
PHYSICAL REVIEW E 98, 032419 (2018)

Clusters of lysozyme in aqueous solutions
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Equilibrium clusters of protein lysozyme are at the center of an ongoing scientific debate. Previous attempts to
provide a microscopic description of the clusters that is consistent with all experimental evidence have not been
fully successful. The primary reason is the use of model potentials that have a predefined shape. In this paper
we derive a model-free interprotein potential directly from experimental structure factor. The derived potential is
globally repulsive but has a local minimum at short distances. The minimum is essential for the correct behavior
of the structure factor with protein concentration, in particular the shifting pattern of the signature maximum at
short wave vectors. Equilibrium clusters are observed throughout the entire range of concentrations, but their
nature differs in the low and high concentration limits. At low concentrations, the clusters are extended in shape.
As the concentration is increased, small clusters collapse while large clusters are assembled from the small ones.
Hydrodynamic interactions drive a kinetic slowdown at high concentrations, where a transition into a fluid of
permanent clusters of specific size is observed. In good agreement with the available experimental data, our
simulations shed light on the microscopic nature of protein clusters.
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I. INTRODUCTION

Whether protein lysozyme can make equilibrium clusters
in aqueous solutions is the subject of a vigorous scientific
debate. It started in 2004 with the paper of Stradner et al.
[1], presenting the results of a small-angle neutron scattering
(SANS) study of aqueous solutions of protein lysozyme at
varying concentration c. The reported static structure factor
exhibited a second maximum located at a short wave vector
kmax, in addition to the main maximum at a longer wave vector
corresponding to the nearest-neighbor distance between the
proteins. Since the second maximum indicates longer-range
correlations, it was concluded that it reports small protein
assemblies, or clusters, and corresponds to the intercluster
distances. Furthermore, the hallmark of the experimental
observations, that kmax does not shift with c, implies that the
cluster-cluster distance remains the same for all concentrations.
The only way this can be achieved is when the clusters grow in
size at increasing concentration. Specifically, a proportionality
relationship Nc ∼ c was assumed, where Nc is the cluster
size.

The cluster model was questioned by Shukla et al. [2,3],
who repeated the original scattering experiments and found
that kmax actually shifts to higher values as the concentration
is increased. Based on this observation the authors suggested
that kmax is the main maximum in the structure factor and
that this maximum corresponds to the nearest-neighbor dis-
tance between the proteins. Since the proteins are believed
to experience strong mutual repulsion under the conditions
of the experiment they choose to remain at a maximal pos-
sible distance one from another. This leads to the uniform
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compression of the solution at increasing concentration, caus-
ing all interprotein distances to shrink. As a consequence, the
position of the maximum in the structure factor shifts upwards,
in good agreement with the measurements. This model does
not envision the formation of any clusters.

An alternative explanation seeking to reconcile the above
two scenarios was proposed by Liu et al. [4]. These authors
varied systematically the shape of a model potential and
used integral-equation theory to identify systems that (a)
display a maximum at kmax but lack clusters at low protein
concentrations and (b) display clusters but lack the maximum
at high protein concentrations. Either case provides evidence
against a strong correlation between a maximum at kmax and the
appearance of clusters, as was suggested earlier [1,5]. Instead,
it is argued that the maximum arises because of the specific
shape of the interprotein potential, which causes strong protein-
protein correlations at intermediate distances (compared to
the nearest-neighbors contacts) that may be realized through
clusters but also through other structures, for instance, protein
gels. Correlation between the appearance of clusters and the
maximum at kmax is seen when S(kmax) is larger than 2.7 [6].
An important conclusion following from this observation is
that the presence of clusters cannot be determined based on
structural information alone. Instead, it is argued that additional
studies are needed in which the size of the various species in
the system can be evaluated directly.

Such studies were carried out recently using the neutron
spin-echo (NSE) method [7–9], measuring hydrodynamic
radius, and by NMR [8,10], reporting a long-time diffusion
constant. Both approaches find evidence that, at increasing
protein concentration, a new species emerges, which has a
radius larger than that of the monomer and, therefore, can be
associated with clusters. A consensus opinion emerging from
these studies [8,11] is that lysozyme clusters do exist but only
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at high protein concentrations where kmax exhibits no shifting.
This is to be contrasted with the low protein concentrations,
where kmax shifts and no clusters are observed.

While the existence of clusters does not seem to be contested
anymore, their nature remains elusive. A major obstacle for the
structural characterization of clusters at the microscopic level
is the lack of reliable interprotein potentials. Lysozyme has
been studied extensively over the last decade under a wide
range of conditions [2,12–19]. However, in all these studies
either a model potential [2,12–17] or an integral-equation
theory was used [18,19], both of which are approximate. As
a consequence, there is no potential for lysozyme to date
that produces good agreement with experiment. In the most
accurate approaches, potentials are obtained directly from
SANS data by fitting [2,20,21]. The quality of such potentials
remains untested, however. In one case [20], simulations
experience very slow dynamics, presumably because of a deep
minimum in the employed potential, reaching ∼8kBT , where
kB is the Boltzmann constant and T is the temperature. As a
consequence, comparison with experiment is made difficult
by poor equilibration. Studies conducted by another group
[9,21] do not suffer from the convergence problem but produce
results that do not completely agree with experiment. Indeed,
it has been found [21] that the maximum in the obtained
structure factor does not shift with concentration. In addition,
the system does not experience a kinetic slowdown near a
certain critical concentration [9] seen experimentally. These
shortcomings leave the question about the nature of lysozyme
clusters unanswered.

Equilibrium clusters are a relatively new and little studied
phenomenon [1,22,23]. In physics and chemistry clusters
represent a particular example of particle self-assembly. In
biology, protein clusters may have a well-defined functional
role, for instance, serving as a first step in the polymerization re-
action responsible for the sickle cell disease [24,25]. Recently
clusters have also been researched for use in nanotechnological
applications, in particular, drug delivery [26]. In the wider
context, a comprehensive understanding of why and how
clusters are made is needed for both advancing the frontiers
of basic science and developing new technologies.

