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Synclinic-anticlinic symmetry in the structure of multilayer polar liquid crystals
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A large number of smectic phases can have the same energy when short-range interlayer interactions
(interaction of nearest layers and frustrating next-nearest layer interaction) are taken into account. In this situation
even weak long-range interactions become important. They lift the degeneracy and lead to the appearance of a
manifold of polar structures with multilayer periodicity. We analyze the reasons for the appearance of six-layer
structures observed in experiments. Due to specific symmetry of interlayer interactions each antiferroelectric
structure corresponds to a ferrielectric one in which synclinic orientations of molecules in nearest layers are
replaced by anticlinic and vice versa. It is shown how different long-range interlayer interactions transform the
degeneracy and induce different stable and metastable structures.
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I. INTRODUCTION

Polar liquid crystals attract substantial attention from re-
searchers due to their unusual structure, polar characteristics,
and potential applications [1]. In smectic liquid crystals the
molecules are arranged in layers. In the nonpolar SmA phase
the molecular long axes are oriented perpendicular to the
layer plane. In polar liquid crystals the molecules are tilted
with respect to the layer normal. Orientation of molecules in
the ith layer can be described by the two-dimensional vector
ξ i oriented in the layer plane (Fig. 1). The modulus of ξ i

characterizes the tilt angle of molecules θi , the direction of
ξ i defines the azimuthal orientation of molecules (angle ϕi).
Layer polarization is perpendicular to the molecular tilt plane.

Change of the azimuthal and polar orientation of molecules
from layer to layer [Fig. 1(b)] form a wide variety of smectic
phases. There are two types of qualitatively different polar
structures. The SmC∗

α phase is characterized by a short-pitch
helix whose period is incommensurate with the layer spacing.
The SmC∗

α phase can be formed at temperatures near the
transition to the nonpolar SmA phase [1]. The majority of
polar phases have commensurate structures with period from
one to about 10 molecular layers. In this work commensurate
structures are considered. In these phases the change of the
azimuthal orientation of molecules from layer to layer �ϕi =
ϕi+1 − ϕi ≈ 0 or �ϕi ≈ π . The difference in �ϕi from 0 or
π is due to the chirality of molecules, which induces a long-
period helix with a pitch on the order of 102–104 smectic
layers [2]. Further we will be interested in the short range
order of commensurate structures. First we will consider
either synclinic (�ϕi = 0) or anticlinic (�ϕi = π ) orientation
of molecules in adjacent layers. Then the influence of chiral
interaction and nonplanar structure on the stability regions of
phases will be discussed.

The discovery of multilayer phases was an important step
in studies of polar liquid crystals. The three-layer ferrielectric
SmC∗

d3 and four-layer SmC∗
d4, so-called antiphase (Fig. 2),

were experimentally observed and are commensurate multi-

layer phases [1,3]. The SmC∗
d4 phase is considered to form as

a result of frustration [1,4]. Theoretical description of these
structures was performed employing phenomenological and
microscopic approaches [5–13]. In recent years a rich variety
of other multilayer polar phases with period N larger than four
molecular layers was discovered [14–24]. The greatest interest
was inspired by the discovery of six-layer phases in measure-
ments of resonant x-ray scattering [14,16,17]. The authors
[14,16–18] identified the discovered structures as the six-
layer antiferroelectric SmC∗

d6/4A and ferrielectric SmC∗
d6/4F

[Figs. 2(e) and 2(g)]. To avoid confusion, for the six-layer
structures we will further use the notation in which the first
two subscripts denote the period of the structure, the next
subscripts indicate the number of synclinic pairs in the unit
cell and the type of the structure: antiferroelectric (A) or
ferrielectric (F). Six-layer structures were obtained previously
in calculations together with other polar phases [9,25]. How-
ever, until now there is no full clarity about the interactions
responsible for the emergence of these structures, and whether
other six-layer phases can exist.

