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Biaxial layering transition of hard rodlike particles in narrow slitlike pores
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The phase behavior of hard rectangular rods with edge lengths L, D, and D is studied in a narrow slitlike pore
using the Parsons-Lee density functional theory. Using the restricted orientation approximation, we find strong
adsorption at the walls with planar ordering, second order uniaxial-biaxial ordering transitions, and first order
layering transitions. The layering transition takes place between two fluids having n and n + 1 layers, where the
layer spacing is on the order of D. In the case of weak shape anisotropy (L/D = 3), the coexisting fluids can
be either uniaxial or biaxial, while both phases are found to be biaxial for L/D = 6 and L/D = 9. Interestingly,
even two or more layering transitions can be observed with increasing density at a given shape anisotropy and
pore width.
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I. INTRODUCTION

Over the years, anisotropic colloidal particles have been
investigated experimentally [1–6], theoretically [7–11], and
using computer simulations [12–14]. Despite numerous stud-
ies on anisotropic colloidal particles, the bulk and confined
properties of colloidal systems are still very interesting from
both the scientific and industrial point of view due to their
stimulating phase behaviors and to the convenient alignment
of the anisotropic molecules by surfaces and external electric
(magnetic) fields [15,16]. Lyotropic liquid crystals are one
group of colloidal particles consisting of high-molecular-
weight particles where the mesophase structures originate from
gaining entropy only [17]. They even show much richer and
fascinating phase behavior in pores because the confinement
gives rise to different anchoring and surface induced ordering
phenomena like capillary nematization, smectic-A, columnar,
and T phases [9,16,18,19]. The observed rich phase behavior
is purely due to the presence of different particle-particle and
particle-wall interactions and to the competition between them
[20]. The understanding and prediction of the self-assembly of
colloidal nanoparticles (including the metallic and semicon-
ducting nanorods) in nanopores are very important theoretical
problems due to the widespread application of nanoelectronic
devices [21–23]. In this regard, hard rods such as the hard
parallelepipeds with square or different cross sections can serve
as a good model system to understand the ordering properties
of confined metallic nanorods, which have been synthesized
using different materials [24].

Hard rods placed between two planar hard walls accumulate
in planar order at the walls and exhibit a surface phase transi-
tion between isotropic and nematic films, where the nematic
wetting is complete [9,25,26]. The high density smectic and
solid structures of hard rods are also affected by the presence
of walls. For example, finite and infinite sequences of layering
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phenomena were reported for a smectic film near an attractive
wall [27,28]. A layering transition, where the particles are in
smectic order, was predicted for confined hard spherocylinders
in the high density regime by de las Heras et al. [29]. They show
that in wide pores there is a first order layering transition from
a smectic phase with n layers (Sn) to n + 1 smectic layers
(Sn+1) where the Sn, Sn+1, and nematic phases meet and a
triple point is established by these three phases. However,
this situation is different for enough narrow pores where the
triple points vanish and the layering transition terminates at
a critical point [29]. First order layering transitions were
also observed for confined biaxial hard particles using the
Onsager’s second virial theory [30]. The presence of layering
transition was also investigated in a mixture of hard parallel
cylinders with the same diameter but different lengths near a
hard wall [31] and between two parallel walls [22]. In addition
to the layering transitions a demixing between two phases was
observed, where one phase is rich in short rods, and the other
in long rods [22]. The entropic wetting of a binary mixture
of hard spheres near a hard wall using fundamental measure
theory was also investigated [32]. Depending on the value
of the hard wall offset parameter, this system shows wetting
and layering transition. Layering behaviors have also been
observed in colloidal-polymer mixtures [33–35] and in the
system of confined two-dimensional hard rods [36–39].

In this paper, we study the surface induced biaxial ordering
and the layering transitions of hard parallelepipeds in slitlike
pores, where L/D is constant and the wall-to-wall separation
is changed. We determine the structure and the possible phase
transitions at the following three different shape anisotropies:
L/D = 3, L/D = 6, and L/D = 9. We report here the layer-
ing transition between two biaxial nematic phases, where the
thickness of the layers is on the order of D.