In this paper, we present a microscopic description of
lysozyme clusters that agrees well with all available experi-
mental data. As in our prior work [27], we use SANS data to

derive interprotein potential by Boltzmann inversion. We focus
on the structure factor [28] that has the characteristic second
maximum at kmax. The potential obtained by our procedure
is repulsive everywhere except at short distances, where it
has a small local minimum. The minimum, in contrast to a
global minimum considered earlier [2,4,9,21], ensures that
the experimental concentration behavior of kmax is correctly
reproduced: shifting is seen at low concentrations and there is
no shifting at high c. The model predicts small and extended
clusters at low concentrations, while at high concentrations the
clusters are large and collapsed. At increasing concentration,
a transition into a nonergodic state is seen. Beyond a critical
concentration ccr = 300 mg/ml the clusters can be considered
frozen or permanent. Hydrodynamic interactions, included in
our model through the dissipative particle dynamics (DPD),
cause a kinetic slowdown on approach to ccr , in good agree-
ment with experiment.

II. MODEL AND METHODS

The interprotein potential v(r ) was obtained as described
in detail previously [27]. Briefly our method relies on the
one-to-one correspondence between a potential v(r ) and the
associated pair distribution function (PDF) [29]. The potential
is determined in successive iterations [30–32] as vl+1(r ) =
vl (r ) − λkBT log[gR (r )/gl (r )], where vl (r ) is the approxima-
tion at iteration l, gR (r ) is the experimental PDF, gl (r ) is
the PDF obtained at iteration l, and λ is a certain adjustable
parameter whose purpose is to control the rate of convergence.
The iterations were started from a purely repulsive initial guess
v1(r ). The pair distribution function was computed at each
iteration by molecular simulations using a stochastic dynamics
algorithm. The temperature was set at T = 298 K, while
the number of particles was set to match the experimental
density. It took 48 iterations to obtain the potential shown in
Fig. 1(b). The iterations used a cutoff distance of Rc = 250 Å.
The simulation box contained 800 particles.

To obtain structural functions, simulations were performed
at three temperatures as indicated in Fig. 2(a). The size of the
system was reduced to 512 particles, which had no adverse
effects on the results. Additionally, the cutoff distance was
reduced to 75 Å. The potential is seen to decay to zero at
that distance. The truncated part at r > Rc contains small
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FIG. 1. (a) Structural data for lysozyme solutions: pair distribution function and the static structure factor (inset). Both experimental [28]
and theoretical data are shown. (b) Interprotein potential obtained for T = 298 K. For comparison, a model potential is also shown; see main
text for details. The inset shows rv(r ), which highlights the exponential decay of the potential.

032419-2



CLUSTERS OF LYSOZYME IN AQUEOUS SOLUTIONS PHYSICAL REVIEW E 98, 032419 (2018)

FIG. 2. (a) Interprotein potentials obtained for lysozyme at three temperatures, T = 298, 278, and 273 K. (b) Position of the cluster maximum
kmax computed for the chosen temperatures as a function of protein concentration c. Data for the purely repulsive model potential from Fig. 1(b)
are shown by filled triangles. Experimental data of Cardinaux et al. [9] are shown for comparison.

undulations, which we ignored because they were judged an
artifact of the truncation of the experimental structure factor at
a finite wave vector during the numerical Fourier transform.

All simulations were performed for the potential in which
the distance was multiplied by 0.1. The size of the simulation
box was scaled appropriately. This allowed us to bring the
system to the atomic scale, making it easier to set simulation
parameters and manage and store the data. We used the stochas-
tic algorithm implemented in Gromacs [33,34] to maintain
constant temperature. The inverse friction coefficient was set
to τt = 2 ps. All trajectories contained 5 × 105 time steps. The
time step was set at δt = 2 fs.

The DPD method was used to conduct dynamics sim-
ulations [35]. A Fortran code was written specifically for
that purpose. The method takes into account viscous forces
between particles that are mediated by the solvent flows or the
hydrodynamic (HD) interactions. Stochastic forces are added
to maintain constant temperature. The equations of motions to
be solved are as follows:

d�ri

dt
= �vi (t ), (1)

m
d �vi

dt
= �fi (t ) =

∑
i �=j,rij <Rc

�FC (�rij )

+
∑

i �=j,rij <Rcv

{ �FD (�rij , �vij ) + �FR (�rij )}, (2)

where m is the mass of the particles, �rij = �ri − �rj , �vij =
�vi − �vj , �ri is the radius vector of particle i, �vi is its velocity,
and �fi (t ) is the total force acting on that particle. The force is
pairwise additive and composed of three contributions. The
first is the conservative force due to interparticle potential
�FC (�rij ). The second is the viscous drag force �FD (�rij , �vij ),

which describes how movements of one particle are transmitted
to the other particle through the flow of solvent. This force
depends on relative velocity of the affected particles. The
third is a random force �FR (�rij ), designed to maintain constant
temperature in the system. Stochastic and viscous forces
are related through the fluctuation-dissipation theorem. In

our implementation the relevant expressions are
�FR (rij )

m
δt =

f (rij ) g
�rij

rij
ξ and

�FD (rij )
m

δt = −f (rij )2 (�vij �rij )
rij

�rij

rij
, where ξ is a

random variable uniformly distributed between 0 and 1, δt

is the time step to be used in numerical integration of the
equations of motion, g = √

2kBT /m, and f (rij ) is a certain
dimensionless function that controls the strength of the viscous
forces. We used the self-consistent leap-frog algorithm of
Pagonabarraga et al. [36] to integrate the equations of motion
(1) and (2). The algorithm consists of two consecutive steps as
shown below:

Step 1.

