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Colloidal clusters consist of small numbers of colloidal particles bound by weak short-range attractions.
The equilibrium probability of observing a cluster in a particular geometry is well described by a statistical
mechanical model originally developed for molecules. To explain why this model fits experimental data so well,
we derive the partition function classically, with no quantum-mechanical considerations. Then, by comparing and
contrasting the derivation in particle coordinates with that in center-of-mass coordinates, we physically interpret
the terms in the center-of-mass formulation, which is equivalent to the high-temperature partition function for
molecules. We discuss, from a purely classical perspective, how and why cluster characteristics such as the
symmetry number, moments of inertia, and vibrational frequencies affect the equilibrium probabilities.
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I. INTRODUCTION

A colloidal cluster consists of a small number of colloidal
particles, often spherical, that are held together by short-range
attractions. Experimentally, such systems can be made by
isolating small numbers of colloidal microspheres in two [1,2]
or three dimensions [3,4] in the presence of micelles or
small particles, which induce a depletion attraction [5–7] be-
tween the microspheres. When the attractive interactions are
weak, the particles can rearrange into different configurations
on experimental timescales. Studies of these configurations
yield insights into nucleation barriers [4,8], the glass transi-
tion [9,10], and the emergence of a phase transition as the size
of a system increases [4,11].

Over the past few years, the minimal-energy configurations
of small colloidal clusters have been studied extensively in
experiment, theory, and simulation [1,3,4,8,10–20]. We and
others [1,3,14,17] have found that a statistical mechanical
model originally developed for molecules can accurately pre-
dict the equilibrium occurrence frequencies of the minimal-
energy structures. In some ways, the agreement makes sense:
The particles have well-defined interactions, are small enough
to display Brownian motion, and can reach thermal equilib-
rium on experimental timescales. There is no reason statistical
mechanics should not describe their properties.

However, it is perplexing that a molecular model usually
derived from quantum-mechanical arguments can so accu-
rately predict the properties of a purely classical system. Typ-
ical colloidal particles are around a micrometer in diameter,
or 10 000 times the diameter of a hydrogen atom. Unlike the
atoms that make up molecules, the particles that make up
clusters are in principle distinguishable, since each particle
contains a different number of molecules or has a different
size. Even the rotations of spherical colloidal particles are
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(again, in principle) observable; the particles might have a
small optical anisotropy or a slight eccentricity that can be
used to measure orientation. None of these features are taken
into account in the molecular model. Why and how does it
describe classical systems?

To answer this question, we derive the partition function for
colloidal clusters, starting from classical statistical mechanics
and leaving out all quantum mechanical considerations. Our
goal is to clarify the underlying physics; more rigorous and
general derivations can be found in the work of Holmes-
Cerfon and Kallus [18–20]. We use our derivations to explain
how properties such as the symmetry number, moments of
inertia, and vibrational frequencies affect the equilibrium
probability of observing a particular cluster structure. The
roles of these properties are often interpreted in terms of
quantum mechanics or dynamics, but, as we will show, their
effects can be understood in terms of classical physics and
geometry.

A. Background

To motivate our work, we first describe the equilibrium
between two cluster structures with N = 6 spherical particles.
The equilibrium ratio of the two structures was explored
in simulation by Malins et al. [12] and in experiment by
Meng et al. [3] and Perry et al. [4]. The experiments used
micrometer-scale spherical particles that were held together
by short-range, attractive depletion interactions.

For the six-particle system, there are two structures that
minimize the total potential energy: the octahedron and trite-
trahedron (Fig. 1). Both have the same number of interacting
pairs of spheres (bonds) and hence the same potential energy,
but the tritetrahedron occurs 24 times more often in an equi-
librium ensemble.

To understand why the tritetrahedron occurs so much more
often, Meng et al. used a statistical mechanical model orig-
inally developed for molecules, in which the total partition
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FIG. 1. Equilibrium between octahedral and tritetrahedral struc-
tures. Meng et al. experimentally observed the tritetrahedron (bot-
tom) 24 times as often as the octahedron (top) [3]. This difference is
due primarily to the tritetrahedron’s higher rotational entropy.

function Q′ is written as the product of partition functions
for collective translations, rotations, and vibrations: Q′ =
Q′

transQ
′
rotQ

′
vib. Each term represents a different entropic con-

tribution to the free energy. Because the partition function is
proportional to the probability of observation in equilibrium,
the ratio of the partition functions for the tritetrahedron and
octahedron should be 24:1.

Meng et al. found that the largest contribution to the factor
of 24 comes from a factor called the symmetry number,
which accounts for all the permutations of particles that lead
to the same structure. The number of ways in which six
particles can form an octahedron, which has multiple axes of
fourfold, threefold, and twofold symmetry, is much smaller
than the number of ways in which six particles can form the
tritetrahedron, which has only one axis of twofold symmetry.
Thus, the octahedron has a much larger symmetry number
than the tritetrahedron. In equilibrium, the tritetrahedron is
therefore favored by a factor of 12, corresponding to the ratio
of symmetry numbers. We discuss the origin of the symme-
try number and its physical interpretation in more detail in
Secs. II and III. The remaining factor of 2 comes from a term
in the rotational partition function that is proportional to the
product of the moments of inertia, which differs between the
two structures, and the vibrational partition function, which
can be calculated using a harmonic approximation for the
potential.

The model can be generalized to two-dimensional sys-
tems [1,17] and to clusters with N > 6 particles, where the
number of minimal-energy structures increases rapidly with
N [3,4,19]. One interesting result from these studies is the
dominance of symmetry effects when N is small: Meng et al.
found that when N < 9, the clusters always favor asymmetric
configurations in equilibrium.