II. THEORY

The phase behaviors of confined hard parallelepipeds of
square cross section with edge lengths L, D, and D, which
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are placed between two parallel hard walls, are investigated
using the Parsons-Lee modification of the second virial density
functional theory [16,40]. The hard walls are located at z = 0
and z = H positions and they are infinite in the x-y plane.
We use the three-state restricted orientation approximation (or
Zwanzig approximation [41]), where the particles are allowed
to orient along the x, y, and z directions. In addition to this, we
do not consider the high density in-plane crystalline ordering;
i.e., the local density of orientation i (ρi , where i = x, y, z)
is assumed to depend on the z coordinate only.

As the particle-particle and the particle-wall interactions
are hard repulsion, the system is athermal and the temper-
ature (T ) does not play a role in the phase behavior of the
system. Therefore our confined system is entropy (S) driven
and the minimum of the free energy (F ) determines the
equilibrium phase behavior (F ∼ –T S). We can write the
free energy as a sum of ideal, excess, and external terms
(F = Fid + Fexc + Fext ). The ideal free energy term prefers the
homogeneous distribution of the particles in both orientation
and position and it is given by

βFid

A
=

∑
i=x,y,z

∫
dzρi (z)[ln ρi (z) − 1], (1)

where β is the inverse temperature and A is the surface area.
The excess free energy term is responsible for the stabilization
of the ordered phases since it has a minimum for such a
structure where the excluded volume between two particles
is minimal. We can write this part as follows:

βFexc

A
= 1

2
c

∑
i,j=x,y,z

∫
dz1ρi (z1)

∫
dz2ρj (z2)Aij

exc(z1 − z2),

(2)
where c = (1 − 3η/4)(1 − η)−2, η is the packing fraction,
and A

ij
exc is the excluded area between two particles with

orientations i and j . The last term, which restricts the particles
to be located between the two hard walls, can be written as

βFext

A
=

∑
i=x,y,z

∫
dzρi (z)βV i

ext (z), (3)

where V i
ext is the external potential, which is infinite if a

particle with orientation i overlaps with the walls and it is
zero otherwise. We determine the equilibrium local density
at a given packing fraction (η) and the wall-to-wall distance
(H ). Here we do not present the minimization procedure of the
free energy and the applied numerical methods, because these
have been already written down in our previous publication
[16]. We take D as a unit of the length; i.e., z∗ = z/D is the
dimensionless distance and ρ∗ = ρ D3 is the dimensionless
density. The resulting local densities of different structures
obtained from the minimization of the free energy and the
phase diagrams are presented in the following section.

III. RESULTS

We examine the orientational and positional ordering of
hard parallelepipeds with square cross section in such a narrow
slitlike pore, where the wall-to-wall distance between the two
planar hard walls allows the formation of only one layer in
homeotropic order (the long axes of the particles are along

the z axis), which can be achieved with the condition of L <

H < L + D. However, several layers can be realized in planar
order as the rods are of intermediate length (3D < L < 9D).
The lowest limit of the number of planar layers is 2, because
the planar adsorption at the two walls is always present, while
the upper limit is the integer of H/D, which does not exceed
nine even for the widest pore (Hmax = 10 D). Therefore, all
of the examined systems can be considered as quasi-two-
dimensional (q2D), because uniform fluid structures cannot
develop in the middle of the pore at intermediate and high
densities. For example, in order to detect capillary nematization
the wall-to-wall distance (H ) should be about three times
longer than the length of the rod (L). The competing structures
with such conditions are the planar isotropic, the nematic, and
the layered. The planar isotropic is a q2D isotropic phase,
where the adsorbed particles are parallel with the walls, but
there is no in-plane orientational order. The nematic one is
actually a biaxial or q2D nematic phase, because the planar
order is accompanied by in-plane orientation order. Finally
the layered structure can be either a homeotropic monolayer,
where the rods are oriented perpendicularly to the walls, or
it consists of n layers of planar monolayers. As we choose
L/D = 3, 6, and 9 in this study, the close packing structure
is degenerated. This is due to the fact that the homeotropic
and planar layers can fill the 2D plane perfectly and the out-
of-plane space filling is the same for both layered structures.
This means that the maximum of the packing fraction is the
same for both structures, i.e., ηmax = L/H = int(H/D)/H
for all integer L/D and L < H < L + D. Even though the
homeotropic monolayer structure can be very competitive
with the planar ones in very narrow pores (H < 3D) [16],
the translational entropy is now more dominant and works
against the homeotropic ordering. This is simply the conse-
quence of the available distance along the pore, which is H -D
in the planar, while it is only H -L in the homeotropic ordering.
As a result the translational entropy shifts the homeotropic
order into the region of the packing fraction, which can be
above its close packing value (ηmax). Note that our approximate
DFT does not take into account that η must be lower than
ηmax as the free energy functional diverges at η = 1 and not at
η = ηmax [see c in Eq. (2)].