�vi

(
t + δt

2

)

= �vi

(
t − δt

2

)
+ δt

�fi (t )

m

= �vi

(
t − δt

2

)
+ δt

�FC
i

m

+
∑

j �=i, rij <Rcv

{
f (rij )g

�rij

rij

ξ − f (rij )2 (�vij �rij )

rij

�rij

rij

}
,

Step 2.

�ri (t + δt ) = �ri (t ) + �vi (t )δt +
�fi (t )

m

δt2

2
.

In step 1 the velocities are propagated by δt . Note, however,
that the right-hand side contains a contribution that depends
on velocities at moment of time t . The latter can be estimated
as �vi (t ) = �vi (t+ δt

2 )+�vi (t− δt
2 )

2 , which turns the single equation for
particle i in Step 1 into a system of coupled linear equations
for all particles [36]. The equations can be efficiently solved
by matrix inversion. However, this method becomes time
consuming for large systems, so instead we chose the iterative
solution. It took no more than five iterations for all densities
to obtain converged velocities. The second step is for the
propagation of coordinates, and it is straightforward to perform
once the velocities are known.

The summation in Eq. (2) is carried out over pairs of
particles with mutual separations up to certain cutoff distance.
For the conservative forces, the cutoff is Rc = 75 Å as was
discussed earlier. For the hydrodynamic interactions we used a
different cutoff Rcv , which was set according to the following
considerations. Function f (rij ) controls the strength of the
viscous force acting between particles at a distance rij . It
is defined by the properties of the solvent contained in the
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space between the particles. If something other than solvent,
for instance, another particle, is allowed to enter that space,
f (rij ) is expected to change drastically. In this case the
description with a single f (r ) function may no longer be a good
approximation for HD interactions and should be avoided. We
set Rcv according to this criterion. It is seen in Fig. 1(a) that
the nearest-neighbor distance in a pair of particles is 26 Å,
which means that the distance between furthermost particles
in a three-particle linear cluster is 52 Å or more. To eliminate
the error in HD interactions caused by such clusters we set the
cutoff at a shorter distance, Rcv = 50 Å.

For simplicity we ignored the distance dependence in f (r )
[36] and replaced that function with a constant f [37]. We
varied f , which is the only free parameter in the algorithm,
systematically in order to determine its effect on the dynamics
of the system. Note that the static structure is not affected by
f . The value of 0.4 was seen to produce the best agreement
between simulation and experiment. Lower f values under-
estimate D0/Ds (k) (faster dynamics), while higher values
overestimate it (slower dynamics). To the extent that the
employed model of HD interactions is correct, the determined
value of f reflects the true dynamics of the studied system.

The dissipative force in Eq. (2) is along the vector con-
necting the particles [35]. We also tested models in which
the force lies along a perpendicular direction [37] or along
the vector of relative velocities [38]. Quantitatively the results
differed among all three approaches but qualitatively remained
the same.

III. RESULTS AND DISCUSSION

A. Interprotein potentials

Structural functions of protein solutions intricately depend
on a number of parameters, including pH, the type and
concentration of buffer used, counterions, etc. In this study we
use the SANS data of Abramo et al. [28] obtained for lysozyme
solutions at pH 2, temperature T = 298 K, and protein number

density ρ = 4.2 × 10−6 Å
−3

. In common with the results of
other groups [1,2,39], the studied static structure factor S(k)

has a second maximum at kmax ∼ 0.1 Å
−1

, indicating the
presence of long-range correlations. To derive the interprotein
potential v(r ) we follow the Boltzmann inversion procedure as
described in detail in our previous work [27]. Briefly, the struc-
ture factor is first converted into the pair-distribution function
g(r ), which is then used in an iterative fitting procedure to find
the corresponding v(r ). The experimental structural functions
are shown in Fig. 1(a) in comparison with their theoretical
counterparts. Overall, there is a very good agreement between
theory and experiment. The pair distribution function displays
some ripples for r > 8 nm which, most likely, are an error
resulting from the truncation of S(k) at a finite wave vector.

Globally, the generated potential, shown in Fig. 1(b), is
repulsive but has a small local minimum at r = 2.6 nm.
For further analysis we split the potential into a short-range,
vsr (r ), and a long-range, vlr (r ), components, v(r ) = vsr (r ) +
vlr (r ). The long-range part is approximated by the electro-
static solvation energy of a charged colloid computed within
the framework of the one-component model [40] vlr (r ) =
γ vocm(r ), where vocm(r ) = kBT LBZ2

0χ
2 e−κr

r
and γ is a co-

efficient introduced by us to correct for the errors in the model.
The protein’s density ρ, its charge Z0, and the counterion
density ρs can be used to compute other quantities involved
in this expression, including (a) the Bjerrum’s length LB =

e2

4πε0ε(T )
1

kBT
, where e is the electron charge, ε0 is the dielectric

permittivity of vacuum, ε(T ) is the dielectric constant of
water, and T is the temperature, (b) the screening constant
κ = √

4πLB (ρ|Z0| + 2ρs ), and (c) a scaling constant χ that
can be computed numerically [40] from a, the presumed radius
of the protein, and φ = 4

3πa3ρ, the protein volume fraction.
With the following values adopted for the model’s parameters:
Z0 = 17, ρs = 6 mM [28], a = 1.7 nm [9], T = 298 K, and
ε = 78.5 [41] we get LB = 0.713 nm, κ = 0.837 nm−1, and
χ2 = 2.98. The correction coefficient γ is determined from the
condition thatvlr (r ) reproduces the tail of the full potentialv(r )
in the long-r range. This means that the short-range part in the
concerned range is zero, which is a reasonable assumption.
For γ = 0.35 the model and the actual potential match at
rm = 0.42 nm, as shown in Fig. 1(b). For larger distances
the two potentials are in good agreement. The fitted potential
displays some ripples which most likely are unphysical. Its
long-range region is highlighted in the inset of Fig. 1(b),
which plots rv(r ) and thus should exhibit an exponential decay.
Indeed this is what happens over the range of distances from
4 to 7nm. The decay constant 0.78 nm−1 agrees remarkably
well with the value of 0.837 nm−1 predicted by the theory.
Further evidence of the high accuracy of the OCM theory is
that it overestimates (since γ < 1) the strength of the repulsive
potential only by about a factor of 2.

