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Reaction-diffusion kinetics on lattice at the microscopic scale
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Lattice-based stochastic simulators are commonly used to study biological reaction-diffusion processes. Some
of these schemes that are based on the reaction-diffusion master equation (RDME) can simulate for extended
spatial and temporal scales but cannot directly account for the microscopic effects in the cell such as volume
exclusion and diffusion-influenced reactions. Nonetheless, schemes based on the high-resolution microscopic
lattice method (MLM) can directly simulate these effects by representing each finite-sized molecule explicitly as
a random walker on fine lattice voxels. The theory and consistency of MLM in simulating diffusion-influenced
reactions have not been clarified in detail. Here, we examine MLM in solving diffusion-influenced reactions in
three-dimensional space by employing the SPATIOCYTE simulation scheme. Applying the random walk theory,
we construct the general theoretical framework underlying the method and obtain analytical expressions for
the total rebinding probability and the effective reaction rate. By matching Collins-Kimball and lattice-based
rate constants, we obtained the exact expressions to determine the reaction acceptance probability and voxel
size. We found that the size of voxel should be about 2% larger than the molecule. The theoretical framework of
MLM is validated by numerical simulations, showing good agreement with the off-lattice particle-based method,
enhanced Green’s function reaction dynamics (EGFRD). MLM run time is more than an order of magnitude faster
than EGFRD when diffusing macromolecules with typical concentrations observed in the cell. MLM also showed
good agreements with EGFRD and mean-field models in case studies of two basic motifs of intracellular signaling,
the protein production-degradation process and the dual phosphorylation-dephosphorylation cycle. In addition,
when a reaction compartment is populated with volume-excluding obstacles, MLM captures the nonclassical
reaction kinetics caused by anomalous diffusion of reacting molecules.

DOI: 10.1103/PhysRevE.98.032418

I. INTRODUCTION

In the intracellular environment, macromolecules can be
heterogeneously distributed in space and react stochastically
at low concentrations. The conventional mass action-based
approach is insufficient to describe the reaction-diffusion
(RD) behavior of the macromolecules and, thus, it is necessary
to incorporate space and stochasticity into the model [1–6].
Generally, we can represent space as a continuum (off-lattice)
or a discretized lattice model. In the former, each molecule is
represented as a point or a hard-body sphere that propagates
via Brownian motion in continuous space [7–23] . Bimolecu-
lar reaction is often modeled as a collision-based interaction
[7,11,12,14,19,21] according to the Smoluchowski model of
diffusion-influenced reactions [24,25]. In some models, the
finite size of molecules is taken into account in the reaction
and, therefore, the effects of volume exclusion by molecules
can be reproduced [11–18,21]. Although continuous space-
time models are physically consistent, the cost of computation
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becomes significant when simulating nondilute and crowded
conditions in the cell [26].

On the other hand, in lattice approaches, the average
diffusion behavior is adopted and the reactions follow ei-
ther the simple first-order process, or the second-order pro-
cess when two reactive molecules meet on the same lattice
voxel. Such approaches reduce the computational cost even
in crowded space and provide an efficient way to simulate
large numbers of molecules and reactions. Within lattice
approaches, variation exists depending on how each molecule
is represented and reaction is modeled. In the well-established
reaction-diffusion master equation (RDME) models [27–33],
space is discretized into lattice voxels called subvolumes.
In each subvolume, pointlike molecules are assumed to be
dilute and well mixed. To obey the well-mixed condition,
there is a limit to the size of the subvolume [28,34,35],
which in turn imposes a limit to the spatial resolution.
Diffusion of molecules across subvolumes is modeled as
a first-order reaction with a concentration dependent rate.
Unimolecular and bimolecular reactions only occur within
each subvolume with a rate defined by the propensity func-
tion [36]. Compared to continuum-based schemes, RDME
models RD from the mesoscopic to the macroscopic scale
but not at the microscopic scale. However, there have been
several efforts to overcome the well-mixed limit in RDME
models and to bridge mesoscopic and microscopic scales
[34,35,37,38].
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Apart from the RDME lattice models, there is another class
of schemes, which we refer as microscopic lattice method
(MLM) that represents molecules at single particle resolution
[39–50]. In most of these schemes [39,41–45,47,50], the size
of the voxel follows the molecule size, whereas in the small-
voxel tracking algorithm (SVTA) [48], a particle can occupy
multiple voxels, providing greater spatial resolution at the
cost of higher computational complexity. In MLM, a molecule
hops into a neighbor voxel at a constant rate such that normal
diffusion is satisfied. Excluded volume arises naturally since
the size of molecule is directly reflected by the voxel size and
occupancy in the lattice. Similar to RDME models, unimolec-
ular reaction is modeled as a first-order process. Bimolecular
reactions are coupled to molecular collisions in all of these
schemes except GRIDCELL [45]. In the collision-based reaction
schemes, the steady-state reaction rate follows the macro-
scopic effective reaction rate when the reaction is activation
limited. However, the reaction accuracy of MLM has not
been studied in detail when it is diffusion influenced. In a
recent work, Sturrock [51] also reported several shortcomings
in MLM, notably in the accuracy of SPATIOCYTE [47] when
estimating steady-state bimolecular reaction rates.

Our focus in this work is to examine in detail the accuracy
and consistency of MLM in solving diffusion-influenced re-
actions using theoretical analysis and numerical simulations.
The theoretical framework here is constructed based on the
hexagonal close-packed (hcp) lattice but is also applicable
for any regular lattice arrangements such as the simple cubic
lattice. We employ the SPATIOCYTE scheme to construct and
analyze the general theoretical framework of MLM in both
activation- and diffusion-limited regimes. We then describe
the first-passage behavior of the method according to the
random walk theory and obtain the analytical formula for
the total rebinding probability of a pair of reacting molecules
and their effective reaction rate constant. Next, we perform
numerical simulations to evaluate the accuracy of the the-
ory and investigate the time-dependent kinetics. We found
that MLM exhibits the expected steady-state and asymptotic
time-dependent behaviors of the reaction as in the collision-
based continuum model. Subsequently, we evaluate the per-
formance of MLM in comparison to other well-known off-
lattice methods. As application examples, we show that the
method correctly recapitulates the time-dependent behavior of
proteins in the production-degradation process and the dual
phosphorylation-dephosphorylation cycle, two fundamental
building blocks of intracellular signaling. Finally, we demon-
strate the effects of crowding obstacles on the kinetics of a
simple bimolecular reaction with MLM.

II. METHODS

We begin by presenting the theoretical background of
the Collins-Kimball [25] approach in modeling irreversible
bimolecular diffusion-influenced reaction. We highlight the
particle-pair formalism for the reaction rate, which will be
used in the MLM theory. We then briefly describe the SPATIO-
CYTE RD scheme, an MLM implemented on the hcp lattice.
Finally, we construct the theoretical framework of reaction
rate coefficient on lattice using the SPATIOCYTE scheme.

A. Irreversible bimolecular diffusion-influenced reaction
in continuum-based framework

Consider an irreversible bimolecular reaction involving
two distinct species:

A + B −→ C, (1)

where A and B are hard-sphere molecules with radii rA and
rB , respectively. The molecules diffuse in three-dimensional
(3D) space with diffusion coefficients DA and DB . The time
evolution of the species concentration is well described by a
time-dependent rate coefficient kirr (t ):

d[A](t )

dt
= d[B](t )

dt
= −kirr (t )[A](t )[B](t ). (2)

Smoluchowski [24] derived the rate coefficient by relating
the diffusion coefficient of the molecules with molecular
collisions, leading to the product formation. In his work, A

is made up of an immobile molecule and is surrounded by
multiple diffusing B molecules. Collins and Kimball extended
the Smoluchowski theory by modeling the reaction using
radiation boundary condition and obtained the rate coefficient
in 3D space as a function of microscopic parameters, namely,
the microscopic or the intrinsic reaction rate constant ka , the
contact distance of the reacting molecules R = rA + rB , and
the relative diffusion coefficient of the pair D = DA + DB :

kirr (t ) = kDka

kD + ka

[
1 + ka

kD

�

(
ka

kD

√
t

τ ′

)]
. (3)

Here, kD = 4πRD is the collision rate, �(x) =
exp(x2)erfc(x), and τ ′ = (1/D)[kaR/(ka + kD )]2. The
rate coefficient (3) starts (t = 0) at ka but decays rapidly to
[52]

kirr (t ) � keff

[
1 + ka

ka + kD

R√
πDt

]
(4)

at long time. keff is the steady-state or the effective reaction
rate constant given by [53]

keff := kirr (t → ∞) = kakD

ka + kD

. (5)