In this work calculations of the structures with different
sets of interlayer interactions were performed using discrete
Landau theory of phase transitions with two-component order
parameter. Long-range interactions were consecutively intro-
duced in the free energy. It was established which interac-
tions are responsible for appearance of different phases. It
is shown that besides the experimentally observed SmC∗

d6/4A
and SmC∗

d6/4F phases (Fig. 2) other structures, including a six-
layer phase, can form. Even when long-range (third-nearest
neighbor) interactions are taken into account, the energy of a
number of structures remains degenerate, which can lead to
appearance of disordered structures.

II. RESULTS

In the Landau theory of phase transitions used to describe
polar phases [1,12], the order parameter can be the two-
dimensional vector ξ i . Free energy is written in the form
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FIG. 1. (a) Two-component vector ξ i characterizes the polar
(angle θi) and azimuthal (angle ϕi) orientation of molecules in ith
smectic layer. (b) Multilayer polar phases are formed by change of
the orientation of ξ i from layer to layer.

F = F1 + F2, where F1 describes the orientational ordering
in noninteracting smectic layers

F1 =
∑

i

[
1

2
α(T −T ∗)ξ 2

i + 1

4
b0ξ

4
i

]
, (1)

T* is the temperature of the transition to nonpolar SmA
phase in absence of interlayer interactions. F2 includes the
interaction between nearest layers and the long-range inter-
actions between next-nearest, second-nearest, third-nearest
layers

F2 = 1

2
a1

∑
i

ξ i · ξ i+1 + 1

8
a2

∑
i

ξ i · ξ i+2

+ a3

∑
i

ξ i · ξ i+3 + a4

∑
i

ξ i · ξ i+4. (2)

Interactions between layers are related to steric and van der
Waals interaction between nearest layers and effective longer
range indirect interaction. The origin of the long-range inter-
action up to the fourth-nearest layers was considered in detail
in the work of Čepič et al. [8,26]. The physical reasons for
the long-range interaction are flexoelectric and electrostatic
dipolar interaction. The free energy depends on the structure
ξ i and polar ηi order parameters [8,26]. Minimization of the
free energy with respect to ηi gives an expression for the
energy which depends only on ξ i . In this expression long-
range interlayer interactions (between next-nearest layers and
interactions of longer range) appear in the free energy. They
are proportional to the ratio μ2/b̃0, where μ determines the
magnitude of the flexoelectric energy 1/2μ(ξ i+1 − ξ i−1) · ηi

and b̃0 corresponds to the polar energy of layers 1/2b̃0η
2
i

[8]. The second-nearest and third-nearest layer interactions

FIG. 2. Orientations of ξ i in polar phases SmC∗, SmC∗
A, SmC∗

d4,
SmC∗

d5, SmC∗
d6/4A, SmC∗

d3, SmC∗
d6/4F, and SmC∗

d6/2A. SmC∗
d3 and

SmC∗
d6/2A structures can be obtained from SmC∗

d6/4A and SmC∗
d6/4F

by changing synclinic orientations in nearest layers to anticlinic and
vice versa. The rectangle in Fig. 2(f) shows the period of the SmC∗

d3

phase.

with coefficients a3 and a4 depend additionally on parameters
describing the electrostatic interaction between nearest and
next-nearest layers [8]. The physical order of magnitude of b0

for tilted smectic structures is about 103 kJ/m3 [27,28]. Other
parameters are scaled by b0 and can be obtained by multi-
plying ai by b0. In our flat model the tilt direction changes
from layer to layer by 0 or π . Calculations of the temperature
sequences of commensurate multilayer phases, carried by
our group [29] using an analogous model, correspond to
experimentally observed sequences. It is worth noting that at
present, to the best of our knowledge, these are the only cal-
culations describing the experimentally observed sequences
of multilayer phases including different six-layer structures
SmC∗

d6/4A and SmC∗
d6/4F. The results of these calculations

and their agreement with experiment support the validity of
the employed model for calculation of transitions between
different commensurate phases. The uniplanar model is also
used by other groups in the calculations of structures and the
intensity of resonant x-ray scattering for 6-layer structures
(see Refs. [17,30]). In our calculations the multilayer polar
phases do not form a Devil’s staircase [4].

