-
vapor interface, which was achieved by fitting the density
profile of the liquid far away from the particle to the following
functional form:

2(z — zi)

s

p(z) = %(,01 + 0v) — %(,01 — py) tanh [ } (44)
where z; is the location and d is the width of the interface,
respectively.

The results for 0; as a function of A, are shown in Fig. 2.
The contact angle decreases when the Hamaker constant
between the particle and liquid increases [62,63]. This trend
is expected as stronger interactions between a solid surface
and a liquid favor the wetting of the solid by the liquid. The
contact angle 6; and surface tension y are used as material
properties when the simulation results of the meniscus on the
outside of a particle are compared to the predictions of the
macroscopic theory of capillarity.

We used a pulling process to place the particle at various
locations along the vertical z axis across the liquid-vapor
interface. The particle was first fully immersed in the liquid
bath. Then the particle was pulled upward with a constant
speed v = 0.020/t ~ 4 m/s along the z direction. This speed
is about six orders of magnitude larger than typical velocities

&
150 .
' N
— \p\
() e
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Q T L
© W
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® N \\\
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2
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FIG. 2. Contact angle 0; vs Hamaker constant A, for a particle
with R, = 100 at the surface of the tetramer liquid. The inset shows
the equilibrium configuration of the particle straddling the liquid-
vapor interface, where ¢ = 7 — 6;.

of displacing particles (~1 um/s) in AFM experiments [30].
To get rid of the inertial effects [51], we allowed the meniscus
to relax for at least 5000t when the particle was pulled to and
then fixed at a certain location. After relaxation the meniscus
profile was determined from the density profile of the liquid
and the capillary force on the particle was computed. The
procedure was repeated when the particle was pulled to its
next location until the meniscus broke up. The parameters of
all five systems studied with MD simulations are summarized
in Table I.

The Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) developed at Sandia National Labora-
tories [64] was adopted to perform all the MD simulations re-
ported here. A velocity-Verlet algorithm was used to integrate
the equation of motion with a time step §t = 0.005t, where
T = o(m/e)'/? is the LI unit of time and m is the mass of a
LJ bead. The particle has a mass M = % =4188.79m. In
all the simulations, the liquid was held at T = 0.7¢ /kg via a
Langevin thermostat with a damping rate ' = 0.1t .

IV. RESULTS AND DISCUSSION

A. Theoretical procedure to determine filling angle

With the theory in Sec. II B, the meniscus profile can be
predicted in the region with L < «~! when the contact angle
0, and the filling angle v on the particle surface are given.
Some examples for 6, = /4, L/R =5, D = 4R (i.e., with
the particle center fixed at z = 5R), and various values of
are given in Fig. 3(a). The corresponding volume under the
meniscus profile (V) and the height of the meniscus rise or

TABLE 1. Parameters of all five systems studied in this paper.

Aps ) R./o Ly,/o ho/o No. of tetramers
100 48.5° 10 50 514 90000
80 76.5° 10 50 51.3 90 000
60 98.2° 10 50 51.1 90 000
40 120.5° 10 50 51.0 90 000
100 48.5° 10 75 51.1 202612
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FIG. 3. (a) Meniscus profiles for 6, = w /4 and different filling
angles: v =n/6, n/3, n/2, 2n/3, 37 /4, 57 /6 (from bottom to
top). The ratio L/R =5 is used here and the center of the particle
is fixed at z = SR (i.e., D = 4R in Fig. 1). (b) The volume under the
meniscus profile (solid black line) measured from the bottom wall
at z = 0 and the height of the meniscus (dashed red line) measured
from the contact line on the container surface as a function of v for
the parameters in (a).

0 /6 /3

depression (Ah) are shown in Fig. 3(b). It should be pointed
out that the meniscus profile r(zo) depends on R, L, 6, and ,
but not on D. However, as discussed in Sec. II B for the system
sketched in Fig. 1, the volume of the liquid bath is conserved.
When the particle is pulled or pushed vertically to a certain
height, the filling angle of the meniscus that is physically
realized needs to satisfy the volume constraint. This fact is
easy to understand as D, which sets the vertical location of
the particle, is the parameter controlled in both simulations
and experiments. The filling angle ¥ is then a parameter set
by the fixed volume of the liquid bath.