According to Noyes theory [54–56], the rate coefficient can
be expressed equivalently using the particle-pair approach:

kirr (t ) = kaS(t ; R), (6)

where S(t ; R) denotes the survival probability of an isolated
reactant pair at time t given that they were initially in contact.
Additionally, let preb(R, t |R, 0) denote the rebinding-time
probability distribution for a reactive particle pair separated
by distance R at time t , given that the pair were initially
in contact. In the case of radiation boundary condition, the
probability distribution is given by (see Appendix A)

preb(R, t |R, 0)

=
(

ka

4πR3

)(
ka

kD

+ 1

)(
1√
πτ

− exp(τ )erfc(
√

τ )

)
, (7)

with τ = tD(1 + ka/kD )2/R2.
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Note that the survival probability S(t ; R) is the same as the
probability that the first rebinding event between an initially
in-contact pair has not yet occurred at time t . Hence, we can
rewrite Eq. (6) as

kirr (t ) = ka

[
1 −

∫ t

0
preb(R, τ |R, 0)dτ

]
. (8)

At long time, we then have

keff := kirr (t → ∞) = ka

[
1 −

∫ ∞

0
preb(R, τ |R, 0)dτ

]
,

(9)

where the integrated term gives the total rebinding probability:

Preb =
∫ ∞

0
preb(R, t |R, 0)dt = 1

1 + kD

ka

. (10)

Therefore, the effective rate constant (5) can also be written in
terms of the total rebinding probability:

keff = ka (1 − Preb). (11)

The above relation was also described previously, but in the
context of irreversible and reversible rate constants [57]. In
subsequent sections, we use the relations described by Eqs. (8)
and (11) as the central concepts to derive the rate coefficient
in MLM.

B. Spatiocyte reaction-diffusion scheme

In the SPATIOCYTE scheme (see Algorithm 1) [47], space
is discretized into hcp lattice because the arrangement allows
the highest density of regular sphere voxels in 3D space. The
voxel has a diameter l and can be occupied by at most a
single molecule. At each diffusion time step td , a molecule
can hop to one of its 12 nearest neighbor voxels (see Fig. 1)
with the step acceptance probability Pw = 1. td = l2/6Dx ,
where Dx is the diffusion coefficient of molecule x. Given
the irreversible bimolecular reaction in Eq. (1), a collision
arises when B meets A at the destination voxel. The colli-
sion is reactive with an acceptance probability Pa = �NC/Z.
Here, �NC = kaNANBtd/V is the microscopic change in the
number of product molecules in step interval td and Z is the
expected number of collisions between A and B in the interval
(see Appendix B). The acceptance probability can then be
expressed as [47]

Pa = ka

3
√

2(DA + DB )l
. (12)

The above relation is applicable when the reaction is acti-
vation limited (ka � kD). For diffusion-influenced reactions
(ka � kD), the collision rate Z is reduced relative to the pro-
duction rate �NC . The acceptance probability Pa = �NC/Z

would then have the issue of exceeding unity when �NC > Z.
The SPATIOCYTE scheme overcomes this issue by reducing
the simulation interval by a factor of α to t ′ = tdα. With
the reduced interval, the effective number of collisions in
td , Z is increased. The step and reaction acceptance proba-
bilities are then decreased accordingly to Pw = α and P ′

a =
Paα, respectively. Algorithm 1 describes how α is set. In
summary, the SPATIOCYTE scheme operates with α = 1 when

Algorithm 1: Basic outline of the SPATIOCYTE algorithm for
bimolecular reactions. tsim is the current simulation time, tend-tsim is
the simulation duration, Paxy is the reaction acceptance probability
for the reactive pair of species x and y, td = l2/6Dx is the diffusion
(hopping) time step of the current species x, l is the voxel size, Dx

is the diffusion coefficient of x, and rand is a random number drawn
from the uniform distribution with the interval [0,1).

Initialization:
tsim ←0, scheduler S ← {}
for each species x do

ρx =max{Paxy}, where xy denotes the pair of reactive species x and y;

S ← t′ = tdα, where α =

{
1/ρx, for ρx > 1
1, for ρx ≤ 1

;

reaction acceptance probability P ′
axy = Paxy α;

step acceptance probability Pwx = α;

end
Main loop:
while S �= {} and tsim < tend do

tsim ← τx = next event in S;
get species identity x;
get current voxel location s0;
reschedule next event, τx = τx + t′

for each molecule of species x do
choose a random target voxel s1 ∈ {nearest neighbor of s0};
if s1 is vacant then

draw rand;
if rand Pwx then walk succeeded, s0 ← s1;
else

walk rejected, s0 ← s0;
end

else if s1 contains reactant species y then
draw rand;
if rand P ′

axy then
reaction xy accepted, s0 ← s1

else
reaction failed and walk rejected, s0 ← s0

end

else
walk rejected, s0 ← s0;

end

end

end

<

<

Pa � 1 (activation-limited case) and with α < 1 when Pa > 1
(diffusion-influenced case).

C. Rebinding probability and reaction rate on hcp lattice

As an alternative to the time-dependent reaction rate coef-
ficient in Eq. (8), we define a discrete-space version with a
step-dependent rate coefficient on lattice as [39,58]

km = k′
a

[
1 −

m∑
n=0

Hn

]
for m, n ∈ N, (13)

where m is the simulation step, which is related to the sim-
ulation time by 6Dxt

′ = ml2, k′
a is the initial reaction rate

constant on lattice (see Appendix B), and Hn is the lattice ana-
log of the rebinding-time probability function preb(R, t |R, 0)
in diffusion step n. At long-time, the effective rate on lattice
follows similarly to Eq. (9):

k′
eff = lim

m→∞ km = k′
a

[
1 −

∞∑
n=0

Hn

]
, (14)
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FIG. 1. A voxel on the hcp lattice has 12 nearest neighbor voxels.
The distance between the centers of two adjacent voxels is the voxel
size l.

where the summation term (14) corresponds to the total
rebinding probability on lattice.

To obtain the analytical expression for Hn, we consider
again a reactive pair A and B, which are initially in contact
by occupying adjacent voxels on lattice. We are interested in
the rebinding-time probability distribution as a function of the
diffusion step n. Without losing generality, we can fix one of
the molecules and diffuse the other with the relative diffusion
coefficient D. Then, the rebinding-time probability distribu-
tion of A and B is related to the arrival-time probability
distribution of a random walker to the origin for the first time,
given that the walk started at one of the neighbor voxels of the
origin with diffusion coefficient D. In the following sections,
we define Hn explicitly and use it to derive the rate coefficient
on hcp lattice. Since the approaches for activation-limited
and diffusion-influenced cases are different in the SPATIOCYTE

scheme, we perform their derivations separately.

1. Activation-limited case (ka � kD, α = 1)

We denote s0 as the voxel at origin, s1 as an element of the
set of immediate neighbor voxels of s0. We define Fn(sa|sb )
as the first-passage time distribution for a random walker to
walk from voxel sb to sa , that is, the probability of arriving
at voxel sa for the first time at the nth step, given that the
walk started at voxel sb. We first consider the rebinding-time
probability distribution for the case Pa = 1. Let Fn(s0|s0) and

Fn(s0|s1) denote the first-passage time distributions to origin
from origin and s1, respectively. The two probabilities are
related via

p(s0 → s1)Fn(s0|s1) = Fn+1(s0|s0), (15)

where p(s0 → s1) = 1 is the transition probability from s0

to s1 in a single step. This implies that the trajectory we
are interested in, which is from an in-contact situation (e.g.,
A at s1 and B at s0) to the rebinding situation (A hops to
s0) in a single step, is equivalent to the two-step trajectory
s0 → s1 → s0.

Therefore, the rebinding-time probability distribution is
fully described by Fn(s0|s1) and is related to Fn(s0|s0).
The latter can be obtained analytically from its probability
generating function F (s0|s0; z) = ∑∞

n=0 Fn(s0|s0)zn [59] (see
Appendix D).

As for Pa � 1, the trajectories that have undergone failed
reaction attempts before step n are included in the rebinding-
time probability distribution:

Hn(s0|s1) = Pa

n∑
j=1

F
j

n+j (s0|s0)(1 − Pa )j−1

for n ∈ N, j ∈ Z+, (16)

where F
j
n (s0|s0) is the probability to reach the origin for the

j th time at the nth step ([60], Sec. I.1.9):

F j
n (s0|s0) =

n∑
i=1

F
j−1
n−i (s0|s0)Fi (s0|s0) for j ∈ Z+, (17)

where F 1
n (s0|s0) = Fn(s0|s0).