B. Temperature-driven structural transformation

The short-range part of the potential acting between
charged colloids solvated in water is the sum of two terms:
dispersion and hydrophobic interactions. The first term is
temperature independent. The second term does depend on
temperature. However, if solvation of small hydrocarbons is
used as a phenomenological model [42], the dependence is
strong around T = 373 K but moderates significantly below
T = 298 K. Theoretical calculations seem to support this
assessment. The numerical estimate of the surface tension, for
instance, obtained by Huang and Chandler [43] for hard-sphere
solutes in water varies only by about 2% when the temperature
changes between 277 and 298 K. As a consequence, the
associated change of the hydrophobic solvation energy can be
considered small.

The electrostatic long-range potential, on the other hand,
appears to be more sensitive to temperature variations when
T is in the room temperature range. If at T = 298 K the
dielectric constant, which describes how strongly charge-
charge interactions are screened, is 78, and then at T = 277 K
it increases to 87. As a result, the electrostatic repulsion is
expected to weaken by more than 10%.

Taking these arguments into consideration we retain tem-
perature dependence only in the long-range part of the potential
vlr (r; T ) while the short-range part, vsr (r ), is treated as temper-
ature independent. The short-range part then can be evaluated
as vsr (r ) = v(r; TMD ) − vlr (r; TMD ), where v(r; TMD ) is the
potential extracted from SANS data while vlr (r; TMD ) is the
model long-range potential. Both potentials are computed for
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some reference temperature TMD . With these notations, the
full potential can be computed for any temperature T as
v(r; T ) = v(r; TMD ) − vlr (r; TMD ) + vlr (r; T ). We used this
formula together with the simulation data for TMD = 298 K to
compute potentials for two other temperatures: T = 278 and
273 K. The results are shown in Fig. 2(a). Like for T = 298 K,
these potentials have a local minimum at short distances. As
the temperature is decreased the position of the minimum shifts
to the left while its depth increases. As anticipated, this is the
consequence of the weakening electrostatic repulsion at lower
temperatures [41]. Note also that this trend would be further
enhanced by the temperature dependence in the hydrophobic
forces [43], which was neglected in the present model. How
justifiable are the assumptions made in the derivation of the
model can be tested directly in SANS experiments at varyingT .

The position of the cluster maximum kmax in the structure
factor evaluated for all three temperatures is shown in Fig. 2(b)
as a function of the protein concentration c, calculated from

the numerical density as c [mg/ml] = 2.37 × 107ρ [Å
−3

]. As
the concentration is increased, kmax rises rapidly until certain
transition point cT , after which a flat plateau follows. While this
shape is consistent for all studied temperatures, its details are
specific for each T . In particular, the transition concentration
is close to 150 mg/ml for T = 298 K but declines rapidly for
lower temperatures. For T = 273 K, cT drops to 50 mg/ml,
making the maximum-position curve flat in a very wide range
of concentrations.

While the concentration data for kmax measured under the
same experimental conditions as those for which the interpro-
tein potential was derived [28] are not available, comparison
can be made with the experimental data of Cardinaux et al. [9],
obtained under different pH and salt concentration. Remark-
ably, these experiments report exactly the same behavior for
kmax as our simulations, as can be seen from Fig. 2(b). There is
an upward shift in both theoretical and experimental curves as
the temperature is increased, while the point at which plateau
sets in is moving to a higher concentration. Numerically, kmax

observed in the two curves differ by 0.02 Å
−1

, which is
the consequence of different experimental conditions under
which the two data sets were obtained [1,2,9]. Importantly, the
experimentally observed concentration dependence of kmax and
its behavior with temperature are correctly reproduced by the
theory.

C. Evidence for clusters

Clustering analysis was conducted using a criterion ac-
cording to which the given particle belongs to a cluster if
it is separated from it by a distance r < rb, where rb =
3.6 nm and corresponds to the position of the barrier in the
interprotein potential. The results, shown in Fig. 3 for T =
273 K, demonstrate that the studied system makes clusters at
increasing protein concentration. Figure 3(a) displays fraction
of particles P (s) belonging to a cluster of size s computed
at varying protein concentration. While at low c mostly
monomers are observed, their population is seen to decline
as the concentration is increased. Concomitantly, clusters of
larger sizes, dimers, trimers, and so on begin to appear. Figure
3(b) displays population of the four smallest clusters over a
range of concentrations. It is seen that at c = 100 mg/ml, the
percentage of monomers drops below 50%. This concentration
can be regarded as the transition point into the cluster fluid
state. Above 125 mg/ml, there are more particles engaged
in dimers than in monomers. Further concentration increases
result in further reduction of monomers in favor of clusters.
Note that the appearance of clusters can not explain the
observed concentration trends in kmax. Indeed, at T = 273 K
the plateau in kmax(c) begins at c = 50 mg/ml. At that point, the
system is mostly monomers with a small percentage of dimers
while a significant population of clusters is not observed until
c = 100 mg/ml. Therefore, there must be another mechanism
responsible for the shifting patterns of kmax.