B. Overview

In what follows, we explain why the partition function can
be written in the form above and how the factors that appear
in the rotational and vibrational parts affect the equilibrium
probabilities. To do this, we first introduce the elements and

Particle Coordinates Center-of-mass Coordinates

FIG. 2. (a) In particle coordinates, the positions of every particle
(qi) are measured from the origin of a laboratory frame. (b) In center-
of-mass coordinates, we define a rotating frame (dark gray) with an
origin O at the cluster’s center of mass; the position of O relative to
the laboratory frame is given by q′. The rotating frame is chosen to lie
along the cluster’s principal axes. The standard Euler angles (the first
of which is φ′) describe its rotation relative to the laboratory frame.
Within the rotating frame, the coordinates of the vibrational modes
are denoted by ξ ′. Particles are also free to rotate about their own
centers of mass. Describing these rotations requires another rotating
coordinate system located at the center of mass of each particle (light
gray axes on left).

assumptions of our model in Sec. II A and then derive the
partition function in two different coordinate systems: par-
ticle coordinates (Sec. II B) and center-of-mass coordinates
(Sec. II C). The formulation in particle coordinates does not
lend itself to analytical calculations, whereas that in center-
of-mass coordinates can be used to explicitly calculate the
observation probabilities. However, the derivation in particle
coordinates is more general and we use it to gain physical in-
sights into the terms in the center-of-mass formulation. In the
discussion (Sec. III) we equate the two versions to explain the
origin and roles of the symmetry number and the dynamical
quantities that appear in the center-of-mass formulation: the
moments of inertia and the vibrational frequencies.

II. STATISTICAL MECHANICAL MODEL

A. Framework

We seek a model for the experimental observable Psk
, the

probability of observing a particular structure sk in an equi-
librium ensemble. For example, in the N = 6 case discussed
above, there are two structures: the octahedron, denoted by s1,
and the tritetrahedron, denoted by s2. In equilibrium, Psk

is
proportional to Qsk

, the partition function of sk:

Psk
= Qsk∑

l Qsl

, (1)

where the summation ranges over all structures sl in the
ensemble. In experiments, one usually counts only clusters
that represent minima in the energy as part of the ensemble.
Higher-energy states are ignored. We calculate the partition
function in the two coordinate systems illustrated in Fig. 2:
particle coordinates and center-of-mass coordinates.
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FIG. 3. An individual colloidal particle has six positional degrees
of freedom: three translational and three rotational. The three trans-
lational degrees of freedom have three conjugate linear momenta and
the three rotational degrees of freedom have three conjugate angular
momenta. The rotational degrees of freedom might be observed by
watching small defects on the surfaces of the particles or by dyeing
one hemisphere of each particle, as illustrated here.

1. Interactions

We assume that our system is at constant temperature and
that the interactions between particles are pairwise additive
and spherically symmetric. We also assume that the potential
is short ranged. These are good approximations for the exper-
imental systems discussed above: micrometer-scale, electro-
statically stabilized particles subject to depletion interactions
in water at moderate to high salt concentrations. The repul-
sions are short ranged because the salt screens electrostatic
interactions. The depletion attraction is short ranged because
the particles that cause it are typically much smaller than the
diameter d of the colloidal particles.

2. Degrees of freedom

We define the phase space of our system by the posi-
tional degrees of freedom and their conjugate momenta. We
implicitly account for the degrees of freedom of the solvent
molecules by using a potential of mean force to describe the
interactions between the particles. This potential is a thermal
average over all the configurations of solvent molecules [21].
Therefore, the phase space is determined by the degrees of
freedom of the particles alone.

To illustrate how the degrees of freedom differ in the
two coordinate systems, we consider a dimer. In the particle
coordinate system, the dimer has 12 positional degrees of
freedom: Each particle can translate in each of the three
dimensions, and each can rotate about three independent axes
centered on its center of mass. The rotational motions can in
principle be observed by tracking small defects on the surfaces
of the particles or by dyeing part of each particle, as shown in
Fig. 3. Interactions such as depletion change the distribution
of values for each degree of freedom relative to a gas, but they
do not change the number or type of degrees of freedom.

In the center-of-mass coordinate system, the dimer also
has 12 degrees of freedom (Fig. 4). Three correspond to
translations of the center of mass, two to rotations of the
cluster about its center of mass, one to vibrations of the bond,
and the remaining six to internal modes. An internal mode is

c.m. Translations

c.m. Rotations

c.m. Vibration

c.m. Internal

+

FIG. 4. In center-of-mass coordinates, a colloidal dimer has 12
degrees of freedom: three corresponding to full-body translations,
two to full-body rotations, one to vibration, and six others to internal
modes. The internal degrees of freedom arise from the rotations of
individual colloidal particles.

one where particles rotate about their own centers of mass,
either in the same direction or in the opposite direction as
their partners. The top left internal mode in Fig. 4 (bottom)
is equivalent to rotations of the entire dimer about its axis.

Importantly, none of these modes can be “frozen out,” as
might happen in a molecular system. In a diatomic molecule
such as N2, the excited vibrational states are not accessible
at room temperature, because the energy levels are much
larger than the thermal energy. In the classical dimer, all 12
modes can be excited, and we account for all of them in
our derivation. We do however neglect modes associated with
vibrations of the molecules inside the particles.

3. Distinguishability

Whereas in a molecule like N2 the two nitrogen atoms are
fundamentally indistinguishable (if they are the same isotope),
in a colloidal system the particles are distinguishable, as
discussed above. However, we can choose not to distinguish
the particles from one another. This is a common (if not
universal) tactic used in the analysis of experiments on col-
loidal self-assembly [22]. The term undistinguished, coined
by Sethna [23], describes the particles in this situation. We
assume undistinguished particles throughout.
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B. Partition function in particle coordinates

In particle coordinates, each particle has six positional
degrees of freedom (Fig. 3) (three translational and three
rotational) and six associated momenta (three linear and three
angular). Thus, a cluster of N particles has 6N positional
degrees of freedom and 6N associated momenta.

The translational degrees of freedom for the ith parti-
cle (qix, qiy, qiz) are measured as displacements from the
origin [Fig. 2(a)], which is fixed in the laboratory frame.
The set of all translational degrees of freedom is Q =
(q1x, q1y, q1z, . . . , qNz). The linear momentum corresponding
to the translational degrees of freedom for the ith particle is
pi = (pix, piy, piz), and the set of all linear momenta is P.