The generating function of Hn(s0|s1) in terms of F (s0|s0; z)
is (see Appendix D 1)

H (s0|s1; z) = PaF (s0|s0; z)

F (s0|s0; z)(Pa − 1) + z
. (18)

By taking the limit z → 1 on H (s0|s1; z), we obtain the total
rebinding probability on lattice as

Hreb = lim
z→1

H (s0|s1; z) = Pa

Pa + 1
F (1) − 1

, (19)

where F (1) = F (s0|s0; z = 1). It was shown previously that
the probability generating function of the hcp lattice is topo-
logically equivalent to that of the face-centered-cubic (fcc) lat-
tice [61]. Therefore, we have F (1) ≈ 0.256 318 ([62], p. 153)
for hcp lattice.

Finally, if we set the initial rate k′
a = 3

√
2lDPa (see Ap-

pendix B) and substitute the total rebinding probability Hreb

from Eq. (19) into Eq. (14), we obtain the effective rate
constant on lattice as

k′
eff = 3

√
2Dl

(
1

F (1)
− 1

)
Pa

Pa + 1
F (1) − 1

. (20)

2. Diffusion-influenced case (ka � kD, α < 1)

The rebinding-time probability distribution Gn(s0|s1) of
the diffusion-influenced scheme is defined as

Gn+1(s0|s1) = Sn(s1|s1) p(s1 → s0) for n ∈ N, (21)
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where

p(s1 → s0) = PaαP1(s0|s1)

1 − (1 − Pw )[1 − P1(s0|s1)]
(22)

is the probability for a successful reaction, P1(s0|s1) is the
probability to select s1 given that the molecule is in s0 (= 1

12
for hcp lattice), and Sn(s1|s1) is the probability that a particle
is in contact after n steps (see Appendix D 2 for more details).

The probability generating function of Gn(s0|s1) on hcp
lattice is given by (see Appendix D 2)

G(s0|s1; z) = Paα/12

1 − 11(1 − α)/12
S(s1|s1; z), (23)

where S(s1|s1; z) is the probability generating function of
Sn(s1|s1).

Taking the limit z → 1, we get the total rebinding proba-
bility as (Appendix D 2)

Greb = lim
z→1

G(s0|s1; z) = Pa

Pa + 1
F (1) − 1

, (24)

which is identical to Eq. (19) in the activation-limited case.
Similarly, by substituting the summation term in Eq. (14) with
Eq. (24), we get the effective rate constant for the diffusion-
influenced case as

k′
eff = k′

a[1 − Greb],
(25)

which also follows Eq. (20). Henceforth, we adopt the same
notations of the effective reaction rate and total rebind-
ing probability for both the activation-limited and diffusion-
influenced cases.

D. Comparison with continuum-based theory

Since the effective rate on lattice (25) has the same form
of Eq. (11) in continuum, we can match them by equating the
initial rate and total rebinding probability of the two: k′

a =
ka and Greb = Preb. With the former relation, the reaction
acceptance probability is connected to the initial rate constant,
diffusion coefficient, and voxel size by

Pa = ka

3
√

2Dl
. (26)

Employing the Greb = Preb relation, the voxel size is found to
be about 2% greater than the molecule size:

l = 4πR

3
√

2
(

1
F (1) − 1

) ≈ 1.0209R. (27)

The SPATIOCYTE scheme is thus guaranteed to have the same
effective rate and total rebinding probability as the continuum
framework provided that Eqs. (26) and (27) are satisfied.
In addition, the expression for lattice effective rate constant
follows the same form of the continuum-based framework:

k′
eff = k′

ak
′
D

k′
a + k′

D

= k′
DGreb,

Greb = 1

1 + k′
D/k′

a

, (28)

where k′
D = 3

√
2lD(1/F (1) − 1).

According to Eq. (27), accurate matching of both the
effective rate and the total rebinding probability requires the
voxel size to be larger than the molecule size. Nonetheless,
during modeling we can fix the voxel size to be the same as the
molecule size, l = R. In this case, it is still possible to match
the lattice effective reaction rate to the continuum-based rate
by setting the reaction acceptance probability to

Pa = [1/F (1) − 1]

[
3
√

2(ka + kD )[1/F (1) − 1]

4πka

− 1

]−1

.

(29)

However, this is done at the expense of losing accuracy in the
total rebinding probability since Greb �= Preb.

For the reversible reaction A + B
ka�
kd

C, the local detailed

balance on lattice is achieved by choosing a lattice dissocia-
tion rate constant k′

d from the following equilibrium constant
relation:

Keq = k′
a

k′
d

= ka

kd

. (30)

The MLM method can simulate the dissociation reaction as a
first-order process with rate k′

d and place the dissociated pair
of molecules at an in-contact condition.

E. Numerical simulations

We verify the main theoretical results presented above
with numerical simulations using SPATIOCYTE. SPATIOCYTE is
included in E-Cell System version 4 [63], an open-source
biochemical simulation environment that supports multiple
algorithms, timescales, and spatial representations.1

III. RESULTS AND DISCUSSION

We first validate the theory of total rebinding probability
and its time-dependent behavior on lattice using numerical
simulations. We examine the accuracy of the reaction rate
coefficient and its time-dependent behavior on lattice. We
then compare the diffusion and reaction performances of
MLM and several other off-lattice particle methods. Finally,
we evaluate MLM in protein production-degradation process,
dual phosphorylation cycle and a simple bimolecular reaction
in a crowded compartment.

A. Numerical validation of MLM theory

1. Rebinding probability

We examine the rebinding probability distribution of a
reactive pair A and B that are initially in contact. The
theoretical rebinding-time probability distribution Hn(s0|s1)
and Gn(s0|s1) are validated against numerical results. In the
activation-limited case (ka/kD � 1), the expected first re-
binding probability at nth step is obtained using Eq. (16),

1The Python notebooks used to generate the simulation results
reported here are available at https://github.com/wxchew/MLM. The
performance benchmark models for all tested methods are included
in SPATIOCYTE package (http://spatiocyte.org) as examples.
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TABLE I. Theoretical and simulated rebinding-time probabilities on lattice for activation-limited and diffusion-influenced cases. Simula-
tion parameters: l = 0.01 μm, volume = (100 l)3 with periodic boundary, runs = 1 × 109.

Hn(s0|s1), Pa = 0.5 Gn(s0|s1), P ′
a = 2α, α = 1/2

n Theory Simulation Error (%) Theory Simulation Error (%)

1 0.0416666 0.0416586 0.019 0.1538461 0.1538326 0.009
2 0.0156250 0.0156228 0.014 0.0473373 0.0473431 0.012
3 0.0107784 0.0107779 0.005 0.0313306 0.0313317 0.004
4 0.0074297 0.0074274 0.031 0.0200584 0.0200534 0.026
5 0.0056802 0.0056773 0.049 0.0147588 0.0147496 0.062

whereas in the diffusion-influenced case (ka/kD � 1), the
probability is calculated from the generating function
G(s0|s1; z):

Gn(s0|s1) =
[

1

n!

dn

dzn
G(s0|s1; z)

]∣∣∣∣
z=0

. (31)

Table I shows the simulated and the expected theoretical
values for n ∈ [1, 5] steps. The simulation results agree well
with the expected values, with discrepancies never exceeding
0.1%. Since the theoretical rebinding-time probability distri-
bution on lattice is validated by simulations, the analytical
formulas for the total rebinding probability derived from it,
Eqs. (19) and (24), are therefore valid.

To illustrate the dependency of total rebinding probability
on ka/kD , we obtained the probability at various ka/kD up
to n = 10. Table II shows the simulated and the expected
theoretical values for various ka/kD ratios. Both simulated
and theoretical values coincide well, with discrepancies never
exceeding 0.03%. Qualitatively, the total rebinding probabil-
ity increases with larger ka/kD values, consistent with the
continuum theory (10).

We then evaluated the rebinding-time probability distribu-
tion by recording the time taken for A and B to associate
immediately after a dissociation event. We performed the
simulations for a large number of steps and independent
runs. Figure 2 shows the average number of rebinding events
per unit time at ka/kD = 0.1, 1 and 100. Lines depicting
the rebinding-time probability distribution of the continuum-
based model according to Eq. (7) are also shown as ref-
erence. It is clear that at times larger than td , the time-
dependent behavior of lattice simulations is consistent with
the continuum-based model. The scaling behavior at long time
preb(t ) ∝ t−3/2 is a well-known characteristic of a 3D random
walker returning to the origin [64]. We have corroborated this
result with detailed asymptotic analysis that is provided in
Appendix D 1 a.

