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Flexible paramagnetic membranes in fast precessing fields
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Elastic membranes composed of paramagnetic beads offer the possibility of assembling versatile actuators
operated autonomously by external magnetic fields. Here we develop a theoretical framework to study shapes of
such paramagnetic membranes under the influence of a fast precessing magnetic field. Their conformations are
determined by the competition of the elastic and magnetic energies, arising as a result of their bending and the
induced dipolar interactions between nearest-neighbors beads. In the harmonic approximation, the elastic energy
is quadratic in the surface curvatures. To account for the magnetic energy we introduce a continuum limit energy,
quadratic in the projections of the surface tangents onto the precession axis. We derive the Euler-Lagrange
equation governing the equilibria of these membranes, as well as the corresponding stresses. We apply this
framework to examine paramagnetic membranes with quasiplanar, cylindrical, and helicoidal geometries. In all
cases we found that their shape, energy, and stresses can be modified by means of the parameters of the magnetic
field, mainly by the angle of precession.
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I. INTRODUCTION

Magnetic fields can be used to direct magnetic particles
in multiple environments including living tissues. Since most
materials are not magnetic, magnetic particles can be directed
in media where variables such as temperature and chemical
composition cannot be controlled. For this reason they are
extensively used in biotechnology and medicine [1,2]. More-
over, magnetic fields can be altered much faster than colloidal
diffusion timescales. These features give magnetic particles
possibilities to direct self-assembly [3,4] or to synthesize
magnetic gels or magnetic elastomers, which can be used for
actuation or transport [5], as well as to be exploited in the
design of programmable robots able to perform tasks at small
scales [6,7]. Indeed, paramagnetic filaments, synthesized by
joining paramagnetic beads with semiflexible polymers, have
found diverse applications such as micromechanical sensors
or self-propelled swimmers [8–12]. They are highly versatile.
For instance, depending on their rigidity and the magnetic
field strength, arrays of paramagnetic filaments may collapse
into hairpins, loops, sheets, or pillars [13], and in a fast
precessing magnetic field, depending on the precession angle
they may adopt planar or helical conformations [14,15].

An obvious extension in the study of this kind of systems
would be the consideration of the two-dimensional counter-
parts of paramagnetic filaments, that is, membranes consist-
ing of two-dimensional arrays of paramagnetic beads linked
by elastic polymers. However, such systems have not been
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synthesized yet and previous work on two-dimensional arrays
of magnetic nanoparticles has been devoted to free magnetic
colloids confined to a plane [16], or to arrays of magnetic
filaments on a plane [17]. Here we study theoretically such
paramagnetic membranes in a fast precessing magnetic field,
whose energy is associated with their bending and the interac-
tion between the induced dipoles on the beads. To address the
latter contribution, we introduce an energy density describ-
ing the continuum limit of the dipolar interactions between
nearest neighbors, analogous to the linear magnetic energy
density for paramagnetic filaments [9,15,18]. Although gen-
eral frameworks for studying elastic membranes in a magnetic
field have been developed using different approaches, for
instance magnetoelastic theory [19,20], here we determine
their equilibrium configurations from a variational principle
that exploits the geometric character of the membrane’s en-
ergy. In this framework, the stresses are expressed in terms
of the membrane geometry, and the Euler-Lagrange (EL)
equation is given by the conservation of the stresses along the
normal of the membrane [21–23]. While the EL equation and
the stress tensor for the purely elastic case are well-known
[21–25], here we present their magnetic counterparts. We
apply this framework to analyze paramagnetic membranes
with almost-planar, cylindrical, and helicoidal shapes, along
with the forces required to hold them.

II. MEMBRANE ENERGY AND STRESSES

The paramagnetic membrane is represented by the surface
passing through the centers of the beads, parametrized by two
local coordinates ua , a = 1, 2 in three-dimensional Euclidean
space as � : ua → X(ua ) ∈ E3. The tangent vectors adapted
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FIG. 1. The surface � is parametrized by local coordinates u1

and u2; the tangent and unit normal vectors are ea and n.

to this parametrization and the unit normal vector are ea =
∂aX (∂a = ∂/∂ua) and n = e1 × e2/‖e1 × e2‖, as illustrated
in Fig. 1. The components of the metric and extrinsic curva-
ture tensors are defined by gab = ea · eb and Kab = ea · ∂bn.
The determinant of the metric is denoted by g. Indices are
raised with the inverse of the metric gab. The shape operator
Ka

b = gacKcb is a linear map acting on surface tangent vec-
tors and whose eigenvectors and eigenvalues correspond to
directions and values of minimum and maximum curvature,
known as principal directions and principal curvatures C1

and C2, respectively. The two invariants of Ka
b are its trace

K = C1 + C2 and determinant KG = C1C2 known as (twice)
the mean and Gaussian curvatures [26,27].