The influence of chirality and nonplanar structure on the
phase diagrams is discussed in Sec. III. In calculations of
nonplanar structures the free energy besides the terms present
in Eqs. (1) and (2) contained the Lifshitz term f [ξ i × ξ i+1]z
and biquadratic term b[ξ i × ξ i+1]2. In nonplanar model the
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free energy becomes F1 + F2 + F3, where

F3 = f
∑

i

[ξ i × ξ i+1]
z
+ b

∑
i

[ξ i × ξ i+1]2. (3)

The first term in Eq. (3) arises in particular from the chiral
part of the van der Waals interaction [8]. Chiral interaction
makes structures of commensurate phases nonplanar [1]. The
last term in the free energy Eq. (3) is the barrier between
the parallel and antiparallel orientations of ξ i [26]. Its origin
was discussed in Refs. [1,26]. We consider commensurate
structures at low temperatures, when the influence of the
biquadratic interaction is increased.

Minimization of the free energy F was performed over the
order parameter ξ i for various commensurate structures with
different orientations of ξ i and their energies were compared
[9,12,31,32]. In the uniplanar (lock-in) model the orientations
of ξ i in nearest layers are synclinic or anticlinic. The struc-
ture with the minimal energy for given values of ai is the
stable one. To clarify the influence of chirality and nonplanar
structure on the phase diagrams, energy minimization was
performed not only over the modulus of the order parameter
but also over relative angles (ϕi+1 − ϕi ) between azimuthal
orientations of ξ i in neighboring layers. In these calculations
we used the free energy F1 + F2 + F3. The stability regions
of different structures calculated in the framework of planar
and nonplanar models are presented in Secs. II and III. As
demonstrated in experiments carried by different groups, in
the majority of compounds the tilt is constant along the
structures. For this class of compounds energy minimization
is performed with the constant magnitude of the tilt angle. In
our calculations in this work |ξ i | was taken as the same in
different layers.

Let us start from the simplest case when only nearest and
next-nearest layers interact [the first two terms in Eq. (2)].
We consider the structures at low temperature when com-
mensurate phases are formed. Nearest layer interaction pro-
motes synclinic orientation of molecules [ferroelectric order-
ing, SmC∗, Fig. 2(a)] for a1 < 0 and anticlinic orientation
[antiferroelectric ordering, SmC∗

A, Fig. 2(b)] for a1 > 0. The
next-nearest layer interaction [the second term in Eq. (2)]
for a2 > 0 favors anticlinic orientation in ith and (i + 2)th
layers, which is incompatible both with ferroelectric and
antiferroelectric structures. A sufficiently strong next-nearest
layer interaction a2 > 2|a1| leads to frustration [1], which
can be released by forming the so-called antiphase SmC∗

d4
[Fig. 2(c)]. The set of SmC∗, SmC∗

A, SmC∗
d4 phases and their

energies is the starting point for further analysis of multilayer
structures. Figure 3 shows energies per layer F0 for different
structures as functions of a1/a2 at a fixed temperature. The
solid lines give the energies of stable phases. For interlayer
interactions quadratic in ξ i the ranges of phase stability do
not change qualitatively with temperature.