As shown in Fig. 3(b), V and Ah are anticorrelated but
nonmonotonic when i varies. This behavior indicates that for
a certain range of initial volumes of the liquid bath, there could
be two possible values of i fulfilling the volume constraint.
To determine which  is the physical solution, we will only
consider filling angles ¥ € [Vmin, Ymax] With ¥in and Y
being the solutions of Z—; = 0. In particular, V has a minimal
value Viin at ¥ = Y, and a maximal value Vi at ¢ =
Ymax. Clearly, V is a monotonically increasing function of
¥ € [Vmin, ¥max]- Then the initial volume of the liquid bath,
which is set by R, L, 6y, and Dy or hg through Eq. (3), can be
used to determine the filling angle ¢ for the given D, which
sets the displacement of the particle Az through Eq. (4). With

Y determined, the meniscus profile and the capillary force
on the particle can be readily computed. If the initial volume
of the liquid bath is smaller than Vi, at the given D, then
the meniscus is assumed to be ruptured and the particle is
completely in the vapor. On the contrary, if the initial volume
is larger than Vi« at the given D, then the particle is fully
immersed in the liquid bath.

We can use intuitive arguments to justify the criterion
adopted here of only picking ¥ € [Y¥in, ¥max] for a given
D. For a particle in its equilibrium location at a liquid-vapor
interface, the interface is flat and the filling angle v = & — 6.
When the particle is pulled upward, the filling angle starts
to decrease from m — 0; as the contact line is free to slide.
It is natural to assume that the filling angle changes contin-
uously when the particle is pulled higher and higher until
at a critical filling angle the meniscus ruptures and detaches
from the particle surface. On the contrary, if the particle is
pushed downward from its equilibrium height, then the filling
angle increases continuously from w — 6; until at another
critical filling angle the meniscus collapses and the particle
submerges into the liquid. In any case, a filling angle further
away from O (for the case of the particle being pulled upward
from its equilibrium location) or  (for the case of being
pushed downward) is more physically possible than the other
one when there are two possible filling angles that satisfy the
volume constraint. Therefore, it is physically sensible to ex-
clude filling angles less than ¥ry,;, and those larger than /,x.

A complete understanding of the rupture and collapse of a
meniscus requires an analysis of the stability of the meniscus
under perturbations and fluctuations, which is beyond the
scope of this paper. Interestingly, it can be shown rigorously
that ¥min and ¥, are actually independent of D and V. This
fact is easy to understand as both D and V can be changed
arbitrarily by moving the location of the bottom confining
wall in Fig. 1 while at the same time the meniscus profile
does not change at all. Below we further demonstrate this fact
mathematically.

We first consider the case where D is fixed as in Fig. 3.
Note that 4 and A#h are still functions of y. Using dD =0
and Eq. (5), we obtain

dh+dAh Rsiny =0 45)
— 4+ —— — Rsiny =0,

dy — dy

which is a constraint that the derivatives of & and Ah have to
satisfy. In this case, V is a function of i through Eq. (2), from
which we get

dv dAh dh
— =alr(ADPP—— 4+ nL>*— —aR’sin’ .  (46)
dy dy dy

Using r(Ah) = R sin ¢ and Eq. (45), we can rewrite 4V as

ay

dv 2 .2 s dAR i
— =a(R*sin“y — L°)| —— — Rsiny ). “n
dy dy
Since R siny < L, the condition j—]‘; = 0 when D is fixed is
equivalent to

dAh
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The boundary values of the filling angle, ¥, and Y,
can be determined using Eq. (48). Since the meniscus profile
r(zp) does not depend on D, Eq. (48) is independent of D,
indicating that v, and Y¥max are D independent as well.
The approximate reflection symmetry between V and A#h as
functions of v, as shown in Fig. 3, can also be understood on
the basis of Eq. (47). From this equation, % and % have
opposite signs for a wide range of ¥ since R sin < L. This
anticorrelation is particularly true for i close to the filling
angle for a flat liquid-vapor interface (i.e., when the particle is
in its equilibrium location). However, the reflection symmetry
between V and Ah is only approximate as the condition
j—]‘; = 01is equivalent to Eq. (48), not % =0.