To learn more about this mechanism, it is instructive to
consider a potential without a minimum, as shown in Fig. 1(b).
We computed structural functions for this potential using the
same protocols as for the original system. Figure 2(b) shows
the obtained kmax at T = 273 K. At high concentrations,
there is no sign of leveling off. Instead, after starting at low
c from values very close to those of the original potential,
kmax continues to grow uncontrollably as the concentration is
increased. In real space, this behavior indicates a shrinking
correlation length, in agreement with the predictions made
earlier for systems interacting via purely repulsive potentials
[2,9]. This structural transformation can be visualized by
projecting the interprotein distances onto a plot of potential
energy. Figure 4(a) shows one such visualization along with
a cartoon illustrating anticipated structural changes. Since
the interaction among particles is repulsive, the system tends

0 1 2 3 4 5
c (102 mg/ml)

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty

monomers
dimers
trimers
tetramers

(a)
(b)

FIG. 3. Results of the clustering analysis for T = 273 K. (a) Fraction of particles P(s) involved in clusters of size s for varying concentration
c. Arrows indicate concentrations at which, first, the population of the monomers drops below 50% and then, second, the distribution develops
a nonmonomeric peak. (b) Population of four smallest clusters over a concentration range.

032419-5



A. BAUMKETNER AND W. CAI PHYSICAL REVIEW E 98, 032419 (2018)

0 1 2 3 4 5
c (102 mg/ml)

0

5

10

15

20

Po
te

nt
ia

l e
ne

rg
y 

(1
03  k

J/
m

ol
)

local minimum
no minimum

T=273K

T=298K

(a) (b)
(c)

FIG. 4. Graphical illustration of structural changes taking place in the system interacting via a purely repulsive potential (a) and a potential
that contains a local minimum (b). Dotted lines represent average distances between particles. (c) Potential energy computed for the two systems
at two temperatures. The data for the lower temperature are shifted for better readability.

to maximize its interparticle distances. When binned into
a distribution these distances are centered around a certain
average value. Each pair of particles makes a contribution to
the total potential energy of the system. As the concentration is
increased, the system undergoes a uniform compression, driven
by the need to minimize the potential energy. As a result, the
average interprotein distance shifts to the left while kmax shifts
to the right; the average energy of a pair of particles goes up
together with the total potential energy. Further increase of
density does not bring about any new behavior: the distances
still continue to shrink while pushing the particles uphill on
the potential energy surface.

In the case of the potential with a local minimum, there
are no clusters (all distances are greater than rb, the position
of the barrier) in the infinite dilution limit. At finite densities
clusters begin to form, and, as Fig. 3(a) demonstrates, this
happens for a very low c. Note that the potential energy
minimum is still attained when the interparticle distances are
at their maximum. Consequently, the formation of clusters
necessarily costs potential energy. In the analysis of a potential
with a local minimum similar to that studied here [44], we
explained that in the limit of low c clusters in such systems are
stabilized by entropy. This is the consequence of the volume of
the configuration space corresponding to cluster states being
greater than the volume of the space available to the monomeric
states. An illustration of what happens at finite but low c is
shown in Fig. 4(b), top row. Since the cluster population is
low, r > rb for the majority of particles. The system responds
to an increase in density in two ways. First, the number of
particles belonging to a cluster increases. This is evident from
Fig. 3(a) and can be explained in terms of the thermodynamic
balance shifting away from monomers and toward clusters
due to the loss of entropy by the former. The percentage of
particles affected by this process is still low, however. Second,
the particles with r > rb undergo a uniform compression as
they try to minimize the potential energy. This results in the
shift of the average distance to the left [see Fig. 4(b), middle
row] just as for the model without the local minimum. Also in
common with that model, there will be a shift in kmax to the
right. As the average distance continues to shrink, the average
energy of a pair of particles continues to rise. At some density,
it becomes beneficial for the particles to cross over the barrier
into the local minimum instead of continuing moving uphill
on the potential energy surface [see Fig. 4(b), bottom row].

At that point, the assembly of clusters becomes driven by the
potential energy, as observed earlier [44], while the shrinking
of the average distance stops, since it leads to a higher potential
energy compared to that offered by the clustering route. It
follows from this analysis that the concentration cm at which
assembly of clusters changes its mechanism should be equal
to cT , the density at which the shifting in kmax(c) stops. A key
prediction of this model is that for c > cm, the potential energy
produced by the potential with the local minimum should be
lower than that of the potential without the minimum. The
results of a direct test of this prediction in simulations are
shown in Fig. 4(c) for T = 273 and 298 K. The potential
with the minimum indeed begins to yield lower energy starting
at c = 150 mg/ml for T = 298 K and at c = 50 mg/ml for
T = 273 K, in full agreement with Fig. 2(b).

D. Cluster statistics

In the proposed model kmax corresponds to the distance
between cluster edges, not their centers as suggested earlier
[1]. Since that distance does not change for c > cT , a pertinent
question to ask is this: “How can clusters accommodate ever
more particles at the growing density, while keeping a constant
distance to their neighbors?” The only reasonable answer is
that they must shrink. A detailed analysis of the clusters’ di-
mensions, measured by the radius of gyration Rg , is presented
in Fig. 5(a) for T = 273 K and varying cluster size s. Scaling
properties are extracted by fitting the simulation data to the
function f (s) = a(s − 1)b, where s is the cluster size, b is the
scaling exponent, and a is the gyration radius of the dimer. It is
instructive to draw comparisons with the statistics of polymers
[45] in order to better understand the scaling properties of
clusters. Polymers with constitutive units that are able to
penetrate each other experience an entropic collapse, which
leads to the so-called ideal-chain statistics. The size of ideal-
chain globules scales with the exponent b = 0.5. Polymer units
with finite size experience repulsion, which causes the chain
to increase its size as it performs a self-avoiding walk. The
corresponding scaling constant, known as the Flory exponent,
has been evaluated at b = 0.588 [45]. Adding sufficiently
strong attraction to the interaction energy triggers a collapse
of the polymer chain into the minimum-size conformations,
permitted by the excluded volume of the monomers. The size
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FIG. 5. (a) Statistics of clusters at varying concentration and T = 273 K. The radius of gyration is shown as a function of the cluster size.
Broken lines with symbols denote simulation data for varying concentration c. Solid lines display scaling functions obtained for the simulation
data by fitting. Two concentrations are considered: 49.5 and 346 mg/ml. (b) Illustration of clusters with different shapes and sizes observed
in our simulations at varying protein concentration. A pentamer with Rg = 3.0 nm is shown for c = 49.5 mg/ml. A smaller pentamer with
Rg = 1.5 nm is observed at a higher c = 346 mg/ml. A decamer at the same concentration is seen to consist of two small pentamers joined
together.

of the resulting maximally compact globule scales with the
exponent b = 0.33.