A nontrivial peculiarity of the dependence of the energy on
a1/a2 (Fig. 3) is the existence of global degeneracy points at
|a1/a2| = 0.5. In these points the energies of a large number
of structures coincide (energies of several structures passing
through the degeneracy points at |a1/a2| = 0.5 are plotted
in Fig. 3 by dotted and dash dotted lines). For example,
at a1/a2 = −0.5 the five-layer SmC∗

d5 phase [Fig. 2(d)] has
the same energy as SmC∗ and SmC∗

d4. At a1/a2 = 0.5 the

FIG. 3. Dependencies of the energies per layer F0 on a1/a2 for
SmC∗, SmC∗

A, and SmC∗
d4 phases (solid curves). |a1/a2| = 0.5 are

the global degeneracy points in which energies of a large number
of phases coincide. The dependencies of energy of several phases
on a1/a2 passing through the degeneracy points |a1/a2| = 0.5 are
given in the figure. Model parameters: α = 0.01 K−1, T − T ∗ =
−10 K, b0 = 1, a2 = 0.01.

ten-layer SmC∗
d10 phase [33] has the same energy as SmC∗

A
and SmC∗

d4. With such global degeneracy even a small modi-
fication of the interactions could lead to a substantial change
in the phase diagrams, since some of the structures become
energetically favorable. One of the ways to eliminate degen-
eracy is the change of the order parameter modulus from layer
to layer, which decreases the energy of a number of structures.
In the framework of the Landau theory of phase transitions
this situation was considered previously [9,32,34]. SmC∗

d6/4A
(for a1 < 0) and SmC∗

d3 (for a1 > 0) become energetically
preferable in the vicinity of points |a1/a2| = 0.5. Modulation
of |ξ i| leads to a possibility of nonresonant x-ray diffraction
at wave vectors q = 2π/d(1 ± m/N ), where d is the smec-
tic layer thickness and m is an integer. Such nonresonant
diffraction was indeed observed in the SmC∗

d3 phase [35].
The Ising model, which is widely used for the description
of magnetic phases, also shows stabilization of SmC∗

d6/4A
and SmC∗

d3 structures [36]. Another possible reason for their
stabilization is related to the features of bending fluctuations
of smectic layers [11,37]. Anisotropy of layer stiffness with
respect to orientation of ξ can lead to correlated ordering of tilt
planes in different layers and result in periodic commensurate
structures. There are also other reasons for lifting the global
degeneracy at |a1/a2| = 0.5.

First we consider the uniplanar structures and influence
of long-range interactions, Eq. (2), on the appearance of
multilayer phases. An effective interaction of second-nearest
layers and interactions of longer range arise in particular
due to polarity of smectic layers and the flexoelectric effect
[1,8,26]. Let us start the discussion from the part of the phase
diagram with the ferroelectric SmC∗ phase, Fig. 3 (a1/a2 <

0). Long-range interactions induce two types of structures.
When the interaction of second-nearest layers a3(ξ i · ξ i+3)
with a positive value of the parameter a3 is present,
the antiferroelectric SmC∗

d6/4A phase [Fig. 2(e)] becomes
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FIG. 4. Stability regions of SmC∗
d6/4A (a), SmC∗

d3 (b), SmC∗
d6/4F

(c), and SmC∗
d6/2A (d) phases in the parameter space of interlayer in-

teractions (a3, a1/a2). Model parameters: α = 0.01 K−1, T − T ∗ =
−10 K, b0 = 1, a2 = 0.01, a4 = 0 (a), (b); a4 = 2 × 10−5 (c), (d).
Solid points show the results of calculations for uniplanar structures.
Open points in (a),(b) illustrate the influence of chiral interaction on
the phase diagram. Calculations for nonplanar structures were per-
formed with parameters f = 0.002, b = 0.09. The upper horizontal
axis stands for (a),(b), the lower axis for (c), (d).