Equation (48) can also be understood from a different
perspective based on the intuitive arguments discussed pre-
viously. Now we consider a liquid bath with a fixed volume
V. When the particle is in its equilibrium location at the
surface of the liquid bath, the filling angle is 7 — 6;. When
the particle is pulled upward (pushed downward), the filling
angle decreases (increases) from m — 0; until the meniscus
collapses and the particle is detached from (enclosed by) the
interface. In this perspective, D can be regarded as a function
of v under the constraint that V is fixed. From Eq. (5), we get

aD _dn dan o )
dw—dw—l-dw— sin Y. (

Since V is now a constant, dV = 0, which, together with
Eq. (2), yields

dAh dh

— 4+l — —aR¥sin’y =0.  (50)
dy dy

Combining Egs. (49) and (50), we obtain

7 R? sin®

dD dAh
— = L %(R%sin*y — L>){ —— — Rsiny ). (51)
dy dyr

As a result, the condition Z—ﬁ =0 when V is fixed is also

equivalent to Eq. (48). Since for a meniscus with a constant
V, there is an identity ‘é—ﬁ = %}Z, the implication is then that
the particle displacement Az reaches the minimal (maximal)
value at ¥ = Ymax (¥min) for a fixed-volume meniscus.

The meniscus profile r(zp) and the meniscus height Ah
only depend on 6, R, L, and . Furthermore, Ak can be
written as R x f(6;, ¥, L/R) as shown in Eq. (22). There-
fore, the solutions to Eq. (48), ¥min and ¥max, only depend
on ¢ and L/R, not on D or V. As a matter of fact, Y, and
Ymax can be taken approximately as the filling angles at which
the meniscus ruptures and collapses, respectively [30]. When
a particle is pulled or pushed at a liquid-vapor interface with
different hq (i.e., different V and D) but the same 6;, R, and
L, exactly the same force-displacement curve is expected, as
well as the same Y, and ¥m.x. The condition Z_fy) =0 was
also used previously by Anachkov et al. to find the critical
angle at which a meniscus breaks [30].

The results of the critical filling angles Ymin and Ymax as
functions of 0;, determined using Eq. (48), are shown in Fig. 4
for L/R =5 and 50, respectively. Some interesting behaviors
are observed. When 6; — 0, ¥/,0x — 7 independent of L/R.
When 6, — 1, Yrmin — 0. A further analysis shows that ¥yin

180

Tisol 0 =

o 1501 T

=
120 R
° 901 — WYmax LIR=5
E L WminvL/R =5
E 601 - === WYmax LIR =50
I S S === Wmin, LIR=50
£ {1 Tl

s 307 e

0 E—

0 30 60 90 120 150 180
01 (degree)

FIG. 4. Critical filling angles ¥, (bottom two lines) and ¥,y
(top two lines) vs 8, for L/R = 5 (solid lines) and 50 (dashed lines).

and Ymax as functions of 6 satisfy the following relationship:

wmin(el) + wmax(n - 91) =T. (52)

This identity originates from the invariance of the Young-
Laplace equation [Eq. (1)] under the transformation zo —
—z20,01 > m —0;,and Ap - —Ap [65].

B. Meniscus profiles for L « «~!

With the procedure described in Sec. IV A to determine
the filling angle ¥, we can theoretically predict the meniscus
profile for any given set of R, L, 61, ho, and D (or Az) in the
limit of L <« «~!. Some examples are shown in Fig. 5 for a
solvophilic and a solvophobic sphere, respectively. The results
indicate that the theory and the procedure presented here can
be used to determine the meniscus profile accurately and
efficiently for a wide range of parameters and configurations.
Below we directly compare the theoretical predictions of the
meniscus profile to those obtained from MD simulations and
discuss the force-displacement curves in detail.

To make a fair comparison between simulations and the
macroscopic theory of capillarity, care must be taken in defin-
ing the radii of the particle and the cylindrical container in
the simulations. Repulsive hard cores of LJ potentials and
their integrated forms lead to an excluded zone on any solid
surface in which no liquid resides and make the effective
radii larger than the nominal radii set in the simulations. We
found that the effective radii are R = 10.35¢ for the particle
with R, = 100 and L =49.70 (74.70) for the cylindrical
container with L, = 500 (750). These effective radii are used
in the theoretical analyses of the systems simulated with MD.