Note that in the diffusion-influenced case (ka/kD =
1 and 100), finer step intervals generate rebindings at times
smaller than the diffusion time step td , denoted by the vertical
dashed line in Fig. 2. In this temporal regime, MLM behaves
differently from the continuum-based framework because the
MLM reaction kinetics approximates the Poisson process (see
Appendix D 3 c). Despite the difference, the rebinding behav-
ior correctly converges to the continuum-based formalism for
times larger than td .

2. Reaction rate

We evaluated the accuracy of the effective reaction rate
constant for irreversible bimolecular reactions (1) over various
ka/kD regimes on lattice. We considered an immobile species
A and a diffusing species B that are uniformly distributed
at initialization with concentrations [A] and [B], respec-
tively. We recorded the surviving fraction of A molecules
at each time step. Figure 3(a) displays the survival prob-
ability of A and the expected theoretical curve SA(t ) =
exp[−[B]

∫ t

0 kirr (t ′)dt ′] [[65], Eq. (2.35)]. From the survival
probability, we calculated the time-dependent reaction rate
coefficient using [[65], Eq. (2.1)]

kirr (t ) = − 1

[B]SA(t )

dSA(t )

dt
. (32)

We adopted the following discretization scheme for the time
derivative to get the discrete rate coefficient:

kn+1 = − Sn+2 − Sn

[B]Sn+1 (tn+2 − tn)
for n ∈ Z+, (33)

where n is the index of the discretized SA and t . The boundary
cases are computed as

k1 = − S2 − S1

[B]S1 (t2 − t1)
, kN = − SN − SN−1

[B]SN (tN − tN−1)
,

(34)

TABLE II. Theoretical and simulated rebinding probabilities up to n = 10 steps with ka/kD ratios ranging from the highly activation-
limited case (ka/kD = 0.01) to the strongly diffusion-influenced case (ka/kD = 100). Simulation parameters: l = 0.01 μm, D = 1 μm2/s,
volume = (10 000 l)3 with periodic boundary, runs = 1 × 109. α = 1/Pa for diffusion-influenced cases.

ka/kD 0.01 0.1 1 10 100

Lattice theory 0.0062657 0.05973879 0.397486 0.874154 0.985988
Simulation 0.0062672 0.05973410 0.397459 0.874126 0.986000
Discrepancy (%) 0.025 0.0078 0.0068 0.0032 0.0012
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FIG. 2. The rebinding time of a reactive pair that is initially
in contact. The rebinding time is sampled from simulations with
ka/kD = 0.1, 1, and 100. Markers show the simulation results
of SPATIOCYTE while solid lines depict the analytical results from
the continuum-based scheme (7). The vertical dashed line marks
the characteristic diffusion time step td . Simulation parameters: l =
0.01 μm, volume = (10 000 l)3 with periodic boundary, runs = 104,
DA = 1 μm2 s−1, DB = 0, α = 1/Pa for the diffusion-influenced
case.

where N denotes the final time step. The reaction rate
coefficient obtained for various ka/kD ratios is shown in
Fig. 3(b) along with their corresponding theoretical curves
from Eq. (4).

Recall that the long-time asymptotic variant of the Collins-
Kimball theory (4) has the form

kirr (t ) � C1

(
1 + C2√

t

)
, (35)

where C1 and C2 denote the steady-state rate constant and
the time-dependent term, respectively. We fitted Eq. (35) to
the numerical data, omitting early time points to avoid non-
steady-state effects. The resulting C1 and C2 parameters after
fitting are listed in Table III. The theoretical values correspond
favorably to the estimated steady-state reaction rate constants

and are well within the standard error, thus validating the
lattice theory for the effective rate. The time-dependent terms
are also in good agreement with the theory, especially in the
diffusion-limited case, with discrepancy less than 1%. This is
consistent with the asymptotic analysis carried out in Appen-
dices D 1 b and D 3 d. In the activation-limited case (ka/kD =
0.1), the fitted C2 had the largest deviation from theory
because the standard error was also the highest. The low
number of data points contributed to the higher standard error.
Nonetheless, we did not increase the data points because C2

has a weaker influence in activation-limited reactions than C1.

B. Performance

1. Diffusion

We compared the 3D diffusion performance of MLM
using SPATIOCYTE (git 9757fb3) and three other off-lattice
particle-based simulation methods, SMOLDYN [66] (version
2.55), EGFRD [14] (in E-Cell System version 4.1.4), and fast
Brownian dynamics (BD) [67] (C++ program example in
SPATIOCYTE git 9757fb3). When the molecules are repre-
sented as hard spheres with volume exclusion, SPATIOCYTE

required shorter run times than SMOLDYN in all cases [Fig.
4(a)]. SPATIOCYTE achieves comparable or better performance
than EGFRD in the typical concentration range of cytoplasmic
macromolecules (0.1 to 10 μM). For example at 6 μM in
volume 30 μm3, SPATIOCYTE is about 4.5 and 16 times faster
than SMOLDYN and EGFRD, respectively. In contrast to EGFRD,
SPATIOCYTE, and SMOLDYN execution times increase with the
number of molecules but not the molecular crowdedness (V =
30 μm3 vs 3 μm3). The simulation times of SPATIOCYTE

scale almost linearly with the number of molecules (T ∝ N ),
which is not apparent with SMOLDYN and EGFRD. The drastic
slowdown of EGFRD at higher concentrations is caused by the
shorter time steps required to resolve many molecular interac-
tions that take place in the densely occupied system [14].

If molecules are represented as dimensionless point par-
ticles, higher diffusion performance is expected since in-
termolecular collisions can be ignored. Figure 4(b) shows
the run times of SPATIOCYTE, SMOLDYN, and fast BD when

(a) (b)

FIG. 3. Survival probability and time-dependent rate coefficient. (a) Survival probability of A in A + B −→ B with ka/kD = 0.1, 1, and
100. (b) Simulated time-dependent rate coefficients of the reaction and the corresponding long-time approximation of Collins-Kimball (CK)
theory in Eq. (4). Simulation parameters: volume = (3.5 μm)3 with periodic boundary, R = 0.01 μm, l = 0.01 × 1.0209 μm, DA = 0,
DB = 1 μm2 s−1, Na = Nb = 4000, duration = 0.05 s, runs = 3 × 104, α = 1/Pa for the diffusion-influenced case.
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TABLE III. The steady-state rate constant C1 and the time-dependent term C2 of reaction (1) at various ka/kD were obtained by fitting the
simulated reaction rate coefficient with Eq. (35). Uncertainty in the simulated data was used as a weight in the fitting. Theoretical values from
Eq. (4) are listed for comparison. mse: mean-squared error. Simulation parameters: l = 0.01 × 1.0209 μm, DA = 0, DB = 1 μm2 s−1, volume
= (350 l)3 with periodic boundary, NA = NB = 4000, duration = 0.05 s, runs = 3 × 104, α = 1/Pa for the diffusion-influenced case.

ka/kD 0.1 1 100

Theoretical C1 (μm3 s−1) 0.011424 0.062832 0.124420
Simulation 0.011423 ± 0.0012 0.062848 ± 0.0029 0.124459 ± 0.0046
Discrepancy (%) 0.011 0.026 0.032
Theoretical C2 (s1/2) 0.00051 0.00282 0.00559
Simulation 0.00054 ± 0.01 0.00279 ± 0.0052 0.00563 ± 0.004
Discrepancy (%) 5.5 1.04 0.77
mse of fit 3.4 × 10−7 2.2 × 10−6 4.2 × 10−6

diffusing point particles with the same simulation inter-
val. EGFRD was not considered here since it only supports
molecules with physical volume. SPATIOCYTE and fast BD
execution times showed an almost linear scaling with the
number of molecules. Although SMOLDYN did not scale as
well, it had the fastest run times when the number of diffusing
molecules was 30 000 or less. SPATIOCYTE outperformed fast
BD in all tests and is on average 2.5 times faster. As expected,
the simulation times of all three methods were not affected by
the crowdedness in the volume since molecular collisions are
disregarded. On average, SPATIOCYTE takes about two times
longer to diffuse hard-sphere molecules than point particles.

2. Reaction

Recently, Andrews [68] benchmarked the performance
of SMOLDYN, MCELL [69], EGFRD, SPRINGSALAD [18], and
READDY [16] particle simulators when running the well-

known Michaelis-Menten enzymatic reaction. SMOLDYN re-
quired the least amount of time to complete the benchmark.
Running the model on our hardware (see Fig. 5 for specifi-
cations) with the same 1 ms simulation interval, SPATIOCYTE

took 113 s, whereas SMOLDYN required 31 s. Since it would
take too long for EGFRD to complete the simulation of the
original model [68], we decreased the number of molecules,
diffusion coefficients, and reaction rates. The execution times
of SPATIOCYTE, SMOLDYN, and EGFRD when running the model
with the new parameters are presented in Fig. 5. The sim-
ulators generated almost identical results. SPATIOCYTE and
SMOLDYN had similar run times (T), whereas EGFRD required
about one to two orders of magnitude longer. Although SPA-
TIOCYTE is about four times slower than SMOLDYN when
executing the original model, both had very similar times
with the new parameters. Our results indicate that the relative
performance of SPATIOCYTE and SMOLDYN depends on the
model parameters.