Now we continue with the phase diagram of the confined
hard rods with L/D = 3 and pore width 3 < H/D < 4, which
is presented in Fig. 1. As we do not examine the stability
of possible solid phases, we show the phase diagram below
η = 0.7. This value is very close to ηmax(H/D = 4) = 3/4,
but a bit far from ηmax(H/D = 3) = 1. At low densities (η)
the phase is isotropic with planar ordering at the walls and
there are homeotropically ordered particles in the middle of
the pore, which is due to the gain in the entropy of mixing
and packing entropy. As the planar ordering is very efficient
in maximization of the available volume (or minimization of
the excluded volume) at the walls, the wall induced adsorption
creates such a high density at the walls that the excluded area
can be lowered substantially with the in-plane nematic ordering
at intermediate packing fractions. Therefore a second order
q2D isotropic-nematic transition occurs, which corresponds to
planar isotropic (I )-biaxial nematic (BN ) transition in three
dimensions. The structures of the planar isotropic [ρx (z) =
ρy (z)] and the biaxial nematic [ρx (z) �= ρy (z) �= ρz(z)] phases
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FIG. 1. Phase diagram and observed phases of confined hard parallelepipeds of square cross section with L/D = 3. The coexisting packing
fractions as a function of wall-to-wall distance (a) and the density profiles of different phases from (b) to (e) are shown. The observed phases
are isotropic with planar adsorption at the walls (I ), surface induced biaxial nematic (BN ), three-layer isotropic (3LI ), and three-layer biaxial
nematic (3LBN ). The locations of the density profiles of (b–e) are marked by different symbols in the phase diagram. The dotted curve comes
from the condition of ρx (z = H/2) = ρz(z = H/2). The biphasic region is shaded in green (patterned with vertical lines).

are shown in Figs. 1(b) and 1(c). Figure 1(a) shows that
the I -BN transition density decreases with increasing H if
the number of planar layers is two. The reason for this is
that the fraction of particles staying in homeotropic order
decreases with widening pore. This is crucial because the
particles staying in homeotropic order are nonmesogenic as
they have square cross section. In wider pores planar ordering

with three layers emerges, where the peaks are narrower and the
particles of the opposite walls do not overlap with each other
[see Figs. 1(d) and 1(e)]. This way of packing makes it possible
to stabilize the planar isotropic order at higher densities.
Therefore the orientational ordering transition between three-
layer isotropic (3LI ) and three-layer biaxial nematic (3LBN )
is shifted to higher packing fractions and it is second order.
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FIG. 2. Phase diagram and observed phases of confined hard parallelepipeds of square cross section with L/D = 6. The coexisting packing
fractions as a function of wall-to-wall distance (a) and the density profiles of biaxial phases with four (b) and five layers (c) are shown. The
observed phases are the isotropic with planar adsorption at the walls with four or five planar layers (4LI and 5LI ) and surface induced biaxial
nematic with four to six planar layers (4LBN , 5LBN , and 6LBN ). The locations of the density profiles of (b,c) are marked by different symbols
in the phase diagram. The dotted curve comes from the condition of ρx (z = H/2) = ρx (z = H/2 − �z). The biphasic regions are shaded with
different colors and different patterns.