In simulations the liquid-vapor interface can be located
directly from the density distribution of the liquid. Statisti-
cal fluctuations of the interface can be reduced numerically
by noting the axisymmetry of the systems simulated. Using
color-scale plots, Fig. 6 shows the angle-averaged density
profile p(r, z) of the liquid as a function of height z and radial
distance r from the central axis of the container. The density
profiles were averaged over 51 snapshots from MD simula-
tions. We computed the location of the interface at a given r
by fitting p(r, z) to Eq. (44). The results are shown in Fig. 6
as circles. The red lines are the predictions based on Egs. (19)
and (21). In all cases with different 6, and L,, an excellent
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FIG. 5. Meniscus profiles predicted by the theory in Sec. IIB for L/R =5 and V/R? =

r/R

1257. The first and second rows are for a

solvophilic sphere with 8; = 45° and Dy/R = 3.34. The third and fourth rows are for a solvophobic sphere with 6; = 135° and Dy/R = 4.71.

The values of ¥ and D are indicated in each plot.

agreement is found between the simulation and theory, no
matter whether the meniscus is rising [Figs. 6(a) and 6(c)] or
depressed [Fig. 6(b)]. The good agreement indicates that the
particle size is large enough that possible effects associated
with line tensions are negligible and the macroscopic theory
of capillarity is applicable for menisci at nanometer scales.

C. Force-displacement curves for L < k!

Our main goal in this paper is to understand the effective
potential confining a particle to its equilibrium location at a
liquid-vapor interface. In Fig. 7, the force-displacement
curves are shown for the systems with R, = 100
(R =10.350), L, =500 (L =49.70), and various values

(c)

z/R

6
5
4
3
2

01 2 3 4 01 2 3 4 01 2 3 45 6 7
r/R r/iR r/R

FIG. 6. Comparison of the meniscus profile between the theory
in Sec. II B and MD simulations for (a) 8, = 48.5°, D = 6lo, L, =
500, and hg = 51.40; (b) 6, = 120.5°, D =290, L, = 500, and
ho =51o; (¢) 6, =48.5°, D =6lo, L, =750, and hy = 51.10.
The angular averaged density of the liquid is represented by a color-
scale plot. The black circles indicate the location of the liquid-vapor
interface from simulations. The solid red line indicates the theoretical
prediction of the meniscus profile.

of 0;. The symbols represent the capillary force computed
in MD simulations using the pulling protocol described in
Sec. III. To quantify the uncertainty of MD calculations, we
partitioned the total simulation time (50007) during which
the force was computed into ten blocks. An average force was
computed for each block. Then the average over all ten blocks

—— Theory
0.81 ¢ Simulation
0.6
w[E 04
N
0.2
0.0f {1t
-0.2
-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 -1.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5
04 SRCIN . (d)
0.2 0.0
0.0 o |
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=
N -0.2 -0.4
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Az/R

FIG. 7. Capillary force (F) vs vertical displacement of the parti-
cle (Az) from its equilibrium location at a liquid-vapor interface for
L, = 500 and various values of 6;: (a) 48.5°, (b) 76.5°, (c) 98.2°,
and (d) 120.5°. The red circles are results from MD simulations and
the blue lines are the corresponding theoretical predictions.
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FIG. 8. Capillary force (F) vs vertical displacement of the par-
ticle (Az) from its equilibrium location at a liquid-vapor interface
for L, =750 and 6; = 48.5°. The red circles are results from
MD simulations and the blue line is the corresponding theoretical
prediction.

was taken as the final mean force and the standard deviation
of the ten block averages was plotted as error bars in Fig. 7.

The solid lines in Fig. 7 are the predictions of the macro-
scopic theory of capillarity described in Sec. II B. Since the
simulations are in the limit of R < L <« «~ !, Eq. (26) is used
for the capillary force in the theory. In all cases, the theoretical
predictions agree reasonably with the MD results, especially
in the region of 0 < Az < R. However, the theoretical values
tend to be systematically lower than those computed in sim-
ulations in terms of magnitude. Clear deviation is observed
when the capillary force is close to its extremal values before
the meniscus breaks up or the particle submerges into the
liquid bath. In particular, the theory seems to work well for
solvophilic particles with 6, < 7 /2 [Figs. 7(a) and 7(b)] but
less so for solvophobic particles with 8; > /2 [Figs. 7(c)
and 7(d)]. For the latter systems, the theoretical predictions of
the capillary force are significantly lower than the MD results
for the F < 0 branch with regard to magnitude, up to about
30% right before particle immersion. At this point there is
no physical explanation of the observed discrepancy between
the theory and simulations on capillary forces, though the two
agree very well when meniscus profiles are concerned. One
possibility might be when a solvophobic particle is close to its
submerging or detaching point, the meniscus strongly bends
and the interfacial tension of such a bent interface starts to
deviate from the value computed for a flat interface without
any curvature [66].