(a) (b)

FIG. 4. 3D diffusion performance of particle-based methods. Vertical axis T shows the run times to diffuse molecules with diffusion
coefficient Dx = 1 μm2 s−1 in volume V for 10 s. Bottom horizontal axis N represents the number of diffusing molecules, while the top axis
shows the corresponding concentration at V = 30 μm3. (a) Molecules are represented as hard-sphere particles with radius r = l/2 = 2.5 nm.
(b) Molecules are dimensionless point particles that can overlap one another. EGFRD does not support point particle diffusion and, conversely,
fast BD here can only diffuse point particles. SMOLDYN simulation interval is set to the step interval td (4.17 μs) of SPATIOCYTE and fast
BD for comparison. The EGFRD algorithm uses variable time steps. Each model was simulated for a predefined run time tr and the resulting
simulated time ts was recorded. We calculated T , the run time in seconds for 10 s of simulated time with T = 10tr/ts . tr was set such that at
least hundreds of simulation steps have been completed. The resulting range of tr was between 1 hour to several days. Solid lines depict the
ideal scaling for SPATIOCYTE. Vertical dashed lines indicate the typical concentration range of proteins in the cytoplasm (0.1 to 10 μM). All
simulations were executed on the same server with Intel Xeon Platinum 8180 2.5 GHz (max 3.80 GHz) CPU, 768 GB memory, and Ubuntu
18.04 LTS operating system.
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FIG. 5. Particle simulation performance of the Michaelis-
Menten reaction. Original benchmark model from [66,68] was mod-
ified with volume (V ) = 90.9 μm3, diffusion coefficient (Dx) =
1 μm2 s−1, k1 = 0.01 μm3 s−1, k2 = k3 = 0.1 s−1. Molecule or
voxel radius (r), simulation or diffusion step interval (�t), and run
time (T ) are as indicated. All simulations were executed on the same
workstation with Intel Xeon X5680 3.33 GHz CPU, 48 GB memory,
and Ubuntu 16.04 LTS operating system.

C. Application examples

We applied MLM to model two fundamental RD systems
of intracellular signaling, the production-degradation process,
previously studied using lattice-based methods [51,70,71],
and the dual phosphorylation-dephosphorylation cycle of the
mitogen-activated protein kinase (MAPK) cascade [72–74],
a common motif found in signal transduction systems but
with a response function that is highly sensitive to the binding
kinetics. We also report the effects of excluded volume on the
kinetics of a simple bimolecular reaction using MLM.

1. Production-degradation process

Consider the production and degradation processes of pro-
tein A represented by a zero-order production coupled with a
second-order degradation:

∅ k1−→A, A + B
k2−→B. (36)

The concentration of A will go through an initial transient
state before settling down at a steady-state equilibrium [A] =
k1/(k2[B]) that fluctuates according to the Poisson distribu-
tion [70]. To confirm if MLM can recapitulate the production-
degradation process correctly in 3D space, we have simulated
the process with SPATIOCYTE and compared the outcomes with
EGFRD and the well-mixed model. To generate the results of
the well-mixed model, we solved the rate equation using an
ordinary differential equation (ODE) solver. The time series
of A is shown in Fig. 6(a), while the equilibrium values are
provided in Table IV. As evident from the figure and table,
SPATIOCYTE results are all in good agreement with both the
well-mixed model and EGFRD.

Recently, the SPATIOCYTE scheme was reported to not only
fail to reproduce the expected equilibrium value of A, but
it also unexpectedly generates different values depending on
the voxel size [51]. In that paper, the effective bimolecular
rate k2 was used in the calculation of reaction acceptance
probability instead of the intrinsic reaction rate constant ka ,

which inevitably caused the deviation from the well-mixed
model (see first row of Table IV). As shown in Fig. 6(a) and
Table IV, there was no discrepancy when the intrinsic rate
ka was used to compute the reaction-acceptance probability
(26). The well-known relation between ka and k2 is given by
Eq. (5), wherein k2 is represented by keff . Furthermore, just
as in the well-mixed and EGFRD models, the resulting equi-
librium concentration from SPATIOCYTE is also independent
of the molecule radius or spatial discretization. Conversely,
the RDME method deviated substantially from the well-
mixed result when the voxel size is small, which is expected
[34,37,38].

The well-mixed model assumes the timescale of diffusion
to be always shorter than that of the reactions. As a result,
molecules are expected to be uniformly distributed at all times
and reactions can take place independent of spatial localiza-
tion. The well-mixed assumption is valid when describing
activation-limited reactions but when they are diffusion influ-
enced, the position of molecules should be taken into account.
We therefore expected some disparity between the well-mixed
model and MLM when the production-degradation process is
diffusion influenced. In Fig. 6(b), at smaller diffusion coeffi-
cients (Dx = 0.01, 0.02), the equilibrium concentrations are
indeed lower with SPATIOCYTE than with well-mixed model.
SPATIOCYTE behavior is consistent with EGFRD, which also
accounts for molecule positions. RDME, however, has the
same outcomes as the well-mixed model.

The reduction in equilibrium value when the diffusion
coefficient is decreased was previously described by the mi-
croscopic theory of Agmon and Szabo [52]. In contrast to the
Collins-Kimball theory, Agmon and Szabo have considered
the non-negligible effect of B concentration on the effective
reaction rate, especially when the reaction is diffusion influ-
enced. The slow diffusion of molecules increases the effective
contact radius, resulting in higher effective annihilation rate
(see Appendix E for a detailed argument). The output of the
production-degradation process according to the microscopic
theory is shown in Fig. 6(b) as a dashed line that coincides
with SPATIOCYTE and EGFRD, further verifying the MLM the-
ory. Given the same diffusion and macroscopic reaction rates,
the change in the SPATIOCYTE voxel size does not affect the
equilibrium behavior [at r = 0.1 and 0.05 in Fig. 6(b)] since
the reaction acceptance probability Pa is adjusted according
to the voxel size to obtain the correct macroscopic behavior.

On the other hand, RDME shows large deviation from the
expected values at slow diffusion. The inability of conven-
tional rate equation and RDME to correctly capture diffusion-
influenced reactions has been noted and worked on before
[34,37,38,70,75]. By incorporating the diffusion coefficient
into the bimolecular reaction propensity formula [[70], Eq.
(26)], the equilibrium concentration of RDME shows a better
agreement with the expected values [see RDMEm, r = 1.0
in Fig. 6(b)]. However, when the reaction is diffusion lim-
ited (Dx = 0.01, 0.02), unlike MLM, the subvolume size of
RDMEm cannot reach the microsopic resolution r = 0.05.
This is because the size is constrained by a critical value
[[70], Eq. (25)] that preserves the well-mixed condition.
At Dx = 0.01, for example, the critical subvolume size is
about 13 times the molecule diameter; any size smaller is
invalid.
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(a) (b)

(c)

FIG. 6. Production-degradation response of A. (a) Time-series profile of A in Eq. (36) simulated with SPATIOCYTE (using intrinsic rate
ka), EGFRD, and RDME. DA = DB = 0.1 μm2 s−1, molecule radius rA = rB = r ∈ {0.005, 0.02, 0.05} μm. Note that r represents half of
the subvolume size in RDME, and the actual molecule radius in SPATIOCYTE and EGFRD. For comparison, solid line shows the well-mixed
model. (b) Mean equilibrium concentration of A from SPATIOCYTE, EGFRD, RDME, and RDME with modified propensity (RDMEm) with
DA = DB = Dx ∈ {0.01, 0.02, 0.1} μm2 s−1. Solid and dashed lines represent expected results according to the well-mixed model and the
microscopic theory, respectively. (c) Steady-state distribution of A from SPATIOCYTE and EGFRD with r = 0.05 μm and DA = DB = Dx ∈
{0.1, 0.02} μm2 s−1. RDMEm simulated with r = 1 and D = 0.02 is also shown for comparison. The frequency is normalized such that
the sum over the bin is unity. Dotted line represents the well-mixed model simulated using the Gillespie method. Simulation parameters:
k1 = 0.1 μm−3 s−1, k2 = 0.02 μm3 s−1, [B] = 1 μm−3, runs = 700, duration > 104 s to achieve steady state, volume = 100 μm3 with
periodic boundary.