The energy ascribed to the membrane has two contribu-
tions that depend on its geometry. The first one, due to its
bending, is given by the Canham-Helfrich energy density,
quadratic in the curvatures [28–30],

HB[X] = K

2
K2 + KG KG, (1)

where K and KG are the bending and Gaussian moduli (with
units of energy). We consider membranes composed by a
single layer of paramagnetic beads, so we do not include a
spontaneous curvature in the first term.

The second energy contribution, is given in the quasistatic
regime by the time-averaged dipolar interaction between near-
est neighbors, induced by a magnetic field H precessing at an
angle ϑ about an axis, which we choose as the Z axis (further
details are presented in Appendix A), as shown in Fig. 2.

This magnetic energy density is quadratic in the projections
of the tangent vectors onto the precession axis,

HM [X] = −m

2
gabez

aez
b , ez

a = ea · ẑ, (2)

where the magnetic modulus m (with units of energy per area)
depends on the precession angle ϑ ,

m = μ0

4π�l

(
3μ

�l2

)2(
cos2 ϑ − 1

3

)
, (3)

with μ0 the vacuum permeability, μ the magnitude of the
magnetic dipoles, and �l the separation between their centers.

FIG. 2. The axis of precession of the magnetic field is chosen as
the Z axis and the angle of precession is ϑ .

As we will see below, membrane conformations depend to
a large extent on the precession angle through this mag-
netic modulus. m(ϑ ) vanishes at the so-called “magic” angle
ϑm = arccos (1/

√
3), and the leading order of the magnetic

energy will be the quadrupolar term, which is of short range,
so elasticity of the membranes will dominate [31]. In the
regime 0 < ϑ < ϑm (ϑm < ϑ < π/2), we have m(ϑ ) > 0
(m(ϑ ) < 0), and from Eq. (2) we see that to minimize HM ,
membranes will tend to develop vertical (horizontal) regions
aligned with (orthogonal to) the precession axis, so as to
maximize (minimize) the projections ez

a , analogous to the
behavior of magnetic particle suspensions, which depending
on the precession angle may arrange in chains or sheets along
and orthogonally to the precession axis [32].

We rescale all quantities by the bending modulus K and
denote the rescaled quantity by an overbar. In particular, the
rescaled quantity m̄ = m/K possesses dimensions of inverse
area, so the square root of its inverse, � = 1/

√|m̄|, provides
the characteristic length scale at which elastic and magnetic
terms are comparable. On length scales smaller than �, elas-
ticity dominates, and on length scales larger than �, magnetic
effects dominate. The dimensionless parameter γ = m̄A =
sign(m)(A/�2), which we call the magnetoelastic parameter
in analogy with the quantity corresponding to filaments [18],
quantifies the ratio of magnetic to elastic energies (HB ∼ K

and HM ∼ mA, so HM/HB ∼ γ = m̄A), so for large (small)
values of γ , magnetic (elastic) effects become dominant.
Plausible experimental values of the magnetoelastic parameter
are of the order |γ | ≈ 10−2 − 104 (see Appendix B).

The total energy of the membrane is given by H [X] =
HB + HM , where HB = ∫

dAHB and HM = ∫
dAHM are

the total bending and magnetic energies, with dA =√
g du1 ∧ du2 the area element (g = det gab). HB and HM are

invariant under reparametrizations and translations; however,
while HB is invariant under rotations, HM is only invariant
under rotations about the precession axis.

We assume that the paramagnetic membrane is inexten-
sible, so we introduce a term fixing the total area A0 and
consider the effective energy HE = H + σ (A − A0), where
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σ is a Lagrange multiplier that can be regarded as an intrinsic
surface tension (σ > 0 represents tension and σ < 0 com-
pression). We do not consider a term fixing the total volume,
because the array of paramagnetic beads is likely to have
interstices. The variation of HE under a deformation of the
surface δX is given by [21–23,25]

δHE =
∫

dA∇afa · δX +
∫

dA∇aδQ
a, (4)

where ∇a is the covariant derivative compatible with gab. The
first term describes the response of the energy to a deformation
in the bulk in terms of the divergence of the surface stress
tensor fa = f abeb + f an, whose components are defined by

f̄ ab = K

(
Kab − K

2
gab

)
+ gab

(
m̄

2
gcd ez

c ez
d − σ̄

)
; (5a)

f̄ a = gab
(−∇bK + m̄ ez

b nz
)
, nz = n · ẑ. (5b)

Note that for minimal surfaces with K = 0, the elastic contri-
butions vanish, but not the magnetic ones. The total force on
a region of the membrane is given by F = ∫

dsf⊥, where ds

is the arc length along the boundary and f⊥ = gabl
afb, with la

the components of the outward conormal (further details on
the projected stress tensor f⊥ are presented in Appendix C,
whereas the surface torque tensor and the total torque on a
region of the membrane can be found in Appendix D).