We find that at low concentrations the scaling constant
is larger than the Flory exponent. At c = 49.5 mg/ml, for
instance, b = 0.68, and the typical cluster observed at this
concentration has an expanded shape. As an illustration,
Fig. 5(b) shows a pentamer which has the radius of gyration
3.0 nm. In agreement with our prediction, the clusters undergo
collapse, while the scaling constant goes down, as the density
of the solution is increased. At c = 346 mg/ml the size of
small clusters drops by a factor of 2, as data in Fig. 5(b) for
the pentamer illustrate. Simultaneously, the scaling constant
b declines to 0.36, which is close to the exponent of the
maximally compact object 0.33. Interestingly, large clusters at
high concentrations obey a different statistics from the small
ones. Figure 5(a) shows that for s > 20 the simulation data
can be well reproduced by the following function Rg (s) =
1.5(s − 1)0.5. The two scaling regimes in Rg (s) are separated
by an inflection point at some intermediate si , which, as
Fig. 5(a) shows, depends on protein concentration. The higher
the concentration, the larger the size si .The emergence of two
different scaling laws, defined by one small and one large
exponent b, suggests a hierarchical organization of the clusters,
in which small clusters are used as building blocks for the
assembly of the larger clusters. This model is confirmed by
the visual inspection of the trajectories. Figure 5(b) shows
a decamer observed in our simulations at c = 346 mg/ml.
Its radius of gyration Rg = 3.5 nm is much greater than the
value of 2.5 nm expected according to the small-s scaling
function; see the extrapolation data in Figure 5(a) for s = 10
and = 346 mg/ml, indicating an expanded shape. It is easy to
see that this cluster is built from two small pentamers joined
together. This model of cluster organization was reported by us
earlier [44]. Its key feature, the large-cluster exponent of 0.5,
that corresponds to the ideal-chain statistics and implies no
excluded volume interactions, can be explained by the ability
of clusters to “pass through” each other via the exchange of
particles mechanism.

E. Nature of the cluster fluid

The initial solution with individually dispersed proteins
(monomers) effectively turns into a cluster fluid at large c,
where the population of monomers is low. The nature of this
fluid can be gleaned from the cluster distribution function P (s),
shown in Fig. 6. At c = 178 mg/ml, P (s) has a broad shape
indicating the presence of clusters in a wide range of sizes,
2 < s < 20, with a maximum observed for dimers, s = 2. An
increase in the concentration has two effects. First, the distribu-
tion becomes more sharply peaked. The distribution half-width
�s, defined as �s = so − smax, where smax is the position of
the maximum in P (s) and so is the size, where the distribution
falls 50% off of its maximum, P (so) = 0.5P (smax), is seen to
decline from 2, observed for c = 178 mg/ml, to 1.7, observed
for c = 456 mg/ml. Second, the distribution maximum smax

shifts to higher values: while smax = 2 for c = 178 mg/ml
it increases to 6 for c = 456 mg/ml. An additional feature
emerges at cs ∼ 300 mg/ml (see Fig. 6), where a second
maximum (first as a shoulder) appears in the distribution
function, located at the position double that of the main

11 0 100
s

0

0.5

P(
s)

c=178 mg/ml

257.2 mg/ml

277 mg/ml
291.6 mg/ml
346.2 mg/ml

456.1 mg/ml

FIG. 6. Cluster-size distribution P (s ), shifted appropriately for
better readability, for varying concentration and T = 273 K. Arrows
indicate the position of the side peak or shoulder in the distribution,
signaling cluster-cluster association.
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maximum. For c = 291.6 mg/ml the maximum is at s = 8,
while for c = 456.1 mg/ml at s = 12. Note that, according
to the analysis of the radius of gyration, small clusters begin
to self-associate into larger clusters starting at a much lower
concentration. Indeed, Fig. 5(a) shows that two scaling regimes
are present in Rg (s) starting from c = 178 mg/ml onwards.
So cs must signal a different transformation. What happens
specifically at this concentration is that, out of the sea of
clusters of different sizes, a cluster of preferred size emerges.
The specific cluster, and its assemblies, begin to dominate the
ensemble, in a sign of the structural phase transition.

F. Structural relaxation

Structural dynamics can be probed directly by neutron spin-
echo (NSE) scattering, a technique that measures intermediate
scattering function F (k, t ), where k is the wave vector and
t is time. For the purposes of the cluster discussion, we are
interested in the short-time dynamics, where the following ap-
proximation applies: F (k, t ) = S(k)e−k2Ds (k)t . Here Ds (k) is a
transport quantity that has the meaning of generalized diffusion
coefficient for density fluctuations at wave vector k and can
be extracted from experimental data by fitting. Dimensionless
quantity D0/Ds (k), the inverse of this coefficient multiplied by
the diffusion constant in the free diffusion limit,D0, can be used
as a generalized relaxation time; for lysozyme it has a minimum
[9] at the location where a maximum in S(k) is seen, the so-
called de Gennes narrowing [46]. At k = kmax, D0/Ds (kmax)
undergoes a rapid growth with protein concentration that can be
attributed to a kinetic phase transition [9]. Interestingly, earlier
theoretical models fail to predict this transition [9], finding
only a moderate increase in the relaxation time. We used the
same stochastic dynamics (SD) simulations as for the structural
studies (see the “Methods” section) to compute F (kmax, t )

for kmax = 0.118 Å
−1

and T = 278 K. Fitting over the time
domain where clear exponential decay is observed permitted
the calculation of Ds (kmax). We applied the same analysis
to the experimental data [9], to make sure that comparison
between theory and experiment is consistent. Figure 7(a) shows
our results, scaled to match the experiment at c = 50 mg/ml,

in comparison with the experimental data. The simulations
significantly overestimate the rate of structural relaxation. For
c > 200 mg/ml, the theoretical D0/Ds (kmax) is more than
twice smaller than its experimental counterpart. In agreement
with prior work [9], we see here that direct protein-protein
interactions are not sufficient to provide a proper description
for the slowdown of structural relaxation taking place in the
simulated system at increasing concentration.