stable. The second-nearest layer interaction with a3 > 0 fa-
vors the SmC∗

d6/4A phase because in this phase ξ i and ξ i+3
for all i are antiparallel [see Fig. 2(e)] and the corresponding
contribution to the energy is negative. The stability region of
the SmC∗

d6/4A phase is given in Fig. 4(a) in parameter space
(a3, a1/a2). The stability range of SmC∗

d6/4A increases with
increasing a3. The boundary between SmC∗

d6/4A and SmC∗
d4

phases [thick solid line in Fig. 4(a)] is the degeneracy line, on
which the five-layer ferrielectric SmC∗

d5 structure exists. So
the interaction of second-nearest layers lifts the degeneracy
with respect to the SmC∗

d6/4A phase, but degeneracy with
respect to SmC∗

d5 remains. The dependence of energy F0

of phases on a1/a2 for a3 = 3 × 10−5 is shown in Fig. 5.
The SmC∗

d6/4A phase is stable for −0.518 < a1/a2 < −0.482
and metastable outside this range. The SmC∗ phase becomes
stable for a1/a2 < −0.518, the SmC∗

d4 phase becomes sta-
ble for a1/a2 > −0.482. At a1/a2 = −0.482 the energy of
SmC∗

d6/4A and SmC∗
d4 phases is equal to the energy of the

SmC∗
d5 phase (open symbols in Fig. 5). In other regions in

Fig. 5 the SmC∗
d5 phase is metastable. SmC∗

d3 and SmC∗
d10

phases are metastable in the whole range of Fig. 5. Their

FIG. 5. Dependence of the energies per layer F0 on a1/a2

for SmC∗ (solid squares), SmC∗
d6/4A (solid circles), SmC∗

d4 (solid
triangles), and SmC∗

d5 (open diamonds). Vertical dashed lines
border stability ranges of the SmC∗, SmC∗

d6/4A, and SmC∗
d4

phases. Model parameters:α = 0.01 K−1, T − T ∗ = −10 K, b0 =
1, a2 = 0.01, a3 = 3 × 10−5, a4 = 0. The short dotted lines show
the stability range of the SmC∗

d5 phase with the fourth-nearest layer
interaction a5 = −3 × 10−6.

energies are sufficiently larger, for example at the point
a1/a2 = −0.5 the energy F0 is about −2.46 × 10−3 for the
SmC∗

d3 phase and about −2.52 × 10−3 for the SmC∗
d10 phase.

The interaction between third-nearest layers a4(ξ i · ξ i+4) also
does not lift the degeneracy of the SmC∗

d5 phase at the
boundary of SmC∗

d4 and SmC∗
d6/4A. This degeneracy can be

lifted by including in the free energy the interaction between
fourth-nearest layers a5(ξ i · ξ i+5). The interaction with a5 >

0 makes the SmC∗
d5 structure unfavorable since ξ i and ξ i+5

in this phase are parallel for all i and the contribution of
fourth-nearest layers interaction into the energy is positive.
On the boundary between SmC∗

d4 and SmC∗
d6/4A phases the

SmC∗
d5 structure becomes metastable with respect to four-

layer and six-layer phases. If a5 < 0 the SmC∗
d5 becomes the

stable phase in some range between SmC∗
d4 and SmC∗

d6/4A.
In particular, for a5 = −3 × 10−6 the SmC∗

d5 phase is sta-
ble in the range −0.485 < a1/a2 < −0.479 (vertical dotted
lines in Fig. 5). To the best of our knowledge, until now
there is no information about the sign of a5. Experimental
observation of the SmC∗

d5 structure [15] suggests that a5 could
be negative.

If a3 < 0, the antiferroelectric six-layer phase does not
form. However, if the interaction of third-nearest layers
a4(ξ i · ξ i+4) is taken into account, for |a3| < 2a4 the ferrielec-
tric SmC∗

d6/4F phase [Fig. 2(g)] becomes stable. The stability
region of this phase is given in Fig. 4(c) for a4 = 2 × 10−5.
It is worth noting that for a4 > 0 the third-nearest layer
interaction in equal manner stabilizes both six-layer structures
SmC∗

d6/4A and SmC∗
d6/4F. The contribution of the interaction

to the energy of these structures per layer is the same and
equals −1/3a4|ξ |2. Figures 6(a) and 6(b) show the stability
regions of SmC∗