By using the Stokes theorem in the second term of Eq. (4),
where

δQ̄a = −f̄a · δX + [Kgab − K̄G(Kab − Kgab )]eb · δn, (6)

it can be recast as a line integral along the boundaries. Thus, it
represents the change of the energy due to a deformation of the
boundaries, which will be useful to determine the boundary
conditions. KG only enters the variation of the energy through
δQa (it does not feature in fa), which is a consequence of the
Gauss-Bonnet theorem [23,25–27]. HM does not contribute
to δQa .

From Eq. (4) we see that stationarity of the energy implies
the conservation of the stress tensor ∇afa = 0, consequence
of the translational invariance of H [21–23]. The tangential
projections of this conservation law vanish identically on
account of the reparamerization invariance of H [21–23],
whereas the normal projection, E := ∇afa · n, provides the
EL equation

Ē =
(

−� + 2KG − K2

2
+ σ̄

)
K

+ m̄

[(
Kab − K

2
gab

)
ez
a ez

b − Knz2

]
= 0, (7)

where � = gab∇a∇b is the Laplace-Beltrami operator. The
elastic terms consist of the Laplacian of the mean curvature
and a cubic function of the curvatures [21–23,25], whereas
the magnetic terms are linear in the curvatures, but quadratic
in the projections of the adapted basis onto the precession axis.

It is noteworthy to mention that Eq. (2) is the simplest
covariant expression of HM (equivalent expressions quadratic
in ez

a are presented in Appendix E). Moreover, we also point
out that it is also possible to recast HM , as well as the magnetic
parts of f ab and E , in terms of nz2, such that it becomes

apparent that HM is reparametrization invariant (details are
presented in Appendix E).

III. EQUILIBRIUM CONFIGURATIONS

The EL Eq. (7) is of fourth order in derivatives of the
embedding functions X, which makes very difficult to solve it
in general. However, we can resort to known solutions of the
purely elastic case and examine how they get modified when
the magnetic contribution is present. It is well known that
for appropriate boundary conditions and material parameters,
planes, cylinders, spheres, Clifford tori, and minimal surfaces
minimize the bending energy [23,25,33]. We now analyze
perturbative solutions of EL Eq. (7) about some of these
geometries (relevant expressions of the required geometric
quantities are collected in Appendix F). Let us begin with the
simplest type.

A. Almost planar membranes

Consider the deformation of a planar membrane orthogonal
to the precession axis. It can be described in the Monge
representation by a height function z = h(x, y), parametrized
by cartesian coordinates x and y on the base plane. For
simplicity, we examine linearized solutions about the base
plane, i.e., solutions in the small gradient approximation
|∇h| 
 1, where ∇h = ∂xhx̂ + ∂yhŷ. In this regime we have
that up to second order the projections of the adapted basis
onto the precession axis are ez

a = ∂ah and nz ≈ 1 − (∇h)2/2.
Furthermore, the mean and Gaussian curvature are given
by K ≈ −∇2h, with ∇2 = ∂2

x + ∂2
y the Laplacian on the

base plane, and KG ≈ ∂2
xh∂2

yh − (∂2
xyh)2 [23,25,34]. Hence,

at lowest order in derivatives of h, the EL Eq. (7) reduces
to the Helmholtz equation Ē ≈ −(∇2 + �̄)K = 0, with � =
−σ + m (recall that under compression σ < 0). We see that
the magnetic modulus renormalizes the intrinsic surface ten-
sion, and depending on the sign of m, it can be augmented
or reduced. Trivial solutions of the EL Eq. (7) are given
by minimal surfaces with K = 0, which in this regime are
described by harmonic functions satisfying ∇2h = 0 [23]. An-
other set of solutions is provided by the Helmholtz equation
for h, (∇2 + �̄)h = 0, so in this regime the mean curvature is
proportional to the height function, K ≈ �̄h. Let us consider
a rectangular membrane with fixed edges of lengths Lx and
Ly and of total area greater than its projected area, A >