Figure 8 shows the force-displacement curve for a system
with R, = 100 (R = 10.350), L, = 750 (L =74.70), and
0, = 48.5°. In this case, the macroscopic theory fits well the
F < 0 branch (i.e., the region with an upward pushing force
on the particle). However, for the region where F > 0 and
the capillary force is pulling the particle downward into the
liquid bath, the theoretical predictions are again lower than
the simulation results. The largest deviation occurs when the
capillary force is near its maximum value at Az >~ 2.3R. The
corresponding rising meniscus breaks up when the particle is
pulled up further.
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L/R=1000
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FIG. 9. Capillary force (F) vs vertical displacement of the par-
ticle (Az) from its equilibrium location at a liquid-vapor interface:
theory (solid lines) vs the Joanny—de Gennes Hookean form in
Eq. (31) (dashed lines) for (a) 8; = 45° and (b) 6; = 90° with L/R =
5 (blue), 10 (red), 100 (green), and 1000 (yellow) from the most to
least tilted from horizontal in each plot, respectively.

When the ratio I/ = L/R gets larger, the dimensionless
mean curvature of the interface becomes smaller roughly as
172 [see Eq. (18)]. Eventually the meniscus profile reduces
to a catenary curve with zero mean curvature [33,41]. The
meniscus height for a catenoid is very similar to the expression
in Eq. (23) but without the —1/2 term in the curly braces. In
the limit of L > R, the force-displacement curve reduces to
the Joanny—de Gennes law in Eq. (31) with an effective spring
constant k, = 2y /In(2L/R) [42]. In Fig. 9 this linear force-
displacement relationship is compared to the theoretical solu-
tions using the elliptic integrals for 6, = 45°. Even for L/R =
5, the theoretical results fit reasonably to the Joanny—de
Gennes law with a linear behavior apparent for |Az/R| < 1,
though deviations can be seen at lager displacements or when
the particle is close to detaching from or submerging into the
liquid. The agreement is improved and the linear region of
the force-displacement curve is widened when L /R becomes
larger. For L /R = 1000, the linear force-displacement curve
from the Joanny—de Gennes law overlaps with the theoretical
solution based on the elliptic integrals for a wide range of Az,
except very close to the extrema at which the capillary force
bends and deviates from the linear dependence on Az.

The approximate linear dependence of the capillary force
(F) on the particle displacement (Az) has been confirmed
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FIG. 10. Capillary force (F) vs vertical displacement of the
particle (Az) from its equilibrium location at a liquid-vapor interface:
theory (lines) vs experimental data (circles, by courtesy of Anachkov
[30]). Panels (a), (c), and (d) are for particles with various radii at a
hexadecane-water interface; panel (b) is for a water-air interface. The
solid and dashed lines are from the theory in Sec. II B with different
values of #; and (a) L =4 mm, (b) L =4 mm, (¢) L =9 mm, and
(d) L = 17 mm, respectively.

experimentally. For example, Fig. 10 includes some experi-
mental data from the group of Anachkov for microparticles at
water-air and water-oil interfaces, where a linear relationship
between F and Az is apparent unless the meniscus is close
to breaking up [30]. In the experimental setup to measure F,
the liquid (water) was filled in a cone-shaped container in the
middle of a much larger vessel. Water and air or oil met at
the opening of the cone, the radius of which was about 1 mm.
Therefore, the lateral span of the water-air (oil) interface was
about 1 mm.