We have also examined the fluctuation of A at equilibrium,
as depicted in Fig. 6(c). At Dx = 0.1, the histogram of SPA-
TIOCYTE matches the distribution curves of EGFRD and the
well-mixed model (Gillespie method [36]). At much reduced
diffusion coefficient (Dx = 0.02), however, both SPATIOCYTE

and EGFRD shared similar distributions, with the width be-
coming narrower and the mean value shifting to the left.
With the modified propensity function, RDMEm also exhib-
ited similar distribution. The narrow width and the shifted
mean are consistent with the characteristics of the Poisson
distribution.

It was reported that MLM would not be able to solve

the first-order production-degradation reaction ∅ k1�
k2

A ac-

curately because of its spatial discretization scheme [51].
When the number of total voxels in the compartment Nv is
less than k1/k2, the equilibrium concentration deviates from
the well-mixed model. This deviation, however, is a direct

consequence of the volume exclusion property of MLM. Since
each voxel can only occupy a single molecule, there would be
an insufficient number of vacant voxels to accommodate new
molecules when the degradation rate is not sufficiently fast.
The maximum occupancy on hcp lattice simply reflects the
maximum physical occupancy of voxel-sized molecules in the
compartment because the hcp arrangement packs the highest
density of sphere voxels [76]. Just as in the cellular com-
partment, it is not physically possible to add more molecules
into the system when the number of generated molecules
exceeds available free space. Moreover, since only about 34%
of the cell volume is occupied by macromolecules [77], it is
also an unlikely scenario to fully occupy the voxels of hcp
lattice with macromolecules. With the multialgorithm imple-
mentation of SPATIOCYTE [78], we can use the Gillespie’s
Next-Reaction method [79] to simulate small molecules that
are in large abundance and are homogeneously distributed.
In this case, the equilibrium result is independent of spatial
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TABLE IV. Equilibrium concentration of A in Eq. (36) simulated
with SPATIOCYTE and EGFRD at different spatial discretizations. k2

is the effective rate, ka is the intrinsic rate, l is the voxel size,
K = 21/6L/l is the compartment length in number of voxels, while
L denotes the actual length [51]. At l = 0.01, K = 521; at l =
0.04, K = 130; and at l = 0.1, K = 52. The well-mixed equilibrium
concentration is 5 μm−3. Discrepancy (%) from the well-mixed
model is shown in parentheses. Simulation parameters: production
rate, k1 = 0.1 μm−3 s−1; degradation rate, k2 = 0.02 μm3 s−1; [B] =
1 μm−3; volume = 100 μm3; DA = DB = 0.1 μm2 s−1; runs = 600.

Simulation scheme l = 0.01 l = 0.04 l = 0.1

SPATIOCYTE with k2 9.014 (80.28) 6.023 (20.46) 5.393 (7.86)
SPATIOCYTE with ka 5.009 (0.18) 4.984 (0.32) 4.990 (0.2)
EGFRD 4.968 (0.64) 4.975 (0.5) 4.950 (1)

discretization since the method assumes the well-mixed
condition.

2. Dual phosphorylation-dephosphorylation cycle

In mean-field models, the spatiotemporal correlation of mi-
croscopic rebinding events is not resolved explicitly because
the correlation usually does not cause a significant impact
on the dynamics at the macroscopic scale. One case where
the correlation does influence the macroscopic response is the
dual phosphorylation-dephosphorylation cycle of the MAPK

cascade [72–74], shown in Fig. 7(a). The substrate MAPK [K
in Fig. 7(a)] is phosphorylated in a two-step process by the
MAPK kinase (KK) and dephosphorylated by a phosphatase
P. The phosphorylation and dephosphorylation processes pro-
ceed according to the Michaelis-Menten kinetics and exhibit
distributive property [73], wherein the enzymes must unbind
from the substrate before they can rebind and modify the
second site. Upon phosphorylation or dephosphorylation, the
respective enzymes are inactivated (denoted as KK* and P*),
and reactivated (KK or P) after some time τrel. When the
reactivation time is short and the enzyme-substrate reaction is
diffusion limited, the newly dissociated enzyme and substrate
are close enough to rebind instead of escaping into the bulk.
These microscopic rebinding events alter the response sensi-
tivity of the phosphorylation state as shown by Takahashi et al.
[14] using EGFRD. Processive behavior caused by rebindings
of the same enzyme results in higher overall phosphorylation
rate than the distributive case where the dissociated molecules
can escape rebinding [73,74]. Such microscopic spatiotem-
poral correlation has been shown to change the response
sensitivity of the phosphorylation state, which can cause the
subsequent removal of ultrasensitivity or bistability in the
system [14,80].

Rebinding events taking place within very short timescales
are difficult to be captured by RDME because of the fine
spatial resolution required. To test whether MLM can re-
solve such events faithfully, we use SPATIOCYTE to model the
dual phosphorylation cycle with the same parameters from

(b)(a)

FIG. 7. Effects of rebinding in dual phosphorylation cycle. (a) Reaction model showing MAPK (K) is first activated into Kp and
then Kpp by MAPKK (KK) in two phosphorylation steps. Kpp is also deactivated by phosphatase (P) in two dephosphorylation steps to
become K again. Enzymes KK and P become inactive immediately after reacting with their respective substrates and then relax back to the
active state after some delay τrel. (b) Fraction of Kpp in response to MAPKK/phosphatase ratio at steady state. Circle and square markers
denote simulation result using SPATIOCYTE with Dx = 4 μm2 s−1 and Dx = 0.06 μm2 s−1, respectively. Dashed and solid lines represent
distributive and processive mechanism models, respectively. Cross and plus markers show the results from the original SPATIOCYTE scheme,
wherein the voxel and molecule sizes are exactly the same. We used a short reactivation time τrel = 1 μs, relative to td (for comparison td ≈ 1 μs
when Dx = 4 μm2 s−1, td ≈ 70 μs when Dx = 0.06 μm2 s−1) with the total number of substrates Ktotal = 120. Hysteresis responses from
mean-field distributive model with fivefold substrate concentration (Ktotal = 600) are indicated by dotted and dashed-dotted lines with initial
conditions [Kpp]/[K]total = 1 and [Kpp]/[K]total = 0, respectively. Diamond and triangle markers represent SPATIOCYTE responses with fivefold
substrate concentration at the indicated diffusion coefficient Dx . Simulation parameters: molecule size l = 0.0025 × 1.0209 μm, diffusion
coefficient Dx , [KK] + [P] = 60, duration = 200 s, volume = 1 μm3 with periodic boundary.
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[14]. Distributive and processive models are represented by
Eqs. (1)–(5) of [14], and were solved using ODE solver.
Figure 7(b) displays the steady-state response curves of SPATI-
OCYTE and reference theoretical models. Note that since the
reactivation time τrel is equal to or less than the diffusion
time step td [given in Fig. 7(b)], the molecules can rebind
soon after dissociation. The simulation result coincides very
well with the switchlike response curve of the distributive
model at fast diffusion (Dx = 4 μm2 s−1), whereas at much
slower diffusion (Dx = 0.06 μm2 s−1), it converges to the
graded response curve of the processive model. The influence
of diffusion on the response curve can be understood through
the rebinding events. When diffusion is slow, reactions be-
come more diffusion limited and rebinding occurs at higher
frequency. The ensuing processivelike mechanism then leads
to the loss of the switchlike response curve. Conversely, in
the limit of fast diffusion as assumed in the mean-field model,
a sharper switchlike response curve is recovered because of
fewer rebindings.

The parameter ranges examined so far have a stable steady
state as demonstrated by the response curves in Fig. 7(b).
When the total concentration of the substrate is increased
fivefold, the mean-field theory generates hysteresis, shown
by the dotted and dashed-dotted lines. The dotted line rep-
resents the response when initialized with [Kpp]/[K]total =
1, whereas the dashed-dotted line has the initial condition
[Kpp]/[K]total = 0. MLM produced similar responses when
the diffusion is fast (Dx = 4) [diamond markers in Fig. 7(b)].
However, as diffusion slowed down to Dx = 0.06, the bista-
bility is lost (triangle markers). Bistable states appear when
the diffusion is fast and the substrate concentration relative to
enzyme is high. For example, at the initial state when almost
all substrates are in the unphosphorylated form, most kinase
will be bound to the substrates rapidly. Hence, a substrate that
has been phosphorylated once is more likely to be dephos-
phorylated by free phosphatase than to be phosphorylated the
second time by scarce and fast diffusing kinase. The inverse
situation where all substrates are in the phosphorylated form
would also respond similarly to phosphatase. On the other
hand, when diffusion is slow, the kinase activity becomes
processive because of the high rebinding probability. As a
result, molecules are more likely to be phosphorylated or
dephosphorylated consecutively before they could be dis-
rupted by antagonistic enzymes from the bulk. This example
highlights how local spatiotemporal correlation can change
the binding behavior and results in a different global response
than the one predicted by the mean-field model.