Ap = LxLy . From Eq. (6) follows that stationarity of the
energy requires the vanishing of the mean curvature at bound-
aries, so K (0, y) = K (L, y) = 0 and K (x, 0) = K (x, L) =
0. With these boundary conditions, the Helmholtz equation
can be solved by separation of variables, obtaining h =
αnm sin qn(x − x0) sin qm(y − y0), where qn = nπ/Lx , qm =
mπ/Ly , x0 = mod(n, 2)L/(2n) and y0 = mod(m, 2)L/(2m),
n,m ∈ N and with �̄ = q2

n + q2
m. The amplitude is given

by α2
nm = (8/�̄)(�A/Ap ); it is proportional to the excess

area �A = A − Ap and inversely proportional to � (or
the squared sum of the wave numbers), which depends on
m. The first four modes are plotted in Fig. 3. At second
order the total bending energy can be written as H̄B ≈
�̄2/2

∫
dxdyh2, whereas the total magnetic energy reads

H̄M ≈ −m̄/2
∫

dxdy(∇h)2. Integrating, we get that the total
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FIG. 3. (a) Ground state and (b–d) first excited states resulting
from the compression of a planar membrane.

energy is H̄ ≈ �̄/2(�A − m̄Ap/4), which is proportional to
q2

n + q2
m. Thus, for fixed m, Ap, and �A the ground state cor-

responds to n = m = 1. If m > 0 (m < 0), H increases (de-
creases). The total force exerted by the membrane along the
edges at x = ±Lx/2 is F = ±Ly[(−σ̄ + m̄/2)q2

n/2 − σ̄ ]x̂;
likewise, the total force along edges at y = ±Ly/2 is F =
±Lx[(−σ̄ + m̄/2)q2

m/2 − σ̄ ]ŷ. In both cases, if m > 2σ (m <

2σ ), the first term (arising from a combination of the tan-
gential magnetic stress and the normal bending stress) is
positive, so it represents a compressive (tensile) force. For
σ > 0 (σ < 0) the second term represents a homogeneous
tensile (compressive) force.

B. Cylinders

We now consider a cylinder of length L aligned with the
precession axis Z; see Fig. 4(a). The vectors tangent to the
meridians are aligned with the precession axis, so their projec-
tion is constant, whereas the vector tangent to the parallel and
the normal are orthogonal to it. Furthermore, K is constant
and KG vanishing. Thus, the EL Eq. (7) simplifies to Ē =
(−K2/2 + σ̄ − m̄/2)K = 0, which is satisfied if the radius
of the cylinder in equilibrium is 
e = 1/K = 1/

√
2σ̄ − m̄,

(σ > m/2). Hence, for m > 0 (m < 0), 
e is larger (smaller),
than the corresponding radius of the purely elastic case. The

FIG. 4. Cylinders oriented (a) along and (b) orthogonally to the
axis of precession.

total energy is H̄ = πL(1/
e − m̄
e ), which is decreased
(increased) for m > 0 (m < 0). The total force on a boundary
parallel is F = −2π/
e ẑ, so it is under tension (the membrane
is pulling downwards), whereas the stress on a meridian
vanish [25]. F is also modified in the presence of a magnetic
field, for it depends on m through 
e.

If we now consider a cylinder whose axis is orthogonal
to the precession axis Z, say along the X axis as shown in
Fig. 4(b), it is only solution in the purely elastic case with
m = 0. This is because the magnetic contributions, propor-
tional to the projections of the parallel’s tangent and the
normal onto the precession axis, vary along its circumference,
while the bending contribution is constant, so the EL Eq. (7)
cannot be satisfied everywhere. In contrast to the previous
case of the vertical cylinder, where the equilibrium radius
is determined for a given m, here we begin with a cylinder
of fixed radius (and area) and we investigate how it gets
deformed when m �= 0. We assume that for a small mag-
netic modulus, m1 
 1, the membrane is still a generalized
cylinder with KG = 0, so that we can examine linearized
solutions about a circular cylinder of radius 
0, which can be
described in the cylindrical Monge representation as 
(ϑ ) =

0 + 
1(ϑ ), where 
1 
 1 is a small perturbation and ϑ

is the azimuthal angle on the parallel measured from the
precession axis Z. We also expand σ = σ0 + σ1, with σ1 

1. The first-order correction to the initial mean curvature
K0 = 1/
0 is K1 = −(∂2

ϑ
1 + 
1)/
2
0. Inserting these results

in the EL Eq. (7), we find that at lowest order it determines

0 = 1/

√
2σ̄(0), whereas to first order it reads

(
∂2
ϑ + 1

)2

1 = 
3

0

(
m1

4
(3 cos 2ϑ + 1) − σ1

)
. (8)