d6/4F and SmC∗
d6/4A structures in the param-

eter space of long-range interactions (a3, a4). For a4 > 0 the
vertical axis is the coexistence line of two six-layer phases.
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FIG. 6. Stability regions of SmC∗
d6/4F (a), SmC∗

d6/4A (b), SmC∗
d3

(c), SmC∗
d6/2A (d) phases (uniplanar model) in the parame-

ter space of long-range interactions (a3, a4). α = 0.01K−1, T −
T ∗ = −10 K, b0 = 1, a2 = 0.01. a1 = −0.005 (a), (b), a1 = +0.005
(c), (d).

If synclinic orientation in nearest layers is changed to an-
ticlinic and vice versa, SmC∗

d6/4A and SmC∗
d6/4F phases trans-

form into ferrielectric SmC∗
d3 and antiferroelectric SmC∗

d6/2A
structures shown correspondingly in Figs. 2(f) and 2(h). The
sequence of six layers that forms from SmC∗

d6/4A comprises
two periods of the SmC∗

d3 phase [Fig. 2(f)]. Precisely the same
structures, SmC∗

d3 and SmC∗
d6/2A, form in the right part of the

phase diagram in Fig. 3 with the antiferroelectric SmC∗
A phase

and positive ratio a1/a2 ≈ 0.5. Stability regions of SmC∗
d3

and SmC∗
d6/2A structures as function of parameters (a3, a1/a2)

are shown in the right part of Fig. 4. Stability regions in the
parameter space of long-range interactions (a3, a4) are shown
in Figs. 6(c) and 6(d). For a1 < 0 [Figs. 4(a) and 4(c)] and
a1 > 0 [Figs. 4(b) and 4(d)] stability regions of SmC∗

d6/4A and
SmC∗

d3, SmC∗
d6/4F and SmC∗

d6/2A can be obtained from each
other by mirror reflection with respect to the vertical axis. The
reason is that if in SmC∗

d6/4A and SmC∗
d6/4F phases synclinic

orientation in nearest layers is changed to anticlinic and vice
versa, the energies of nearest- and second-nearest neighbor
interactions change sign, and the energies of next-nearest and
third-nearest neighbor interactions do not change.

III. DISCUSSION

To date, there have been reports of experimental obser-
vation of three (SmC∗

d3, SmC∗
d6/4A, SmC∗

d6/4F) from four
(SmC∗

d3, SmC∗
d6/4A, SmC∗

d6/4F, SmC∗
d6/2A) structures ob-

tained in calculations. Let us discuss in more detail what may
be the reasons behind the appearance of these structures.

Antiferroelectric SmC∗
d6/4A [Fig. 2(e)]. Change in the or-

der parameter modulus |ξ i | from layer to layer [9], fluctua-
tions of smectic layers [11,37], and long-range interactions
a3(ξ i · ξ i+3) can stabilize this structure. It is worth noting that
the flexoelectric effect, which is considered as the origin of
second-nearest layer interaction, leads to the opposite sign
of a3 [8] than required for the appearance of the SmC∗

d6/4A
phase. So stabilization of the SmC∗

d6/4A phase can arise due
to modulation of |ξ i | from layer to layer, fluctuations, or
from a different mechanism of second-nearest layer interac-
tion, which leads to a3 > 0. In spite of different mechanisms
leading to the appearance of multilayer structures, when long-
range interactions or the spatial change of the order parameter
modulus are taken into account [38] not only SmC∗

d6/4A,
but also the five-layer SmC∗

d5 are observed in both models
[33,38]. Moreover, in the model with nearest- and next-nearest
layer interactions, when |ξ i | can change from layer to layer,
the degeneracy is lifted [38] and SmC∗

d5 exists in a narrow
range between SmC∗

d6/4A and SmC∗
d4.