Each particle can also rotate about its own center of mass.
We describe these rotations using a rotating frame with its
origin at the particle’s center of mass [light gray axes in
Fig. 2(a)]. Each particle i can rotate through Euler angles
(φi, θi, ψi ) relative to the laboratory frame. The set of all
such angles is � = (φ1, θ1, ψ1, . . . , φN, θN,ψN ). The angular
kinetic energy of the individual particles depends on the set of
all momenta L conjugate to the Euler angles.

With the definitions above, we can express the Hamiltonian
H for a system of N particles as

H = U (Q) + K (P) + U (�) + K (L), (2)

where U is potential energy (again, a potential of mean force)
and K is kinetic energy. The canonical partition function Q is
then

Q ∝
∫

e−βHdQ dP d� dL, (3)

where β = 1/kBT , kB being Boltzmann’s constant and T the
temperature of our system. We use a proportionality symbol
because we have yet to determine the bounds and the prefac-
tors.

The bounds on the integral must be consistent with our
definition of the structure s. If we were to integrate over
all of phase space, then the partition function would include
all possible structures. Instead, we integrate only over those
parts of phase space in which the particles are arranged in a
particular structure s.

One way to define the structure is through an adjacency
matrix As [13,16], a symmetric N × N matrix. An element
Aij is equal to 1 if particle i is bound to particle j and 0
otherwise. To determine whether two particles are bound, we
must first set a cutoff distance �. For instance, � might be
the maximum range of the depletion force. For a short-range
interaction, (� − d )/d � 1. This definition requires assigning
a unique label to each particle in our structure.

We would like the partition function for a structure s

to integrate over all fluctuations of that structure, because
experiments do not distinguish structures by their center-of-
mass positions, orientations, or distances between particles
(as long as the center-to-center distance between particles is
less than �). The adjacency matrix As is a convenient way to
delineate the bounds on phase space because it describes the
structure irrespective of such fluctuations. Therefore, if we set
the bounds on the integral in Eq. (3) to include the region of
phase space in which the adjacency matrix is As , the partition

FIG. 5. Twenty-four of the 720 colorings, or label permutations,
of the octahedron. All of these colorings are equivalent through
rotations.

function will include contributions from the rotations of the
individual particles, translations of the entire cluster, rotations
of the entire cluster, and fluctuations in interparticle distances.

However, the adjacency matrix does not uniquely define
a structure. There are N ! different adjacency matrices that
correspond to the same structure, because there are N ! per-
mutations of particle labels. Some of these permutations
are identical to other permutations plus full-body rotations,
as illustrated in Fig. 5. Therefore, for any given adjacency
matrix, we must divide the partition function by a factor that
accounts for how many orientations are shared with a different
adjacency matrix. That factor is the symmetry number σs . It is
equal to 24 for the octahedron, as shown in Fig. 5.

The symmetry number σs accounts for all the ways in
which permutations plus rotations yield an identical cluster.
We discuss σs in more detail in Sec. III B. We note here that
because σs appears even in our classical derivation, it cannot
arise from any quantum mechanical considerations. As noted
by Gilson and Irikura [24], σs is a mathematical artifact arising
from how we define the region of phase space that we integrate
over.
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A further complication is that a given adjacency matrix
can correspond to chiral enantiomers [16] or two or more
geometrically distinct clusters [18]. Therefore, if we were to
integrate over the regions of phase space corresponding to one
such matrix, we would include contributions from structures
that an experimentalist might treat as different. However, we
will not use the partition function in particle coordinates to
evaluate the equilibrium probabilities; we use this version
only to gain insight into the partition function in center-of-
mass coordinates, which is much more tractable. With this
aim in mind, we restrict our discussion to only those cases
in which the adjacency matrix defines a single structure.

Finally, we must include a prefactor of 1/h6N for
dimensional consistency, where h is a placeholder for
any quantity with dimensions of momentum times length.
The exponent of 6N arises because there is one factor of h

for each conjugate pair of position and momentum in phase
space. We do not claim (nor do we need to claim) that h is
Planck’s constant, since the quantity h must cancel in the
statistical mechanical calculation of any classical observable.
It can appear only if a degree of freedom is frozen out, in
which case the calculation is no longer classical. The resulting
partition function for a structure s is

Qs = 1

σsh6N

∫
As

e−βHdQ dP d� dL, (4)

where the subscript As reminds us that the integral is over the
region of phase space corresponding to just one labeling.

The separability of the Hamiltonian in Eq. (2) allows
us to factor the partition function into configurational and
momentum components:

Qs = 1

σsh6N

∫
As

e−βHdQ dP d� dL

= 1

σsh6N

∫
As

e−βU (Q)dQ

∫
e−βK (P)dP

×
∫

e−βU (�)d�

∫
e−βK (L)dL

= 1

σsh6N
Qs,trans(Q,P) Qs,rot(�,L), (5)

where the last line defines the translational (Qs,trans) and
rotational (Qs,rot) components of the partition function in
particle coordinates. Note that the terms “translational” and
“rotational” refer to the degrees of freedom of individual
particles, not of the center of mass of the entire cluster. Note
also that this decomposition holds for all classical systems,
because the positions and the momenta always decouple in
the classical Hamiltonian. The adjacency matrix determines
the bounds only on the integral over Q. The bounds on the
linear-momentum integral extend from −∞ to +∞, and the
bounds on the integrals defining Qs,rot extend over all Euler
angles and associated momenta.

1. Translations and linear momenta

We first examine the part of the partition function corre-
sponding to translations of individual particles. From Eq. (5),

Qs,trans =
∫

As

e−βU (Q)dQ

∫
e−βK (P)dP. (6)

To understand how the structure affects the first integral,
we assign effective volumes to each particle in the cluster. We
can think of the first particle as free to wander the entire vol-
ume V of the container. The second particle, which is bound
to the first, is then constrained to a spherical shell around
the first particle with inner radius d and thickness � − d. The
effective volume corresponding to this particle depends on the
interaction potential, which weights the different regions of
the shell. A third particle would be similarly constrained to an
effective volume defined by the other particles, and so on.