The general solution of this differential equation is


1 = (a1θ + b1) sin ϑ + (c1ϑ + d1) cos ϑ

+ 
3
0

4

(
m̄1

3
cos 2ϑ + m̄1 − 4σ̄1

)
, (9)

with a1, b1, c1, and d1 constants of integration. Periodicity
implies a1 = c1 = 0 and we assume that solutions possess
left-right symmetry, 
1(ϑ ) = 
1(−ϑ ), as well as up-down
symmetry, 
1(ϑ ) = 
1(π − ϑ ), which entail b1 = d1 = 0.
Furthermore, the fixed area constraint requires the vanishing
of the constant term (representing a dilation of the radius), so
σ1 = m1/4. Finally, the admissible deformation (preserving
area to first order) of the radius is 
1 = (
3

0m̄1/12) cos 2ϑ .
Thus, for m1 > 0 (m1 < 0) the cross section of the cylinder
elongates (flattens) along (orthogonally to) the precession
axis; see Fig. 5. There is no first-order correction to the total
energy of the cylinder, H1 = 0, so at this order we have
H ≈ πL/
0. The force on a parallel is F = −2π (1/
0 +

0m1/4)x̂, thus, for m1 > 0 (m1 < 0) the first-order correc-
tion introduces tension (compression). There is no first-order
correction to the total force on a meridian, so it vanishes at
this order even in the deformed configurations.

C. Helicoid

We know that helices minimize the sum of bending and
magnetic linear energies [14,15], and since the helicoid can
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FIG. 5. Deformations of a circular cylinder (m = 0) oriented
orthogonally to the precession axis Z (dashed line). For m > 0
its cross section elongates along the precession axis (black line),
whereas for m < 0 it gets squeezed in the orthogonal direction (gray
line). The amplitude of the deformation has been exaggerated for
illustration purposes.

be foliated by helices, we might expect it to be a critical
point of H . The helicoid is a ruled minimal surface with glide
rotational symmetry characterized by its pitch 2πp; see Fig 6.
For a minimal surface, with K = 0, the EL Eq. (7) reduces
to EMS = mKab ez

a ez
b = 0. Let us consider a helicoid whose

axis is aligned with the precession axis Z. Parametrizing
it in cylindrical coordinates, by the distance along rulings
and the azimuthal angle, we have that Kab is antidiagonal.
Furthermore, terms in EMS proportional to off-diagonal com-
ponents of Kab vanish because the tangents along rulings
are orthogonal to the precession axis, so the EL equation
is satisfied. We consider that the helicoid is bounded at the
top and bottom by two parallel straight lines of length L,
and laterally by two helices completing one period. The total
energy of such helicoid arises from the magnetic contribution
and increases monotonically with p, H = −2πmp2arcsinh χ ,
where χ = L/(2|p|). The total forces on the boundary helices
vanish, but the top and bottom boundary lines are subject to
total forces along the helical axis,

F = ∓|p|
(

2(σ − m) arcsinh χ + mχ√
χ2 + 1

)
ẑ. (10)

FIG. 6. A helicoid of pitch 2πp bounded by two straight lines of
length L and two helices of radius L/2.

For σ > m > 0 (σ < m < 0) the membrane is under ten-
sion (compression). We see that in this case the magnetic
contribution not only rescales σ , but also introduces another
dependence on χ .

IV. DISCUSSION AND CONCLUSIONS

We have extended the framework of elastic membranes
to the study of flexible paramagnetic membranes. Unlike
two-dimensional arrays of free paramagnetic particles, such
membranes are able to resist shear forces and to buckle out of
plane. To include the paramagnetic attribute of the membrane,
we introduced an energy density representing the dipolar
interactions between nearest neighbors. We have shown that
such magnetic energy density is suitable to describe the
main feature of paramagnetic arrays: alignment along the
precession axis for small precession angles and flattening or-
thogonally to the precession axis for large precession angles.
Minimization of the bending and magnetic energies permitted
us to determine their equilibrium shapes and to quantify how
they differ with their purely elastic counterparts.

Besides determining their shapes we have also presented
the part of the surface stress tensor stemming from the mag-
netic dipolar interactions, which permitted us to analyze the
underlying stresses shaping them. This information allows for
a complete characterization of their conformations, for even
when two membranes possess similar geometries, they well
might be under very different forces. We have seen that even
if paramagnetic membranes adopt shapes very close to those
of purely elastic membranes, the magnetic field introduces
additional stresses on them. This point is best illustrated on
minimal surfaces, which regarded as elastic membranes are
only under homogeneous tangential tension, whereas the para-
magnetic membranes are subject to inhomogenous tangential
and normal stresses.