Ferrielectric SmC∗
d3 [Fig. 2(f)]. Different mechanisms can

contribute to the appearance of this structure: spatial modu-
lation of |ξ |, fluctuations of smectic layers, and long-range
interlayer interactions. A negative value of a3, which favors
the SmC∗

d3 phase, correlates with the flexoelectric mechanism
[8] of the appearance of long-range interlayer interaction
a3(ξ i · ξ i+3). Seemingly due to the combination of different
mechanisms, SmC∗

d3 is observed in numerous compounds. It
is worth noting that the combined effect of several mecha-
nisms shifts the boundary of stability region of the SmC∗

d3
phase (the vertical line in Fig. 6) towards positive a3. For
a1/a2 = 0.5, a2 = 0.01 the SmC∗

d3 phase remains stable up
to a3/a1 < 5 × 10−3. Since for the stabilization of the SmC∗

d3
phase in the temperature interval ∼1 K a small value of
the long-range interaction |a3/a1| < 10−2 is required, several
mechanisms of stabilization of the SmC∗

d3 structure have
to be taken into account. An analogous shift occurs at the
coexistence line of SmC∗

d6/4F and SmC∗
d6/4A (Fig. 6). The

boundary between SmC∗
d3 and SmC∗

d4 phases [thick solid
line in Fig. 4(b)] is the degeneracy line on which a 10-layer
antiferroelectric structure SmC∗

d10 can exist [33]. The SmC∗
d10

phase also forms when the order parameter modulus can
change from layer to layer [33,38].

Ferrielectric SmC∗
d6/4F [Fig. 2(g)]. The phase is formed

when the second-nearest and third-nearest layer interactions
are present [Fig. 6(a)]. Experimental observation of this struc-
ture [17] can be an indication that second-nearest and third-
nearest layer interactions are close by magnitude.

Antiferroelectric SmC∗
d6/2A (Fig. 2(h), 4(d), 6(d)). Up to

now the discovery of this structure has not been reported.
Its appearance is the least probable with respect to other
considered structures. It can form for positive a3 (which does
not correlate with the flexoelectric mechanism of next-nearest
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neighbor interlayer interaction [8]) and for a large value of the
third-nearest neighbor interlayer interaction.

Now let us briefly discuss the influence of chiral interaction
on the phase diagrams. The free energy [Eqs. (1)–(3)] is used
in calculations. We illustrate the influence of chirality on the
example of the phase diagram in Figs. 4(a) and 4(b). At high
chirality when the period of the SmC∗

A phase is about 50
layers (f = 0.002, b = 0.09) the point |a1/a2| = 0.5, a3 = 0
is shifted to smaller |a1/a2| values [the open point in Figs. 4(a)
and 4(b)]. The stability region of the SmC∗

d3 phase also shifts
to smaller a1/a2. The width of the SmC∗

d3 phase somewhat
decreases (for a3 = −3 × 10−5 the width of the stability range
of the SmC∗

d3 phase is about 0.036 in the absence of chirality
and about 0.034 with chirality). The SmC∗

d3 phase appears
for finite a3 (a3 ≈ −1 × 10−6). An analogous shift occurs
for the stability range of the SmC∗

d6/4A phase [Fig. 4(a)].
These shifts do not induce a qualitative transformation of the
phase diagram. We may conclude that a minimal uniplanar

model can be used to describe the main features of the phase
diagrams and temperature sequences of the phases.

In this work, analysis of the appearance of multilayer polar
smectic phases was performed. It is demonstrated how dif-
ferent interlayer interactions can induce formation of various
multilayer structures. Stability regions of six-layer phases
were determined in the parameter space of interlayer inter-
actions. The emergence of these phases is related to specific
synclinic-anticlinic symmetry of their structures. A change
of synclinic orientation in the nearest layers to anticlinic and
vice versa leads to transformation of six-layer antiferroelectric
structures to ferrielectric. At this transformation the energy
does not change if certain interlayer interactions change sign.
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