We can therefore write the configurational partition func-
tion Zs as a product of volumes [25]:

Zs =
∫

As

e−βU (Q)dQ = V

N∏
i=2

Vs,i , (7)

where Vs,i is the effective volume that the ith particle is
allowed to explore in our structure s. Here we have assumed
that the volume of the container V is much larger than
the volume of a single particle. For certain structures, these
effective volumes can be calculated explicitly by transforming
the integral in Eq. (7) to internal coordinates [25,26].

We then integrate over the momenta. The kinetic energy is
that for a nonrelativistic classical system:

K (P) =
N∑

i=1

1

2mi

(
p2

ix
+ p2

iy
+ p2

iz

)
.

Thus, the translational part of the partition function in particle
coordinates is

Qs,trans =
∫

As

e−βU (Q)dQ

∫
e−βK (P)dP

= Zs

∫
exp

(
−β

N∑
i=1

p2
ix

+ p2
iy

+ p2
iz

2mi

)
dP

= Zs

N∏
i=1

(
2πmi

β

)3/2

, (8)

where the last line follows from evaluating the Gaussian
integrals for each momentum component. We note that be-
cause our (nongravitational) potential does not depend on the
particle masses, Zs also does not depend on the masses.

2. Rotations and angular momenta

Finally, we turn to the rotational component of the partition
function. From Eq. (5), this component is

Qs,rot =
∫

e−βU (�)d�

∫
e−βK (L)dL.

It accounts for the rotation of particles about their own centers
of mass.

We assume that the rotational potential energy depends
neither on the orientations of the particles nor on their po-
sitions in the cluster. Hence we can say U (�) = 0. This is
a good approximation for spherical colloidal particles subject
to depletion interactions, which are isotropic and short ranged.
The rotational kinetic energy of the cluster is the sum of that of
the individual particles and so the rotational component of the
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partition function is the product of the rotational components
of each particle.

Therefore, Qs,rot is a constant that depends on the number
of particles N and their moments of inertia, but not on the
structure s. We therefore drop the subscript s on the rotational
part and let Qs,rot = Qrot. Because Qrot cancels when we cal-
culate the probability of observing a structure s from Eq. (1),
we need not calculate it explicitly.

3. Complete partition function in particle coordinates

The complete partition function for a structure s in particle
coordinates is

Qs = 1

σsh6N
Qs,transQrot

= Qrot

σsh6N
Zs

N∏
i=1

(
2πmi

β

)3/2

= Qrot

σsh6N

(
2π

β

)3N/2
(

V

N∏
i=2

Vi

)
N∏

i=1

m
3/2
i . (9)

The version for quasi-two-dimensional systems is given in the
Appendix.

The probability of observing structure s1 relative to that of
s2, where both structures have the same N particles, is

Ps1

Ps2

= Qs1

Qs2

= σs2

σs1

Zs1

Zs2

, (10)

where Qrot has canceled because it does not depend on s. The
ratio of the probabilities is therefore inversely proportional to
the ratio of symmetry numbers and directly proportional to the
ratio of Zs , which is the product of effective volumes.

Equation (10) has a straightforward physical interpretation.
Structures with greater flexibility or range of internal motion
are favored in equilibrium because they have larger effective
volumes or, equivalently, larger Zs . As we discuss below,
Zs is related to vibrations and rotations in center-of-mass
coordinates. Equation (10) also shows that structures with low
symmetry are favored over those with high symmetry. We
discuss this effect in Sec. III B.

Finally, we note that the masses of the individual particles,
even if different, have no effect on the ratio of equilibrium
probabilities, as long as the total masses of the clusters are the
same. The masses cancel from the probability ratio under the
assumptions we have made.

C. Partition function in center-of-mass coordinates

Calculation of the equilibrium probabilities is simpler in
the center-of-mass coordinate system because we can make
the rigid-rotor–harmonic-oscillator approximation. Below, we
explain and justify this approximation and then derive the
partition function. We use a prime symbol to denote all
quantities defined in center-of-mass coordinates.

The rigid-rotor–harmonic-oscillator approximation allows
us to separate the Hamiltonian into terms that describe the
translation of the center of mass, rotations about the center
of mass, and vibrations of particles about their lowest-energy
(equilibrium) positions [27]. For this approximation to hold,
the amplitude of the vibrational motion must be small com-
pared to the equilibrium distance between particle centers.

In that case, we can treat the rotations of the cluster using
rigid-body mechanics and the vibrations using a normal-mode
framework.

We justify this approximation on three grounds. First,
we expect the vibrational motion to be small because the
interactions are short ranged for a typical colloidal system.
Second, Meng et al. [3,28] showed that a harmonic poten-
tial is a reasonable approximation for the combination of a
depletion interaction and electrostatic repulsion. Third, and
most importantly, Meng et al. showed that the predictions
of a statistical mechanical model based on the rigid-rotor–
harmonic-oscillator approximation gave excellent agreement
with experiment.

In applying this approximation, we must limit our analysis
to those clusters that rotate as rigid bodies. We therefore
exclude “singular” clusters, which are minima of the potential
energy but which contain zero-frequency vibrational modes.
Kallus and Holmes-Cerfon have shown how to calculate the
free energy for these clusters [19]. We restrict our derivation
to clusters that have 3N − 6 bonds and no zero-frequency
modes and that represent a minimum of the potential energy.
We impose these restrictions because our primary goal is to
give physical insight into the form of the partition function.

We can describe such a cluster in center-of-mass coor-
dinates using three translational, three rotational, 3N − 6
vibrational, and 3N internal degrees of freedom. As in particle
coordinates, there is a total of 6N positional degrees of free-
dom and 6N associated momenta. However, each positional
degree of freedom now describes a collective motion of all
the particles in the cluster.

We define our coordinate system as follows. There is a
laboratory frame with a fixed origin and a rotating frame with
an origin O at the center of mass of our cluster [Fig. 2(b)].
We choose the rotating frame such that the axes lie along the
principal axes of the cluster. For symmetric clusters, there may
be more than one choice of principal axes; we arbitrarily pick
one set.