The I -BN and 3LI -3LBN transitions are not connected,
but a first order phase transition separates them from each
other. Depending on the value of H this first order transition
takes place between different structures: BN -3LBN for 3 <

H/D < 3.28, BN -3LI for 3.28 < H/D < 3.34, and I -3LI

for 3.34 < H/D < 3.51. Note that a reentrant phenomenon
occurs for 3.28 < H/D < 3.34 as a I -BN -3LI -3LBN phase
sequence takes place with increasing density. Here both the
isotropic and the nematic phases are reentrant. The low density
isotropic phase with two planar layers and the high density
isotropic phase with three planar layers are interrupted with
biaxial nematic order. In the case of biaxial order there is a
3LI phase between the low and high density biaxial nematic
phases. The I -3LI transition terminates in a critical point at
H/D = 3.51. At wider pores the isotopic phase can transform
continuously into 3LI as there are fewer particles with ordering
along the z axis. To prove that the order of phase transition is
related with the amount of homeotropically ordered rods, we
show the results of ρx (z = H/2) = ρz(z = H/2) as a dashed
curve in Fig. 1(a), which turns out to be the continuation of
the phase transition. In wider pores the fraction of particles

with homeotropic orientation decreases substantially, because
the homeotropic particles interact with all planar layers, which
has a high excluded volume cost. Therefore the planar ordering
becomes stronger and more planar layers evolve in wide pores.
This can be seen in Fig. 2, where L/D = 6 and 6 < H/D < 7.
One can see that as the particles are more anisotropic, the
planar isotropic-biaxial nematic transition occurs at lower
packing fractions, which depends very weakly on H [see
Fig. 2(a)]. Now the number of planar layers can be four or
five at the orientational ordering transition even if six layers
can accommodate into the pore. The typical biaxial phases with
four and five planar layers are shown in Figs. 2(b) and 2(c).
With increasing density the appearance of a new planar layer
can decrease further the free energy in such a way that the
excluded volume gain is more than the loss in the transitional
entropy. The emergence of a new planar layer is usually not
continuous, because it requires the movement of the existing
layers to the direction of the walls, which produces less room
for the existing layers. If this structural change is accompanied
by increasing the free energy at some densities, a first order
phase transition connects the old and the new structures. This
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FIG. 3. Phase diagram and observed phases of confined hard parallelepipeds of square cross section with L/D = 9. The coexisting packing
fractions as a function of wall-to-wall distance (a) and the density profiles of some phases (b,c) are shown. The observed phases are isotropic
with planar adsorption at the walls with six or seven planar layers (6LI and 7LI ) and surface induced biaxial nematic from six to nine planar
layers (6LBN , 7LBN , 8LBN , and 9LBN ). The locations of the density profiles of (b,c) are marked by different symbols in the phase diagram.
The dotted curve comes from the condition of ρx (z = H/2) = ρx (z = H/2 − �z). The biphasic regions are shaded with different colors and
also with different patterns.

happens here, where a layering transition takes place between
two biaxial nematic phases, where the number of planar layers
changes from four to five or five to six. It can be seen in Fig. 2(a)
that the pore is wide enough for continuous structural change
from four to five planar layers if H/D > 6.27. The emergence
of the new peak in the middle of the pore can be examined with
the change of the density profile in the vicinity of the center
of the pore as follows: ρx (z = H/2) = ρx (z = H/2 − �z),
where �z is the grid size in the numerical calculation. This
equation provides the packing fraction of the structural change,
which is shown with a dotted curve in Fig. 2(a). It is interesting
that even two layering transitions emerge with increasing
packing fraction for H/D < 6.27. In addition to this, both
5LBN and 6LBN phases can be destabilized with narrowing
the pore because the accommodation is harder with more
layers. The phase diagram of L/D = 9 is very similar, but
it is more complex due to the increasing number of layered
phases. The wall induced biaxial nematic order is stabilized at
very low packing fraction and three layering transitions take
place between the biaxial nematic phases having n and n + 1
planar layers (n = 6, 7, and 8). Figure 3(a) shows that the every
layering transition weakens with increasing H and the layering