If not direct, then, perhaps, it is interactions mediated by
the solvent that are missing? Note that a solvent is present
implicitly in SD through a friction force designed to keep
the temperature constant. It is assumed to be the same for
all particles and independent of their positions or velocities.
This approximation ignores viscous forces created by sol-
vent flows due to the movements of particles with respect
to one another, or the so-called hydrodynamic interactions
[47]. Earlier studies of colloidal suspensions indicate that
hydrodynamic interactions may cause slow dynamics [48]. To
investigate their effect in the context of lysozyme solutions
we employed the DPD method, as discussed in detail in the
“Methods” section. The method contains one free parameter
f , which controls the strength of the friction force. We varied
that parameter systematically to determine its influence on
structural relaxation. Two main effects were revealed in these
studies: (1) D0/Ds (kmax) curve grows steeper with f and (2)
it becomes strongly nonlinear. By treating f as an adjustable
parameter, it is possible to achieve a very good agreement be-
tween theoretical and experimental D0/Ds (kmax). Figure 7(a)
shows our DPD data for = 0.4. Deviations on the order of
0.1 from this value do not lead to noticeable differences in
the dynamics. It is seen that the experimental function can be
reproduced very well for c < 300 mg/ml. At c ∼ 300 mg/ml
our model slightly underestimates the relaxation time. For
higher concentrations, experimental data are missing, where
it is concluded [9] that the system undergoes a kinetic arrest.
In the same limit our simulations show that D0/Ds (kmax) has
large but finite values. We note that in an unrelated study [49],
viscosity, another property that can detect kinetic transitions,
grows rapidly with concentration, but nevertheless lacks a
mathematical singularity for c > 300 mg/ml. So the precise
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FIG. 7. (a) Quantity D0/Ds (kmax) characterizing the rate of structural relaxation at wave vector kmax, where D0 is the diffusion coefficient
in the free diffusion limit and Ds (kmax) is the generalized diffusion coefficient; see main text for definition. Experimental data [9] and the results
of two simulation methods, DPD and SD, are shown. The parameter controlling the strength of the hydrodynamic interactions in the DPD
simulations was calibrated against experimental data. Data points obtained from nonconverged simulations are shown by full circles with white
squares inside. (b) Exponent extracted from the mean-squared displacement as a function of time. The inset plots the relaxation time extracted
from the time autocorrelation function of the total number of clusters. Data for two system sizes are shown. All data are shown for T = 278 K.
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nature of the observed kinetic transition seems to be unclear at
the moment.

To learn more about the dynamics in the high-c regime we
carried out tests designed to determine whether the system
remains ergodic in that limit, on the simulation timescale.
Specifically, we computed the mean-square particle displace-
ments 〈� �R2(t )〉 as a function of time and fitted them to the
following template f (t ) = α + δtβ , where t is time and α, δ,

and β are certain adjustable parameters. When the system is
ergodic, the displacement is described by the diffusion law:
β = 1 and δ = 6D, where D is the diffusion coefficient. Fitting
has to be done for sufficiently long times as the linear regime is
preceded by a short ballistic phase where 〈� �R2(t )〉 ∼ t2. The
point separating the two types of dynamics, td , was determined
for c = 49.5 mg/ml. For consistency, fitting was performed
over the same time interval for all concentrations. The com-
puted exponent β is shown in Fig. 7(b). Five independent
simulations were carried out to test whether the results are
reproducible. The error bars in the figure were computed from
the analysis of these trajectories. It is seen that β = 1 for small
concentrations, where ergodic (on the simulation timescale)
behavior is observed. Statistically meaningful deviations begin
at ccr ∼ 300 mg/ml, which is close to cs . Since the exponent
β is less than unity, it indicates a confinement of particles,
similarly to supercooled and glassy liquids, where the cage
effect is observed [50]. In our case, the steric effects due to the
protein size can be ruled out as the source of the confinement.
It is known that lysozyme is able to transition into high-density
states [51,52] with c = 400 mg/ml and higher and still remain
an ergodic fluid. The confinement, therefore, must be due
to a different mechanism. In one likely scenario, one can
argue that particles are expected to diffuse much more slowly
as part of a cluster than when they are in the monomeric
state. It is reasonable to expect then that low β values are a
direct consequence of cluster formation. There is one problem
with this explanation, however. Clusters start forming at c <

50 mg/ml, and at c > 100 mg/ml [see Fig. 3(b)] they represent
the most populated species in the system. It is not clear then
why there is no confinement at 100 mg/ml < c < 300 mg/ml,
despite a preponderance of clusters. Perhaps it is not the
clusters but their dynamics that leads to nonergodicity? If
clusters are allowed to make and break multiple times on
the simulation timescale, their constituent particles should
exhibit the same dynamics as that of the monomers. Clusters
that do not change in the course of the simulations, on the
other hand, should experience the slowdown. To test this
hypothesis we examined the autocorrelation function ϕ(t ) =
〈Nc(0)Nc(t )〉/〈N2

c 〉, where Nc(t ) is the number of clusters at
time t . The function reports the timescale on which clusters
assemble and fall apart. The characteristic time constant, or
relaxation time, for this process, τ , was extracted from ϕ(t )
by fitting it to an exponential template. The results, plotted
in the inset of Fig. 7(b), show that τ remains flat for low
concentrations but begins to rise sharply at c ∼ 300 mg/ml,
in a clear sign of the kinetic transition. The transition leads to
the creation of clusters that are unable to exchange particles
among themselves and, thus, can be considered permanent.
As specific cluster distributions are unable to equilibrate over
the available simulation time, they can be considered frozen or