As a side remark, in the original SPATIOCYTE scheme [47],
the voxel adopts the size of the diffusing molecules. However,
as we found in the Methods section, the voxel needs to be
about 2% larger than the molecule size (27) for the total
rebinding probability and the effective rate constant to be
exactly the same as in the continuum-based theory. Despite the
2% difference in voxel sizes, both new and original schemes
displayed very good fit with the expected dual phosphoryla-
tion cycle response curves in Fig. 7(b). To be fully consistent
with the continuum-based theory, however, the size should be
set according to Eq. (27). The voxel size is not hard coded to
be the same as the molecule size and can be easily specified
in the SPATIOCYTE model file [78].

3. Effects of excluded volume on bimolecular reaction

Excluded volume in the cell arising from crowded obsta-
cles such as macromolecules, Golgi apparatus, or cytoskeletal
elements can cause anomalous diffusion of reacting molecules
[41,81]. Anomalous diffusion has been shown to generate
nonclassical reaction kinetics on 2D [42,43] and 3D lattices
[49]. Here, we use MLM on hcp lattice to examine the effects
of volume exclusion on the bimolecular reaction E + S −→ ∅
in the presence of uniformly distributed immobile obstacles.
E and S have the radius 5 nm and diffusion coefficient
D0 = 1 μm2 s−1. Hence, D0 is the diffusion coefficient in
noncrowded dilute condition. Bimolecular intrinsic reaction
rate constant ka = 10kD is chosen such that the reaction is
diffusion limited. Excluded volume is quantified by the lattice
occupancy of the obstacles φ = No/Nv , where No and Nv

are the numbers of obstacles and total voxels, respectively.
Simulation is carried out in a periodic cubic compartment with
length L = 1 μm for a duration of 1000td . Reactants have
dilute concentrations [S] = 5[E] = 0.001Nv and are placed
randomly at the beginning of simulation.

We first consider the effects of immobile obstacles on dif-
fusing molecules. We calculate the time-dependent diffusion
coefficient from the mean-squared displacement of simulated
particle trajectories. The time-dependent diffusion coefficient
in Fig. 8(a) indicates that the diffusion is anomalous at short
times and normal at long times. The crossover time from
anomalous to normal diffusion depends on the volume oc-
cupancy. The reduced long-time diffusion coefficient is well
described by [81,82]

D′ = D0(1 − φ/φp ), (37)

where φp ≈ 0.77 is the percolation threshold for hcp lattice.
We confirmed that the long-time diffusion coefficients ob-
tained for φ in Fig. 8(a) (dashed lines) are consistent with D′
in Eq. (37).

Figure 8(b) shows that the survival probability of E decays
slower when the volume occupancy φ is increased. From
the survival probability, we can calculate the rate coefficient
according to Eq. (33) to obtain the kinetics. We replaced the
constant concentration term [B] (33) with the time varying
term [E](t ) in the equation. For the dilute case (φ = 0) in
Fig. 8(c), there is a good agreement for the simulated k(t )
with the Collins-Kimball rate coefficient (3). As φ increases
to 0.3 and 0.5, the overall reaction rate decreases, and thus
progressively diverges from the Collins-Kimball rate. Despite
the discrepancy, the rates can still conform to the Collins-
Kimball theory when the long-time diffusion coefficient (37)
is used.

As the volume occupancy approaches the percolation
threshold [Fig. 8(c), φ = 0.7), the kinetics begins to deviate
from the Collins-Kimball theory. The deviation is strongest
at φ = 0.8, which is beyond the percolation threshold. Note
that at lower volume occupancy (φ = 0.3, 0.5), the anomalous
to normal diffusion crossover time in Fig. 8(a) is faster than
the observation time in Fig. 8(c). Here, the kinetics is well
described by the long-time effective diffusion coefficient.
However, when the crossover time is comparable to the ob-
servation time because of the increased volume occupancy
[Fig. 8(a), φ = 0.7], the effects of anomalous diffusion is
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FIG. 8. Diffusion and bimolecular reaction kinetics in crowded compartment. (a) Time-dependent diffusion coefficient of tracer molecules
in the presence of immobile obstacles at volume occupancy φ. The diffusion coefficient at a time point is determined from the mean-squared
displacement of simulated particle trajectories. Dashed lines denote the diffusion coefficient at long time as predicted by D′ = D0(1 − φ/φp ).
(b) Survival probability of E in E + S −→ ∅ at φ. (c) The corresponding time-dependent reaction rates (dashed lines) at φ. Solid lines represent
Collins-Kimball theory with the long-time diffusion coefficient calculated in (a). Simulation parameters: compartment volume = (1 μm)3 with
periodic boundary, R = 0.01 μm, l = 0.01 × 1.0209 μm, DE = DS = 1 μm2 s−1, ka = 10kD , [S] = 5[E] = 0.001Nv , duration = 0.02 s.

visible in the kinetics [Fig. 8(c), φ = 0.7]. At above the
percolation threshold (φ = 0.8), anomalous diffusion does
not crossover to normal diffusion. As a result, the long-time
diffusion coefficient eventually decays to zero. In these highly
crowded cases, the Collins-Kimball theory fails to describe
the kinetics.

Grima and Schnell [44] have shown that reaction kinetics,
either classical or nonclassical, is not determined by the
heterogeneity of the accessible space but rather by the reaction
probability and the initial condition. In the Smoluchowski
and Collins-Kimball framework, reaction follows classical
kinetics when it is activation limited (ka/kD � 1) but non-
classical kinetics is observed when it is diffusion influenced
(ka/kD � 1). The nonclassical behavior in the latter is well
described by Eq. (3) using microscopic parameters. The cor-
responding long-time behavior up to the second order term
scales according to Eq. (4), which has the same general
form of the Zip-Mandelbrot equation proposed by Schnell
and Turner [43,49]. The Zip-Mandelbrot equation is valid
for long-time kinetics whereas the Collins-Kimball rate (3)
describes the kinetics for all time ranges.

Here, we have studied the kinetics of bimolecular reaction
in the presence of immobile obstacles with MLM. When

the total volume occupied by obstacles is much smaller than
the percolation threshold and the observation timescale is
longer than the anomalous to normal diffusion crossover time,
the kinetics is still reproducible with the Collins-Kimball
theory and Eq. (37). However, it deviates from the theory
when the volume occupancy nears or crosses the percolation
threshold, wherein anomalous diffusion dominates and the
diffusion coefficient approaches zero at the long-time limit.
Therefore, to better describe the nonclassical kinetics analyti-
cally, we should incorporate the anomalous diffusion induced
by fractal medium into the theory either phenomenologically
[43,49,83] or by extending the Smoluchowski and Collins-
Kimball framework using a generalized diffusion equation
[84,85].

IV. CONCLUSIONS

In contrast to macroscopic and mesoscopic approaches,
particle-based methods have the advantage to directly link
microscopic parameters to the observed RD behavior, thus
providing insights about the underlying mechanisms of the
system. MLM shares this same advantage, but with reduced
computational costs owing to its fixed step lengths and
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voxel-based collision detection algorithm. The reduction in
computational costs allows MLM to not only simulate nondi-
lute and crowded intracellular conditions [86] but also track
individual molecules on large eukaryotic cells [87] and sim-
ulate membrane protein clustering in whole red blood cells
[88].

Recently, Grima and colleagues developed a method called
vRDME that incorporates volume exclusion into RDME
[71,75]. The method can approximate the continuum model
very well by matching the steady-state rate constants of both
models. We note that vRDME is a type of MLM since each
voxel can occupy a molecule and bimolecular reactions occur
by colliding reactants. In contrast to vRDME, our work here
employs random walk theory and particle-pair formalism to
describe bimolecular reactions. Notably, both the effective
rate constant and the total rebinding probability on lattice
are matched to the corresponding continuum expressions to
determine the correct reaction acceptance probability and
voxel size.

Contrary to the original assumption of SPATIOCYTE [47],
the voxel should be larger than the molecule size (by about 2%
for hcp lattice) to be quantitatively accurate. Numerical sim-
ulations showed that both the effective rate constant and the
asymptotic time-dependent behavior have good agreements
with the Collins-Kimball theory in activation- and diffusion-
limited cases. MLM also displayed very good consistencies
with EGFRD and mean-field models when simulating actual
biochemical systems such as protein production-degradation
and the dual phosphorylation cycle. Although MLM is ana-
lyzed based on the hcp lattice in this work, the theoretical
framework is also applicable for other lattice arrangements
such as cubic lattice, by simply updating the lattice density
and the return probability F (1) (see Appendices B and C).