Six degrees of freedom describe the position and orienta-
tion of the rotating frame relative to the laboratory frame. The
translational degrees of freedom q′ = (q ′

x, q
′
y, q

′
z) describe the

position of O relative to the laboratory origin. Their conjugate
linear momenta are p′ = (p′

x, p
′
y, p

′
z). The rotational degrees

of freedom �′ = (φ′, θ ′, ψ ′) are the standard Euler angles.
Their conjugate angular momenta are L′ = (p′

φ, p′
θ , p

′
ψ ).

With the harmonic approximation, we can describe the
vibrations of the cluster using a set of 3N − 6 orthogo-
nal harmonic modes. The displacement along the j th mode
is ξ ′

j , and the set of all vibrational displacements is ξ ′ =
(ξ ′

1, . . . , ξ
′
3N−6). When all the particles are in their lowest

potential-energy configurations, ξ ′ = 0. The momentum con-
jugate to the vibrational coordinate for the j th mode is χ ′

j and
the set of all vibrational momenta is χ ′.

Under these assumptions the Hamiltonian in center-of-
mass coordinates becomes

H′
s = H′

s,trans + H′
s,rot + H′

s,vib + Hrot

= Us (q′) + Ks (p′) + Us (�′) + Ks (L′)

+Us (ξ ′) + Ks (χ ′) + Hrot(�,L), (11)
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where, for completeness, we have included a term describing
the rotations of individual particles. The partition function Q′

s

is then

Q′
s = 1

σsh6N

∫
e−βH′

s dq′dp′d�′dL′dξ ′dχ ′d� dL

= Qrot

σsh6N

∫
e−βH′

transdq′dp′
∫

e−βH′
rotd�′dL′

×
∫

e−βH′
vibdξ ′dχ ′

= Qrot

σsh6N
Q′

s,trans(q
′, p′)Q′

s,rot(�
′,L′)Q′

s,vib(ξ ′,χ ′), (12)

where the last line defines the translational (Q′
s,trans), rota-

tional (Q′
s,rot), and vibrational (Q′

s,vib) partition functions in
center-of-mass coordinates. As we did in particle coordinates,
we express the contribution of individual particle rotations as
Qrot, which is a constant for all structures formed from the
same N particles. We also divide by the symmetry number σs

to avoid overcounting rotational states. We discuss the role of
the symmetry number in more detail in Sec. III B.

The expression for the partition function in Eq. (12) is
more tractable than the one in particle coordinates [Eq. (9)]
because we need not set any cutoff distances that depend on
the structure. Instead, we can integrate over all possible values
of the translational, rotational, and vibrational coordinates.

The absence of bounds that depend on the structure raises
the question of where exactly we specify the structure when
we calculate the integral. The structure is in fact encoded
in how the coordinates couple to the energies. For example,
different structures have different harmonic modes, and these
modes couple to the vibrational energy through a set of natural
frequencies that are different for each structure. Furthermore,
although the rotational modes of all the clusters are the
same—they represent rotations about three orthogonal axes—
these modes couple to the angular kinetic energy through the
principal moments of inertia, which differ from structure to
structure. Below, we analytically integrate the translational,
rotational, and vibrational partition functions and point out the
terms that define the structure.

1. Center-of-mass translations and linear momenta

We start by calculating the translational partition function
in Eq. (12), which is given by

Q′
s,trans =

∫
e−βU ′

s (q′ )dq′
∫

e−βK ′
s (p′ )dp′.

We assume that the potential energy of the cluster does not
vary with its position in space, such that U ′(q′) = 0.

The first integral in the translational partition function is
then equal to the volume available to the cluster, which is
the total volume V of the container less any volume that the
cluster cannot access without penetrating a boundary. We can
neglect this excluded volume if V � Vs , where Vs is some
measure of the volume of a particular structure. With this
approximation, ∫

e−βU ′(q′ )dq′ = V.

The second integral in the translational partition function
can also be analytically integrated. The translational kinetic
energy of the center of mass of the cluster is given by

K ′(p′) = 1

2M

(
p′2

x + p′2
y + p′2

z

)
,

where M = ∑N
i=1 mi is the total mass of the cluster. After

evaluating the resulting Gaussian integral, we find that

Q′
s,trans = V

(
2πM

β

)3/2

.

2. Center-of-mass rotations and angular momenta

The rotational partition function in center-of-mass coordi-
nates describes the free rotation of the cluster about its center
of mass:

Q′
s,rot =

∫
e−βU ′

s (�′ )d�′
∫

e−βK ′
s (L′ )dL′. (13)

We assume that the potential energy of the cluster is inde-
pendent of its orientation, such that U ′(�′) = 0. We need not
include a Jacobian term when the rotational partition function
is written in the form above, which is an integral over the
the Euler angles �′ = (φ′, θ ′, ψ ′) and their conjugate angular
momenta L′.

However, it is more natural to express the second integral
in Eq. (13) in terms of the angular velocities �′ of the cluster
about its principal axes:

�′
1 = θ̇ ′ sin ψ ′ − φ̇′ sin θ ′ cos ψ ′,

�′
2 = θ̇ ′ cos ψ ′ + φ̇′ sin θ ′ sin ψ ′,

�′
3 = ψ̇ ′ + φ̇′ cos θ ′,

where the overdots denote time derivatives and the subscripts
denote principal axes. The angular kinetic energy of the
cluster is then

K ′
s (�′) = 1

2

(
Is,1�

′2
1 + Is,2�

′2
2 + Is,3�

′2
3

)
, (14)

where Is,1, Is,2, and Is,3 are the principal moments of inertia,
which depend on the specific structure s.