The interfacial tension of a water-hexadecane interface is
52.5 £ 0.5 mN/m and of a water-air interface is 72 mN/m at
25°C. The density of hexadecane is 770 kg/m?> and that of
water is 1000 kg/m?>. As a result, the capillary length (k') is
about 4.82 and 2.7 mm for a water-hexadecane and a water-air
interface, respectively. In the experiments, the radius of the
particle was varied from 1.5 to 5.62 um, much smaller than
«~!. Our previous work showed that the theory presented in
Sec. IIB and the solutions of the Young-Laplace equation
based on the elliptic integrals apply for L < 0.4«~!, which
is about 1.9 mm for the water-hexadecane and 1.1 mm for
the water-air system, respectively. Therefore, the interface
involved in the experiments can be assumed to have a constant
mean curvature and gravity can be ignored. However, the
contact angle of the interface at the edge of the cone, 6,
is unknown. The theory presented in this paper is based on
6, = /2. In order to use the theory in Sec. IIB to fit the
experimental data, we will treat L as a fitting parameter in
the theory. This treatment is based on the assumption that a
meniscus emerging in the experiments with L = 1 mm and
6, # m/2 is only a portion of a meniscus with a different
L but 6, = /2. A more rigorous treatment may be using a
fixed L >~ 1 mm as in the experiments but allowing 6, to vary,

which requires extending the theory in Sec. II B to the case
6, # m/2. Such analyses will be reported in the future.

The lines in Fig. 10 are the theoretical fits using Egs. (22),
(26), and (29) with L as a fitting parameter. An excellent
agreement is found between the theory and experimental
results for all the cases. The two lines are for two contact
angles that were reported in Ref. [30] for each case using
different measurement techniques. It should be noted that
almost identical fits can be obtained using Eqs. (23), (27), and
(30). This fact is not a coincidence and can be understood as
follows. In the experiments L >> R and the mean curvature of
the meniscus is thus close to 0. In this limit, the meniscus is
essentially a catenoid, to which Egs. (23), (27), and (30) apply.

In Ref. [30], the same experimental data included in Fig. 10
were fit using the Derjaguin-James formula [Eq. (32)] for the
meniscus rise. Some deviations were noted. The Derjaguin-
James formula was derived for a meniscus with an unbound
lateral span. Our previous work showed that it applies when
L > 4k~ for §, = /2 [41]. These conditions were not met
in the experiments in Ref. [30], which may explain the ob-
served difference between the fits using the Derjaguin-James
formula and the experimental data [30].

D. Effects of gravity for L > «~!

In Sec. II B, it is found that a meniscus on the outside of
a particle with R <« L <« «~! is a surface of revolution with
a constant mean curvature. In this case, the meniscus height
(Ah) grows with L logarithmically, as shown in Eq. (23).
When L becomes comparable to or larger than !, gravity
comes into effect and the logarithmic growth ceases with
Ah saturating to a value predicted by the Derjaguin-James
formula [Eq. (32)]. The logarithmic dependence of Ah on
L is the origin of the Joanny—de Gennes law in Eq. (31) for
R « L « «~!, which states that the effective spring constant
associated with a liquid-vapor interface for a particle strad-
dling the interface can be written as k; >~ 2wy /In(2L/R).
According to this expression, k; gradually decreases as L
increases. However, as Ak eventually saturates and becomes
L independent when L > «~!, the spring constant is expected
to saturate in the same limit.

From our previous work on the wetting of a cylinder
vertically penetrating a liquid-vapor interface, we know that
Eq. (22) is accurate for the meniscus height for L up to about
0.4k ~! with the parameter / = L/R. When L > 1.85«~",
Eq. (22) can still be used for Ak with the parameter / replaced
by 1.85«~!/R. This finding leads to a redefinition of [ in
Eq. (35), which can be combined with Eq. (22) and an error
correcting function [Eq. (34)] to yield an approximate formula
of Ah. The resulting formula is shown in Eq. (33) and works
for an arbitrary L including the crossover zone 0.4x~' < L <
s

Similar to Ah, the spring constant k; also exhibits
crossover and saturation when the lateral span of the liquid-
vapor interface is increased. As result, we can generalize the
expression of k; as

_ 27y
T 1)’

(53)
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FIG. 11. Capillary force (F) vs vertical displacement of the
particle (Az) from its equilibrium location at a water-air interface:
theory (solid lines) vs the Hookean form with the effective spring
constant in Eq. (53) (dashed lines) for 6, = 90°, R =1 um, and
L/R = 10? (blue), 10? (red), 10* (green), and 103 (yellow) from the
most to least tilted from horizontal, respectively. In particular, the
black dashed line corresponds to k; = 27/ In(3.7«~! /R), which is
the saturated value of k, for large L.

with the parameter / given in Eq. (35) instead of being
always L/R. This expression of k; is expected to work for an
arbitrary value of the ratio L/R. In Fig. 11 we plot the force-
displacement curves for a particle at a water-air interface com-
puted using Eqgs. (33), (36), and (37) for0; = 7/2, R =1 um
and various values of L ranging from 100 um to 100 mm. The
capillary length is ! = 2.7 mm. The linear region of each
curve has a slope that agrees well with the effective spring
constant from Eq. (53), i.e., k; = 2wy /In(2]) withl = L/R
for L < 1.85x~! while/ = 1.85«~!/R for L > 1.85«~!. Itis
clear that when L — oo, the spring constant k; saturates to
27y /In(3.7« 1/ R).