For the sake of simplicity we have considered only dipolar
interactions of homogeneous arrays of beads, but several
refinements to our model are possible. For instance one could
take into account the long range nature of dipolar interactions
and consider interactions beyond nearest neighbors, which
may prevent the local magnetic field of the beads to pre-
cess at the magical angle, so that quadrupolar interactions
never become dominant. One could also consider arrays of
anisotropic paramagnetic beads, introducing anisotropies not
only in the magnetic energy, but also in the bending energy.
Such considerations would certainly complicate the analysis
of their shapes and stresses, but they might also give rise to
interesting phenomena not captured by our model.

Examination of shapes in the nonlinear regime can be
achieved by exploiting the residual symmetries of the total
energy. For instance, axial symmetry about the precession
axis provides a first integral of the EL equation, which will
permit us to analyze how spheres or Clifford Tori (it can be
shown that neither one is a critical point of the total energy)
are modified by a magnetic field. As in the case of elastic
membranes, further examination of general configurations
will require numerical analysis and/or molecular dynamics
simulations, which would reveal features with many more
potential applications in actuation and soft robotics.
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APPENDIX A: DERIVATION OF THE MAGNETIC
ENERGY DENSITY

We consider a membrane consisting of a homogeneous
two-dimensional array of paramagnetic beads connected by
elastic linkers in a magnetic field H. In the high temperature
and saturation magnetization regime, the induced dipole mo-
ment of each bead has magnitude μ and all are aligned with
the magnetic field, so μi = μ = μ μ̂. Thus, the interaction
energy of two paramagnetic beads at positions xi and xj is
[35,36]

Uij = μ0μ
2

4π |xij |3 [1 − 3(μ̂ · x̂ij )2], xij = xj − xi . (A1)

We consider as a unit cell the region spanned by four beads
with edges of length �l and �w and denote the separation
between the centers of the beads xi − xi−1 along the two
directions by �x and �y. The energy per unit area associated
to this unit cell due to dipolar interaction between nearest
neighbors is

u = μ0

4π

{
1

�w

(
μ

�l2

)2
[

1 − 3

(
�x
�l

· μ̂

)2
]

+ 1

�l

(
μ

�w2

)2
[

1 − 3

(
�y
�w

· μ̂

)2
]}

. (A2)

Assuming that �l 
 L and �w 
 L, with L the length
scale of the membrane, we can consider the separation of
beads along the two different directions as the corresponding
arc lengths, �l → s and �w → t , so that the array can be
approximated by the surface passing through the centers of
the beads. In this approximation we have that �x

�l
→ V̂ :=

dX
ds

and �y
�w

→ Ŵ := dX
dt

. Additionally, we assume that the
membrane is isotropic, so the separation between beads along
different directions is approximately equal, �l ≈ �w, and the
coefficients tend to the same constant value (with units of
energy per unit area). Thus, with these considerations we can
define the surface energy density

HM = 3μ0

4π�l

(
μ

�l2

)2[2

3
− (V̂ · μ̂)2 − (Ŵ · μ̂)2

]
. (A3)

Furthermore, if the magnetic field is precessing
with an angular velocity ω about the Z axis at an
angle ϑ , the direction of the induced dipole moment is
μ̂ = (cos ωt sin ϑ, sin ωt sin ϑ, cos ϑ ) and in the quasistatic
regime (fast precession frequency) the tangent vectors V̂ and
Ŵ can be regarded as constant. In one period the average of
the squared scalar product of μ̂ and V is (V i , i = x, y, z stand

for the cartesian components of the vector)

〈(μ̂ · V̂)2〉 = 1
2 sin2 ϑ (V x2 + V y2) + cos2 ϑ V z2

= 1
2 [sin2 ϑ − (1 − 3 cos2 ϑ )V z2], (A4)

and similarly for vector Ŵ. Therefore, the time-averaged
surface energy density is

〈HM〉 = 3μ0

4π�l

(
μ

�l2

)2[2

3
− sin2 ϑ

+ 1

2
(1 − 3 cos2 ϑ )(V z2 + Wz2)

]

= m

[
1

3
− 1

2
(V z2 + Wz2)

]
, (A5)

where in the last step we defined the magnetic modulus

m = μ0

4π�l

(
3μ

�l2

)2 (
cos2 ϑ − 1

3

)
. (A6)