Following Wilson [29], we change variables from the
conjugate momenta (p′

θ , p
′
φ, p′

ψ ) to the angular velocities
(�′

1,�
′
2,�

′
3). We calculate the momenta from derivatives

of the Lagrangian L′ = K ′ − U ′ with U ′ = 0 as discussed
above:

p′
θ = ∂K ′

s

∂θ̇ ′ = Is,1�
′
1 sin ψ ′ + Is,2�

′
2 cos ψ ′,

p′
φ = ∂K ′

s

∂φ̇′ = −Is,1�
′
1 sin θ ′ cos ψ ′

+ Is,2�
′
2 sin θ ′ sin ψ ′ + Is,3�

′
3 cos θ ′,

p′
ψ = ∂K ′

s

∂ψ̇ ′ = Is,3�
′
3. (15)

The change of variables introduces a Jacobian term

J = ∂ (p′
θ , p

′
φ, p′

ψ )

∂ (�′
1,�

′
2,�

′
3)

= Is,1Is,2Is,3 sin θ ′.
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We can then integrate to yield the rotational partition function

Q′
s,rot =

∫
e−βUs (�′ )d�′

∫
e−βKs (L′ )dL′

=
∫∫

Je−βUs (�′ )e−βKs (�′ )d�′d�′

= Is,1Is,2Is,3

∫
sin θ ′d�′

×
∫

exp

[
− β

2

(
Is,1�

′2
1 + Is,2�

′2
2 + Is,3�

′2
3

)]
d�′

= 8π2

(
2π

β

)3/2√
Is,1Is,2Is,3. (16)

3. Vibrational modes

Finally, we calculate the partition function associated with
the remaining 3N − 6 degrees of freedom. The vibrational
partition function is given by

Q′
s,vib =

∫
e−βU ′

s (ξ ′ )dξ ′
∫

e−βK ′
s (χ ′ )dχ ′.

The harmonic modes that we use to describe the vibrations
are the eigenvectors of the mass-weighted Hessian (where
the ikth entry is scaled by 1/

√
mimk). We select only the

3N − 6 modes that have nonzero eigenvalues. The j th eigen-
vector has an associated eigenvalue that we denote by ωj .
Thus, the vibrational potential energy can be expressed as a
product of squared displacements along the modes

U ′
s (ξ ′) = U0 +

3N−6∑
j=1

ω2
s,j

2
ξ ′2
j ,

where ξ ′
j is the displacement along the j th mode and U0 is the

total potential energy in the absence of vibrational excitations.
We set U0 = 0 from here on.

The vibrational kinetic energy is

K ′
s (χ ′) =

3N−6∑
j=1

1

2
χ ′2

j ,

where χj is the (mass-weighted) momentum along the j th
mode. We can then analytically integrate the vibrational parti-
tion function to obtain

Q′
s,vib =

∫
exp

⎛
⎝−β

2

3N−6∑
j=1

ω2
s,j ξ

′2
j

⎞
⎠dξ ′

×
∫

exp

⎛
⎝−β

2

3N−6∑
j=1

χ ′2
j

⎞
⎠dχ ′

=
3N−6∏
j=1

2π

βωs,j

.

4. Complete partition function in center-of-mass coordinates

Putting together the translational, rotational, and vibra-
tional components with the prefactor in Eq. (12), we obtain the
complete partition function of a structure s in center-of-mass

coordinates:

Q′
s = Qrot

σsh6N
8π2V M3/2

(
2π

β

)3N−3√
Is,1Is,2Is,3

⎛
⎝3N−6∏

j=1

1

ωj

⎞
⎠.

(17)

The version for quasi-two-dimensional systems is given in
the Appendix. We note that Qrot, which accounts for the
rotations of individual particles, will cancel in the calculation
of the cluster probabilities. Apart from the factor of Qrot/h3N ,
Eq. (17) is equivalent to the molecular partition function, in
that the same expression can be derived from the quantum
version of the Hamiltonian by taking the high-temperature
limit. In this limit, no modes are frozen out.

It is much easier to calculate an explicit value of the
partition function with the center-of-mass formulation (17)
than with the particle coordinate formulation (9). Apart from
Qrot, all the constants in Eq. (17) (the moments of inertia, the
vibrational frequencies, and the total mass) can be calculated
directly from the positions and masses of the particles. By
contrast, in Eq. (9), we must calculate the volumes associ-
ated with all fluctuations of the structure. Calculating these
effective volumes requires calculating a Jacobian for each
particle [25,26], because the momenta are already integrated
out. By using the rigid-rotor–harmonic-oscillator approxima-
tion and taking advantage of the separability of translations,
rotations, and vibrations, we are largely able to avoid the cal-
culations of Jacobians in Eq. (17). In the vibrational partition
function, for example, we use a coordinate system natural
to the vibrational modes (and different from that for the
rotational modes) and pair the positions along the modes with
their conjugate momenta.

However, this separability comes at a cost. Certainly it
sacrifices generality: Equation (9) does not rely on the rigid-
rotor–harmonic-oscillator approximation, whereas Eq. (17)
does. The results of experiments do agree with the predictions
of Eq. (17), establishing the validity of the approximation.
However, the more serious problem with Eq. (17) is that
it obscures the essential physics. It is written in terms of
moments of inertia and vibrational frequencies, dynamical
parameters whose names suggest that inertia and vibrations
can affect the equilibrium probability. As we discuss below,
the terminology associated with these quantities can lead to
confusion.

III. DISCUSSION

A. Moments of inertia and vibrational frequencies

Equation (17) might seem to suggest that the value of the
partition function would differ if we switched the location
of a massive particle with that of a lighter one in the same
structure. Say we have a structure s and a set of particles, all of
which have the same sizes and interactions, but one of which
is much denser than the others. A cluster with the denser
particle located near the center of mass will have much lower
moments of inertia than a cluster with the particle located
further away, as shown in Fig. 6. Therefore, the value of the
rotational partition function [Eq. (16)] will be much smaller
when the particle is closer to the center of mass. We might
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FIG. 6. Schematic of a tritetrahedral cluster with one particle
(blue) that is heavier than the others, but otherwise identical. In
this rendering, the pair interactions, or bonds, are shown as struts
connecting the particles, which are not drawn to scale. Although
the moment of inertia decreases if the particle moves from the
position shown on the left to that shown on the right, the equilibrium
probability of the cluster does not change, as discussed in the text.

then expect that in equilibrium, such a configuration would
occur less often than a configuration with the particle further
from the center of mass. This behavior is counterintuitive,
because we expect inertia to have no effect in a typical
colloidal suspension, where the surrounding liquid damps the
motion [30].