nonergodic. As any collective or phase-change phenomena, the
transition is expected to be strongly influenced by the size of
the simulation cell. To assess that influence, we repeated our
simulations for boxes in which the number of particles was
increased more than threefold, from 512 to 1728. The results,
shown in Fig. 7(b), demonstrate that the transition becomes
much sharper. This trend is likely to continue for larger
systems. A careful finite-size analysis is needed to determine
the exact transition density. Our estimate based on the present
simulations is ccr ∼ 300 mg/ml. Since at c > ccr the system is
nonergodic, relaxation times in that limit can not be determined
reliably. For that reason the relevant nonconverged data in
Fig. 7(a) are shown by different symbols from those used for
other data, specifically, full circles with white squares inside.

Whether the hydrodynamic interactions provide the only
feasible mechanism for the kinetic slowdown remains to be
seen. At least two other models have been discussed in the
literature [9]. The first is the Wigner glass, which relies on
the repulsive interactions. We mentioned earlier that steric
interactions are unlikely to cause kinetic arrest at the studied
densities. The same is true for the electrostatic repulsion, as
in that case stochastic dynamics simulations, lacking the hy-
drodynamic forces, would also uncover nonergodic behavior,
which they did not. The other model is attractive glass, in which
protein-protein attraction causes slow dynamics. Here again
sufficiently strong attraction would reveal itself in stochastic
dynamics simulations and it did not. Nevertheless, either model
may still apply if the interprotein potential depends strongly
on protein density. That dependence is ignored in the present
paper. In the case of repulsive glass, electrostatic interactions
may gain strength at high densities, although it is not clear to us
at the moment what mechanism could cause this effect. For at-
tractive glass, protein-protein attraction may become stronger
at high c. This could happen because of specific density
dependence of the hydrophobic interactions. Or, alternatively,
strong counterion-mediated attraction between proteins may
arise. Clearly, more research is needed to assess the likelihood
of these different scenarios.

IV. CONCLUSIONS

In this paper we report the formation of equilibrium clusters
in aqueous solutions of protein lysozyme. Proteins are modeled
as soft spherical particles for which the interaction potential
is derived directly from experimental structure factor. The
potential is overall repulsive but contains a local minimum
at short distances. Computer simulations reveal that this po-
tential leads to the formation of clusters at varying protein
concentration c. Clusters are small, mostly dimers and trimers,
and only weakly populated at small concentrations. They grow
in size as the concentration goes up, while their population
is steadily increasing. At some point clusters become more
populous than monomers, signaling a structural transition into
the cluster-fluid phase.

The structure factor of lysozyme solutions studied in this
paper has a secondary maximum at short wave vectors.
The specific dependence of the position of this maximum
on concentration kmax(c) has been used previously [1,9] to
characterize clusters at the quantitative level. This dependence
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can be correctly reproduced by our simulations, which lead
to the following clustering scenario. At small concentrations
most of the proteins are found at maximal distances from
another one, since such configurations are the lowest-energy
states in systems interacting via repulsive potentials. There
are only a few clusters in the solution, and their assembly
is favored by entropy. The wave vector kmax corresponds
to the average distance between proteins. When the protein
concentration is increased, the solution undergoes uniform
compression. This causes the average distance to shrink,
leading to an upward shift in kmax(c), in excellent agreement
with experiment [1]. As the concentration is increased beyond a
certain threshold value c � cT the assembly process becomes
driven by enthalpy. It then becomes energetically beneficial
for the monomers to join an existing cluster (or make a new
one) instead of continuing to approach other proteins at ever
shorter distances, as happens in the compression scenario. As a
consequence, the average interprotein distance stops shrinking
while kmax(c) stops shifting at high concentrations, again in
excellent agreement with experiment [1]. Our simulations
produce quantitatively accurate estimates for cT : 50 mg/ml
at T = 273 K and 150 mg/ml for T = 298 K.

At low concentrations the radius of gyration of the observed
clusters Rg (s) can be well described by a single scaling
function. The scaling exponent obtained from fitting indi-
cates that the clusters occupy mostly expanded, or stretched,
configurations. As the concentration grows, clusters begin to
collapse. For sufficiently large c their scaling exponent ap-
proaches 0.33, which is characteristic for maximally compact
objects. At the same time, large clusters develop a distinct
statistics. Their scaling exponent increases in comparison with
the small clusters and approaches 0.5, the ideal-chain value.
Two separate regimes in Rg (s) suggest that clusters obey a
hierarchical structural model, according to which large clusters
are assembled from the small ones as building blocks. At high

concentrations cluster fluid is composed of a large variety
of small and large clusters. At c = cs a structural transition
is seen into a state in which a cluster of specific size and
its assemblies begin to dominate the entire ensemble. The
transition is manifested in the appearance of multiple peaks
in the cluster-size distribution. At T = 273 K we estimate that
cs is approximately 300 mg/ml.

In agreement with experiment, the studied system ex-
periences a kinetic phase transition at sufficiently high
concentrations. Our simulations find that for c � cr , where cr is
a certain critical concentration, clusters are unable to exchange
particles among themselves, which leads to the breakdown of
ergodicity. The transition is accompanied by a strong growth
in the relaxation time of various processes, including density
fluctuations. Our simulations find that hydrodynamic inter-
actions are critical for the kinetic slowdown. The parameter
controlling the strength of these interactions, f , is seen to
strongly influence the value of cr . Greater f ’s lead to lower
cr ’s and vice versa. The kinetic transition is not observed
when the hydrodynamic interactions are switched off, f = 0.
When this parameter is calibrated against experimental data
for low protein concentrations, we find that cr ≈ 300 mg/ml
at T = 278 K.
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