The constant term of the magnetic dipolar energy, m/3, just
renormalizes the intrinsic surface tension, so we neglect it.
The unit tangent vectors can be spanned in the tangent basis
of the surface as V̂ = V a ea and Ŵ = Wa ea , therefore this
energy density can be expressed in terms of the tangent basis
as

HM = −m

2
(V a V b + Wa Wb )ez

a ez
b. (A7)

Furthermore, we assume that the unit cell is approximately
a square, such that {V, W} constitute an orthonormal tangent
basis, whose completeness permits us to span the metric as
gab = Va Vb + Wa Wb. Using this identity the surface energy
density can be recast as the covariant expression given by
Eq. (2) of the main text.

APPENDIX B: ESTIMATION OF THE
MAGNETOELASTIC PARAMETER

To calculate possible values of γ we employ experimental
values of the material parameters of paramagnetic filaments.
Regarding the membrane as a thin plate of thickness d, the
bending modulus is given by [25,37]

K = Yd3

12(1 − ν2)
, (B1)

where Y is the Young modulus and ν the Poisson’s ratio,
whose typical values are of the order Y ≈ 103 − 105 Pa
[6,8,9,38] and ν ≈ 10−1. The diameter of the beads is approx-
imately d = �l ≈ 1 μm, so the bending modulus is of the
order of K ≈ 10−16 − 10−14 J. Common values of the mag-
netic susceptibility and the magnetic fields are χ ≈ 1 and H ≈
103 − 104 A/m [6,8,9,38], so the magnitude of the induced
dipole of a bead of radius a = d/2 is μ = 4/3πa3χH ≈
10−15 − 10−14 Am2, thus m ≈ 10−6 − 10−4 N/m. From this
estimations we find that � = √

K/|m| ≈ 10 − 100 μm. Typi-
cal length scales of this kind of systems are L ≈ 10 − 103 μm
[6,8,9,38], so A ∼ L2 ≈ 10−10 − 10−6 m2. Therefore, possi-
ble values of the magnetoelastic parameter are |γ | = A/�2 ≈
10−2 − 104.
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APPENDIX C: STRESS TENSOR PROJECTIONS

Consider a region D of the membrane bounded by a curve
∂D, with tangent t = taea and outward conormal l = t × n =
laea . The projection of the stress tensor onto l, f⊥ = lafa

represents the force per unit length exerted by D on the
neighboring region. This projection can be expressed in the
Darboux frame {t, l, n} as f⊥ = f⊥‖t + f⊥⊥l + f⊥n, where
the components are defined by

f̄⊥‖ := latbf
ab = −Kτg, (C1a)

f̄⊥⊥ := lalbf
ab = 1

2

(
κ2

n⊥ − κ2
n

) − σ̄ + m̄

2
(tz2 + lz2), (C1b)

f̄⊥ := laf
a = −∇⊥K + m̄ lznz, (C1c)

with κn = tatbKab and κn⊥ = lalbKab the normal curvatures
along and across the curve (K = κn + κn⊥); τg = −talbKab is
the geodesic torsion of the curve; ∇⊥ = la∇a .

We see that the tangential bending stresses do not have a
definite sign, so they can represent either compression (+)
or tension (−). By contrast, the sign of tangential magnetic
stress is given entirely by the sign of the magnetic modulus:
for m > 0 the magnetic field introduces a compressive stress
on the membrane, and for m < 0 a tensile stress. Due to
the minus sign in front, σ > 0 introduces tension and σ < 0
compression.

APPENDIX D: SURFACE TORQUE TENSOR

The surface torque tensor is given by [21,23]

m̄a = X × f̄a + [Kgab − K̄G(Kab − Kgab )]eb × n, (D1)

Taking its covariant derivative we get

∇ama = X × ∇afa + m nz ẑ × n, (D2)

where we have used the Codazzi-Mainardi integrability con-
dition ∇a (Kab − Kgab ) = 0, as well as the identity ẑ =
gabez

aeb + nzn. While the first term vanishes in equilibrium on
account of the conservation law of the stress tensor, the second
term, representing a torque per unit area due to the magnetic
field, does not vanish in general. Thus, the torque tensor is
not conserved. However, its projection onto the precession
axis, ma = ma · ẑ, is conserved in equilibrium, for we have
∇ama = ẑ · X × ∇afa . This is a consequence of the rotational
symmetry of H about the precession axis. The torque per unit
length exerted by a region D, is given by the projection

m̄⊥ = lam̄a = X × f̄⊥ − Kt − K̄G(κnt − τgl). (D3)

Integrating the torque per unit area by a region D, given by
Eq. (D2), we find that the membrane is subject to a total torque
about the precession axis, M = ∫

ds m⊥ = m
∫

dAnz ẑ × n.