with six and seven layers terminates in a critical point. Our
results show also that all layering transitions have a finite range
of H for the existence. In addition to this the range of H , where
an n–n + 1 layering transition exists, widens with increasing n.
Therefore even more layered phases can exist for H/D > 10
even if the minimum number of layers also increases with H .
Interestingly, the accommodation into seven layers is still hard
with increasing density as a first order layering transition exists
between six and seven layers for 9 < H/D < 9.13, even if
there is room even for nine layers. However, the change in
the number of planar layers can be done continuously with
increasing density at wider pores, because the local density is
almost constant in the neighborhood of the pore’s center and
the new peak can emerge easily in the middle of the pore. This
can be seen in Figs. 3(b) and 3(c), where the density profiles
indicate six and seven layers at H/D = 9.2, respectively. The
formation of eight layers from seven is harder, because the
central layer of the 7LBN structure should split into two peaks.
It is even harder to find a room for the ninth layer in the 8LBN

structure. As a result both—seven to eight and—eight to nine
layering transitions are first order, and weaken with increasing
H and terminate in critical points at H > 10D. From these
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results we expect that more and more layering transitions
emerge with increasing shape anisotropy if the wall-to-wall
distance satisfies the L < H < L + D condition.

Finally, regarding the validity of our results, we can say
that the applied theory overestimates the order of the layering
transitions and the extent of the nematic ordering due to the
approximate nature of the second virial theory and the applied
three-state restricted orientation approximation.

IV. SUMMARY

We have shown that a wall induced biaxial nematic ordering
and a layering transition involving planar isotropic and biaxial
nematic phases can exist if the particle-particle and the particle-
wall interactions are hard repulsive. It is demonstrated that
the rodlike particles prefer the planar ordering and they are
adsorbed at the walls due to the excluded volume gain by
the planar adsorption. At higher densities the biaxial nematic
ordering emerges as the surface density of the adsorbed
particles exceeds the isotropic-nematic transition density of
2D hard rectangles. The biaxial ordering occurs at lower
densities with increasing shape anisotropy due to the higher
packing entropy gain over the orientational entropy loss. The
mechanism of the layering transition is more complicated
because the biaxial nematic phase is inhomogeneous between
the two planar walls. As the walls are close to each other, the
inhomogeneous fluid structure cannot relax to the bulk value
in the middle of the pore and the interference of the wall effects
determines the number of layers. We have observed that two
planar fluid layers are always present and they are located
at the walls, but a homeotropically ordered layer competes
with the planar one in the middle of the pore. At weak shape
anisotropy (L/D = 3) we have found that the middle of the
pore is dominated by a fluid layer with homeotropic order,
which becomes weaker with widening pore width. This is
due to the fact that the formation of an extra planar layer
is easier in wider pores. The homeotropic layering becomes
weaker for L/D = 6 and negligible for L/D = 9, because the
available room for the particle’s center is still on the order of

D in homeotropic order (H -L), while it becomes very large in
the planar one (H -D) as L < H < L + D. As the number of
planar layers cannot exceed the integer of H/D, the number
of layering transitions is limited. We have detected layering
transitions between biaxial nematic phases having n–1 and n

layers, where n = 3 for L/D = 3; n = 5 and 6 for L/D = 6;
and n = 7, 8, and 9 for L/D = 9. It is also shown that the n–1
to n layering transition terminates at a critical pore width (Hcr )
as the formation of a new peak or a split of the existing peak
into two in the middle of the pore can be realized with less
packing entropy cost in wider pores.

Our choices for the shape anisotropy and pore width are
specific in a sense that mixed planar-homeotropic phases,
which consist of n planar layers and m homeotropic ones, are
not allowed to form. If we allow H to be greater than L + D,
the number of possible additional structures increases as we
have shown in our previous study [16]. It is also true that the
present restricted orientation approximation and the neglect
of possible solid phases have both qualitative and quantitative
effects on the phase diagram of the confined parallelepipeds.
Therefore the inclusion of the full rotational freedom and the
in-plane positional order into the theory should be performed
to prove the existence of layering transitions occurring at
very high densities. It would be also useful to examine the
present system with fundamental measure density functional
theory, which has been extended for freely rotating hard rods
and describes correctly the dimensional crossover [42–47].
However we believe that our results are qualitatively correct
because a Monte Carlo simulation study of freely rotating and
moving hard squares confined between two parallel hard lines
also shows a layering transition between n–1 and n layers [48].
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