This apparent dependence on the location of the masses is
an artifact of the separation of the Hamiltonian into rotational
and vibrational components. In particle coordinates, where we
do not separate the Hamiltonian, the value of the partition
function clearly does not depend on the location of the par-
ticles: Equation (9) shows that only the product of the masses
matters. Thus, any changes to the moments of inertia resulting
from switching the masses must be compensated by changes
in the vibrational frequencies.

We can demonstrate this invariance to the positions of
the masses by equating the partition function in center-of-
mass coordinates [Eq. (17)] to that in particle coordinates
[Eq. (9)]. The value of the partition function for a given
structure s should be the same in both coordinate systems
if the rigid-rotor–harmonic-oscillator approximation is valid.
Several terms cancel when we equate the two, including Qrot,
σs , and h.

The remaining terms can be sorted into two groups: those
that depend on the particle masses and those that do not.
The terms that depend on the masses are the sum of masses
M , the product of the moments of inertia Is,1Is,2Is,3, and the
product of the vibration frequencies

∏3N−6
j=1 ωj . Terms that do

not depend on the masses include the volume V , the inverse
thermal energy β, and the configurational partition function
Zs , which, for a nongravitational potential, depends only on
the interactions and the positions of the particles and not their
masses. We can further group the terms that depend implicitly
on the masses (the moments of inertia and the vibrational
frequencies) on one side of the equation and the terms that
depend explicitly on the masses (M and

∏N
i=1 mi) on the

other [31]. We then find

f (V, β,Zs )
√

Is,1Is,2Is,3

⎛
⎝3N−6∏

j=1

1

ωj

⎞
⎠ =

∏N
i=1 m

3/2
i

M3/2
, (18)

where f (V, β,Zs ) is a function that depends neither implic-
itly nor explicitly on the masses. The form of Eq. (18) agrees
with that derived by Herschbach et al. [25].

We have therefore shown that the product of the moments
of inertia and the inverse vibrational frequencies is propor-
tional to the ratio of a product and a sum of the masses:

√
Is,1Is,2Is,3

⎛
⎝3N−6∏

j=1

1

ωj

⎞
⎠ ∝

∏N
i=1 m

3/2
i(∑N

i=1 mi

)3/2 . (19)

Because the products and sums on the right-hand side are
invariant to permutations, the product on the left-hand side
must also be invariant to the positions of the masses, so long
as the structure remains the same.

The discussion above shows that we should consider the
moments of inertia as geometrical or structural quantities
rather than dynamical ones, at least for the purposes of calcu-
lating the partition function. A moment of inertia characterizes
the geometrical extent of a cluster: The larger the moment, the
larger the radius of gyration of the cluster and the larger the
effective volumes it would sweep out in particle coordinates
[Eq. (9)]. Larger moments of inertia correspond to higher
entropy.

We also interpret the vibrational frequencies as structural
rather than dynamical quantities. Their appearance in the
partition function does not mean that the particles actually
oscillate. The ωj appear as a shorthand for the nonzero eigen-
values of the mass-weighted Hessian and as such account for
how the structure determines the vibrational potential energy.

B. Symmetry

As discussed in Sec. I A, structures with low symmetry
are favored in equilibrium when N < 9. This result is exactly
as predicted by the statistical mechanical model above: The
partition function in either particle or center-of-mass coordi-
nates is inversely proportional to the symmetry number. As
a consequence, we expect that in an equilibrium ensemble,
structures with lower symmetry occur more often than those
with higher symmetry.

To understand why the symmetry number σs appears in
the partition function, we must consider how experimentalists
measure the equilibrium probabilities. Meng et al. [3] made
an equilibrium ensemble of clusters and, using a microscope,
took videos of each cluster as it rotated and translated owing
to Brownian motion. They identified the structure of each
cluster from the videos by visual inspection in the case of the
octahedron and tritetrahedron or by determining the networks
of contacts and the adjacency matrix in the case of more
complicated structures. In either case, they did not distinguish
the particles. Finally, to obtain the equilibrium probabilities,
they counted the number of times each different structure
appeared in the ensemble for a given number of particles.

For a statistical mechanical model to reproduce the experi-
mentally measured probabilities, it must “count” clusters in a
similar way: independently of their orientation. An example
of a model that does not fit this criterion is one in which
we define the bounds on the partition function to include
only one particular orientation of a structure. For example,
we might include only the orientation of the octahedron with
a triangular face facing toward us and a vertex of that face
pointing down, as shown in Fig. 5. There are 24 ways in
which an octahedral cluster can attain this orientation, owing
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FIG. 7. Detailed balance argument for how symmetry affects
probability. On the top there is only one bond in the tritetrahedron
(blue bond in top left) that, once broken, allows the structure to
transition to the octahedron. By contrast, breaking any of the 12 sym-
metrically equivalent bonds in the octahedron allows it to transition
back to the tritetrahedron. On the bottom, breaking any other bond
in the tritetrahedron, such as the blue bond shown, leads back to the
tritetrahedron.

to its symmetry. We illustrate the 24 different ways by giving
different colors to the particles in Fig. 5. By contrast, the same
accounting for a tritetrahedron would show that there are only
two ways of obtaining the same orientation. Thus, our faulty
partition function would overcount the octahedron by a factor
of 12 = 24/2.

To correct our faulty model, we might integrate over all
orientations; however, in doing so, we must correct for the
overcounting of states at any particular orientation. Put an-
other way, the rotational partition function in center-of-mass
coordinates (16) extends over all Euler angles. However, for a
given set of principal axes, there are 24 equivalent choices of
Euler angles for any orientation of the octahedral cluster. This
factor of 24 is the symmetry number σs that we include in the
denominator of the partition function, as shown in Eq. (17).
As a result, our corrected model predicts that the equilibrium
probability of the octahedron relative to the tritetrahedron is
proportional to σtritetrahedron/σoctahedron.