APPENDIX E: ALTERNATIVE EXPRESSIONS

Up to a constant term, the energy density Eq. (2) could
also be written as HM = gab(ea × ẑ) · (eb × ẑ), or in terms
of the antisymmetric tensor εab = n · (ea × eb ), as HM =
gabε

acεbdez
cez

d .
Moreover, squaring the identity ẑ = gabez

aeb + nzn, we
have 1 = gabez

aez
b + nz2. This relation permits us to express

the magnetic energy density Eq. (2) in a coordinate-free
manner in terms of the squared projection of the unit normal
vector onto the precession axis:

HM = m

2
nz2. (E1)

In this manner it becomes clear that HM does not depend on
how the beads are distributed in the membrane. The constant
term involving the magnetic modulus can be absorbed in the
intrinsic surface tension, σ → σ − m/2.

Variation of the energy density (E1) leads to the following
expressions of the magnetic parts of the tangential compo-
nents of the stress tensor and of the EL equation

f ab
M = −m

2
nz2 gab, (E2a)

εM = m

(
Kabez

aez
b − K

2
nz2

)
, (E2b)

which are equivalent to the corresponding expressions in
Eqs. (5a) and (7), up to the redefinition of σ mentioned above.

APPENDIX F: GEOMETRIC QUANTITIES

Here we present the expressions of the geometric quantities
required to calculate the EL Eq. (7) for each geometry, and
defined by (a = 1, 2),

X = (X1, X2, X3) embedding functions (F1a)

ea = ∂aX adapted tangent vectors

n = e1 × e2

|e1 × e2| unit normal vector (F1b)

gab = ea · eb metric tensor (F1c)

Kab = ea · ∂bn curvature tensor (F1d)

Almost planar membranes. (∇h = ∂xhx̂ + ∂yhŷ)

X(x, y) = xx̂ + yŷ + h(x, y)ẑ ; (F2a)

ex = x̂ + ∂xhẑ, ey = ŷ + ∂yhẑ,

n = 1√
1 + (∇h)2

(−∂xhx̂ − ∂yhŷ + ẑ) ; (F2b)

gab = δab + ∂ah∂bh ; (F2c)

Kab = −∂a∂bh√
1 + (∇h)2

. (F2d)

Vertical cylinder. Cylindrical basis {�̂, ϕ̂, ẑ}, with
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�̂ = cos ϕx̂ + sin ϕŷ and ϕ̂ = − sin ϕx̂ + cos ϕŷ;

X(ϕ, z) = 
0�̂ + zẑ ; (F3a)

eϕ = 
0ϕ̂, ez = ẑ, n = �̂ ; (F3b)

gϕϕ = 
2
0, gϕz = 0, gzz = 1 ; (F3c)

Kϕϕ = 
0, Kϕz = Kzz = 0. (F3d)

Horizontal cylinder. Cylindrical basis {x̂, ϑ̂, �̂}, with ϑ̂ =
cos ϑ ŷ − sin ϑ ẑ and �̂(ϑ ) = sin ϑ ŷ + cos ϑ ẑ;

X(x, ϑ ) = xx̂ + 
(ϑ )�̂(ϑ ) ; (F4a)

ex = x̂, eϑ = ∂ϑ
�̂ + 
ϑ̂,

n = 1√

2 + (∂ϑ
)2

(
�̂ − ∂ϑ
ϑ̂ ) ; (F4b)

gxx = 1, gxϑ = 0, gϑϑ = 
2 + (∂ϑ
)2 ; (F4c)

Kxx = Kxϑ = 0, Kϑϑ = 

( − ∂2

ϑ
 + 

) + 2(∂ϑ
)2√


2 + (∂ϑ
)2
.

(F4d)

Helicoid. Cylindrical basis {�̂, ϕ̂, ẑ}, with �̂ = cos ϕx̂ +
sin ϕŷ and ϕ̂ = − sin ϕx̂ + cos ϕŷ;

X(
, ϕ) = 
�̂ + pϕẑ ; (F5a)

e
 = �̂, eϕ = 
ϕ̂ + pẑ,

n = 1√

2 + p2

(−pϕ̂ + 
ẑ) ; (F5b)

g

 = 1, g
ϕ = 0, gϕϕ = 
2 + p2 ; (F5c)

K

 = Kϕϕ = 0, K
ϕ = p√

2 + p2

. (F5d)
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