V. CONCLUSIONS

In this paper, we present a comprehensive theory of the
meniscus on the outside of a small particle (i.e., R < «~!
with k! being the capillary length of the interface involved)
at a liquid-vapor interface confined in a cylindrical container
with radius L (>R). By placing the particle along the central
axis of the container, we computed the capillary force on the
particle when it was displaced out of its equilibrium height
relative to the interface. With the contact angle of the liquid
on the container surface being fixed at 77 /2, the setup allowed
us to systematically study the crossover from a meniscus with
a constant Laplace pressure to an unbound one governed by
gravity, when L is increased from L < «~' to L > «~'. In
the limit of R < L < ¥~ !, an analytic solution based on the
elliptic integrals was found for the Young-Laplace equation,
resulting in a meniscus of a constant mean curvature and with
a height that grows logarithmically with L. In the limit of R <«
k~! « L, the meniscus height saturates to a value given by
the Derjaguin-James formula. In the crossover region, which
is roughly 0.4« ~! < L < 4«~', an approximate formula was
proposed for the meniscus height based on our previous work
on the wetting of a cylinder.

Via MD simulations we show that the meniscus shape at
nanometer scales matches well the prediction of the macro-
scopic theory of capillarity based on the Young-Laplace equa-
tion. The capillary force is reasonably predicted by the theory
as well, especially the branch where the force is attractive and
pulling the particle toward the liquid phase. However, for the
repulsive branch where the force is pushing the particle out of
the liquid, the theory always predicts a force with a magnitude
smaller than that computed in MD simulations. The origin of
this discrepancy is not understood at present.

The simulation and theoretical results show that the cap-
illary force on a small particle at a liquid-vapor interface
can be reasonably approximated as a linear function of the
displacement of the particle out of its equilibrium location, es-
pecially for small deviations. This approximation holds from
nanometer to macroscopic scales and the associated effective
spring constant can be written as k; = 2wy /In(2]). For L <
1.85k !, the parameter / = L/R, indicating that k, decreases
as the reciprocal of In L as L increases. For L > 1.85x !, the
spring constant k, saturates to 27y /In(3.7« "' /R).

Our result on k differs from the result of Pieranski [8],
who predicted k; = 2wy, by the factor In~'(21) associated
with the lateral span of the meniscus. In Pieranski’s analyses,
the liquid-vapor interface was always flat regardless of the
location of the particle’s center relative to the interface. In
other words, the deformation of the meniscus was not con-
sidered when the particle was displaced out of its equilibrium
location. The analyses were based on free energies but not
self-consistent as the force exerted on the particle by the
liquid-vapor interface was always 0. In this paper, we fully
account for the evolution of the meniscus on the outside of
a particle moving across a liquid-vapor interface. Our results
thus provide a rigorous theoretical foundation of the moving
interface method in which a liquid-vapor interface is modeled
as a harmonic potential with regard to its confining effect
on small particles at the interface or in the liquid phase.
A physical interpretation is found for the associated spring
constant in terms of the surface tension of the interface (y),
the particle size (R), the lateral span of the interface (L), and
possibly the capillary length (x~') of the interface when L
is large. We expect this approach of modeling a liquid-vapor
interface as a confining potential for particles will find wide
applications in simulating evaporation of particle suspensions,
interfacial adsorption and assembly of particles, and many
other processes involving particles at interfaces.

We derive k; using a single particle at a liquid-vapor in-
terface. When multiple particles are adsorbed at an interface,
capillary interactions mediated by menisci can occur. In this
case, it is nontrivial to model the interface as a confining
potential for each particle. However, if we interpret L as
the average interfacial distance between the particles, similar
to the treatment of Joanny and de Gennes of a contact line
pinned by multiple defects [42], then a harmonic potential
with k; = 2wy /In(2]) for each particle at the interface will
at least partially capture the capillary interactions.
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