The argument above explains the mathematical reason
for the symmetry number, but it does not explain its ap-
parent physical effect: suppressing the occurrence of highly
symmetric clusters like the octahedron. This effect is most
easily explained using detailed balance. Let us neglect any
fluctuations in bond distances and consider only the ways in
which bonds can break. There are 12 symmetrically equiv-
alent bonds in the octahedron. Breaking any one of them
allows the octahedron to transition to the tritetrahedron. By
contrast, there is only one bond that, once broken, allows the
tritetrahedron to transition back to the octahedron, as shown
in Fig. 7. Detailed balance then requires that the equilibrium
probability of the tritetrahedron be a factor of 12 higher than

that of the octahedron. This factor is exactly the ratio of
symmetry numbers.

To account for the factor of 24 measured in the experi-
ments, we must include contributions from the rotational and
vibrational partition functions as well. However, the above
arguments show clearly that the symmetry number accounts
for an entropic effect: There are more ways to arrange parti-
cles into a low-symmetry structure like a tritetrahedron than a
high-symmetry one like the octahedron.

The symmetry number therefore does not account for
whether the particles are fundamentally distinguishable or not,
nor does its origin lie in quantum mechanics. It arises because
different orientations of a cluster are not counted as different
states in the experiment.

IV. CONCLUSIONS AND MORE QUESTIONS

We have shown that for isostatic clusters composed of
undistinguished particles with a harmonic potential, the par-
tition function for colloidal systems is equivalent to the high-
temperature limit of the molecular partition function. We have
also shown that the effects of all of its terms on the equi-
librium cluster probabilities can be explained classically. By
equating the partition functions in particle and center-of-mass
coordinates, we have shown that the moments of inertia and
vibrational frequencies should be interpreted as geometrical
or structural quantities rather than dynamical ones, at least
for the purposes of calculating the equilibrium probabilities.
We have underscored this point by showing that the ostensible
dependence on the positions of the masses in center-of-mass
coordinates is an artifact of the separation between rotational
and vibrational modes.

The model we derive can be applied to other systems if
we relax some of our assumptions. For example, it can be
applied to clusters of anisotropic particles [32,33] in which
one does distinguish clusters by the orientations of particles
within them. In such systems, there is a rotational potential
energy term that causes particles to favor certain orientations
over others. Thus the Qrot term will depend on the structure
and will not cancel in the observation probabilities.

If we relax the rigid-rotor–harmonic-oscillator approxima-
tion, we can begin to describe even more classical systems.
For all nonrelativistic classical systems with a nongravita-
tional potential, the form of the partition function in particle
coordinates remains the same as what we have derived, so
long as it makes sense to define the structure in terms of an ad-
jacency matrix. Thus, for all nongravitational, nonrelativistic
classical systems where this structural description is valid, the
masses and the positions decouple in the partition function.

Finally, we note that although we have focused on isostatic,
rigid colloidal clusters, the singular and hyperstatic clusters
are important to understand because they can occur with high
probabilities in experiments [3]: singular clusters because of
their high vibrational entropy and hyperstatic clusters because
of their low potential energy. The center-of-mass partition
function we derive here breaks down in these cases. However,
the form of the partition function in particle coordinates is still
valid. Kallus and Holmes-Cerfon have developed a theoretical
framework to calculate the equilibrium probabilities of such
structures [19].
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The overriding goal of both statistical mechanical mod-
els and experiments on colloidal clusters of spheres is to
understand how the free-energy landscape changes as a func-
tion of the number of particles N . The landscape quantifies
the frustration of the system and how that frustration evolves
in the limit as N → ∞, where we expect that the ground state
is a crystal. To this end, our model and the physical inter-
pretations we give are important because they give insights
into the depths of the minima on the landscape. Although
the vibrational framework we use breaks down for nonrigid
clusters, the invariance to the positions of masses as well as
the entropic effects of the moments of inertia and symmetry
number are valid for all clusters. Understanding their physical
effects is crucial to making sense of the complex landscape
that emerges as N increases.
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APPENDIX: PARTITION FUNCTION
IN TWO DIMENSIONS

Here we show the result for the partition function for a
two-dimensional (2D) cluster, which differs from the three-
dimensional (3D) result because the degrees of freedom are
different in two dimensions. While true 2D colloidal systems
do not exist, we can model experiments in which 3D spherical
particles are confined to a 2D surface. For example, under
depletion interactions, planar clusters of spherical particles

can form at a surface such as a microscope cover glass [1]. As
in three dimensions, the depletion interaction does not prevent
the particles in such a quasi-2D cluster from rotating about
their centers of mass. However, the collective motions of the
cluster are constrained to the plane defined by the surface. Our
2D partition function is specific to such systems.

In particle coordinates, each particle has two positional
degrees of freedom. The partition function for a structure s

confined to a plane is given by

Q2D
s = Qrot

σ 2D
s h5N

(
2π

β

)N

Z2D
s

N∏
i=1

mi

= Qrot

σ 2D
s h5N

(
2π

β

)N
(

A

N∏
i=2

Ai

)
N∏

i=1

mi, (A1)

where in the second line we have replaced Z2D
s by a product

of areas for each particle, analogous to the product of volumes
in Eq. (9). The factor of Qrot is the same as that in the 3D case
because our particles are still free to rotate about their own
centers of mass in all three dimensions. The particle rotations
also contribute a factor of 1/h3N to the partition function, with
the remaining factor of 1/h2N coming from the translations of
individual particles. The symmetry number σ 2D

s differs from
that in three dimensions because it does not account for out-
of-plane rotations.

In center-of-mass coordinates, the colloidal cluster has
two translational degrees of freedom and only one rotational
degree of freedom, since the only allowed rotations are in the
plane. An isostatic cluster has 2N − 3 vibrational modes. The
center-of-mass partition function for a 2D cluster is then

Q′2D
s = Qrot

σ 2D
s h5N

2πAM
√

Is

(
2π

β

)(4N−3)/2
⎛
⎝2N−3∏

j=1

1

ωj

⎞
⎠.

(A2)
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