Despite achieving the same total rebinding probability as
the Collins-Kimball theory, the time-dependent behavior of
MLM at timescales shorter than td is different than that theory
(Fig. 2). One potential solution to obtaining the same behavior
at such fine timescales is to make the voxel size smaller than
the molecule, similar to the SVTA approach [48]. This would
reduce td but increase the cost of computation significantly
because of the finer time steps and the higher number of
collision checks required.

MLM captures the effects of excluded volume naturally
but comparing on-lattice behavior with continuum is not
straightforward since the influence of volume exclusion and
the resulting reaction kinetics, vary according to the lattice
arrangement [44,89]. Moreover, since all diffusing species in
this work have the same molecule size, it is not possible to
replicate the effects of relative size of interacting molecules.
To minimize such lattice artifacts and to better approximate
off-lattice volume exclusion, we can improve the size repre-
sentation of each molecule on lattice by occupying multiple
voxels as in the SVTA approach or by employing a hybridized
on- and off-lattice approach. Higher spatial resolution of
molecules would generate more realistic diffusion behavior
in a crowded environment. Alternatively, we can introduce a
density-dependent hopping rate as adopted by two previous
RDME methods [90,91].

Realistic simulation of intracellular reaction-diffusion pro-
cesses should also incorporate the influence of intermolecular

potentials such as van der Waals and hydrodynamic forces.
By employing contact interactions on lattice as proposed by
Fernando et al. [92] or the SVTA approach with interaction
potentials [48], it may be possible to incorporate the above
forces in MLM. The theoretical framework presented in this
work serves as a building block for further development and
integration of MLM-based algorithms.
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APPENDIX A: REBINDING PROBABILITY
DISTRIBUTION

The rebinding probability distribution is defined as [[56],
Eq. (3.10), and [14], Eq. (S27)]

preb(R, t ; R, 0) = kap(R, t ; R, 0), (A1)

where p(r, t ; r0, 0) is the Green’s function in the diffusion
equation:

∂p(r, t ; r0, 0)

∂t
= D∇2p(r, t ; r0, 0), (A2)

subjected to initial condition

p(r, 0) = δ(r − r0)

4πr2
(A3)

and boundary conditions such that

p(r, t ) → 0 as r → ∞, (A4)

and

4πR2D
∂p(r, t ; r0, 0)

∂r

∣∣∣∣
r=R

= kap(R, t ; r0, 0). (A5)

The latter condition is known as the radiation boundary con-
dition. The Green’s function p(r, t ; r0, 0) has been solved in
[93] (p. 368) to be

p(r, t ; r0, 0)

= 1

8πrr0

1√
πDt

[exp[−(r − r0)2/4Dt]

+ exp[−(r + r0 − 2R)2/4Dt]

− 2B
√

πDtexp[B2Dt + B(r + r0]−2R)]erfc(B
√

Dt )],

(A6)
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where B = (1 + ka/kD )/R. For r = r0 = R, we thus have

p(R, t ; R, 0) = 1

4πR2

1√
πDt

× [1 − B
√

πDt exp(B2Dt )erfc(B
√

Dt )].

(A7)

Finally, by substituting Eq. (A7) into (A1), we obtain the
probability distribution

preb(R, t ; R, 0) =
(

ka

4πR3

)(
ka

kD

+ 1

)

×
(

1√
πτ

− exp(τ )erfc(
√

τ )

)
, (A8)

where τ = tD(1 + ka/kD )2/R2.

APPENDIX B: LATTICE INITIAL RATE

Here, we provide the derivation of the lattice initial rate,
which was done previously in Ref. [47]. Given two reacting
species A and B, in which A are stationary and B are diffus-
ing, the initial rate constant at time step t ′ can be estimated
using the rate equation as

k′
a = �NcV

NANBt ′
, (B1)

where Ni denotes the number of molecules of species i,
�Nc denotes the change in Nc, and V is the compartment
volume. The number of successful reactions in a single step
t ′ can be estimated as �NC = ZP ′

a , where Z = NBNA/Nv

is the average number of encounter, Nv = √
2V/l3 is the

total number of voxels in a compartment volume V , and
P ′

a = Paα is the actual reaction acceptance probability during
the encounter.

For the activation-limited scheme, where t ′ = td and P ′
a =

Pa , the initial reaction rate is then given by

k′
a = P ′

al
3

√
2t ′

= Pal
3

√
2td

= 3
√

2PaDl. (B2)

Note that D is the sum of diffusion coefficients of the re-
acting pair, DA + DB . Similarly, for the diffusion-influenced
scheme, where t ′ = tdα and P ′

a = Paα, we have

k′
a = αPal

3

√
2αtd

= 3
√

2PaDl. (B3)

Also note that the physical dimension of k′
a satisfies cm3 s−1.

The above derivation for hcp lattice can be generalized to
other lattice arrangements:

k′
a = πPaDl

d
, (B4)

where d is the packing density of the lattice (e.g., d = π/6 for
the simple cubic lattice).

APPENDIX C: VOXEL SIZE

As shown in the main text, in order to match the MLM with
the continuum-based model, the voxel size of hcp lattice has
to be chosen such that

l = 4πR

3
√

2
(

1
F (1) − 1

) , (C1)

where R is the molecule size and F (1) ≈ 0.256 318 ([62],
p. 153) is the total return probability on hcp lattice. More
generally, the voxel length of any regular lattice arrangement
follows that

l = 4d
1

F (1) − 1
R. (C2)

For example, for the simple cubic lattice we have the voxel
length

l = 4π/6
1

0.340537 − 1
R = 1.081515R, (C3)

about 8% larger than the molecule size [F (1) for the simple
cubic lattice is given in Ref. [62], p. 153].

APPENDIX D: FIRST-PASSAGE TIME DISTRIBUTION
ON HCP LATTICE

For n ∈ N, we define Pn(sa|sb ) as the voxel occupation
probability from sb to sa , that is, the probability of being at
voxel sa after n steps, given that the walk started at voxel sb;
Fn(sa|sb ) as the first-passage time distribution from sb to sa ,
that is the probability of arriving at sb for the first time on the
nth step, given that the walk started at site sa; s0 as the origin
voxel, s1 as the element of the set of immediate neighboring
voxels of s0, and s2 as the element of the set of the second
nearest neighbor voxels of s0.

The probability generating function of Fn(s0|s0) and
Pn(s0|s0) is related through [60], Eq. (I.18)]

F (s0|s0; z) =
∞∑

n=0

Fn(s0|s0)zn = 1 − 1

P (s0|s0; z)
, (D1)

where P (s0|s0; z) = ∑∞
n=0 Pn(s0|s0)zn is the lattice Green’s

function for the face-centered cubic (fcc) lattice as defined in
Eqs. (2.6)–(2.9) of [59]:

P (s0|s0; z) =
[

2(1 + 3ξ 2)

π (1 − ξ )(1 + 3ξ )

]2

K (k+)K (k−), (D2)

k2
+ = 16ξ

(1 − ξ )(1 + 3ξ )3
, (D3)

k2
− = 16ξ 3

(1 − ξ )3(1 + 3ξ )
, (D4)

ξ = −1 + √
1 + z/3

1 + √
1 − z

, (D5)

wherein K is the complete elliptic integral of the first kind.
For the convenience of calculation, the voxel occupation

probability is given as [59]

Pn(s0|s0) = 1

12n

n∑
j=0

(
n

j

)
(−4)n−j bj for j ∈ N, (D6)
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where

bj =
j∑

k=0

(
j

k

)2(2k

k

)(
2j − 2k

j − k

)
. (D7)

The first-passage time distribution is related to the voxel
occupation probability recursively via

Fn(s0|s0) = Pn(s0|s0) −
n−1∑
j=1

Pn−j (s0|s0)Fj (s0|s0) for

j ∈ Z+. (D8)

1. Activation-limited case (ka � kD, α = 1)

For Pa = 1, the rebinding-time probability distribution
Fn(s0|s1) is equivalent to the first-passage time distribution
Fn+1(s0|s0) as mentioned in the main text. Whereas for Pa <

1, the rebinding-time probability distribution is given by

Hn(s0|s1) = PaF
1
n+1(s0|s0) + Pa (1 − Pa )F 2

n+2(s0|s0)

+Pa (1 − Pa )2F 3
n+3(s0|s0) + · · · , (D9)

wherein F
j
n (s0|s0) is the probability of reaching the origin for

the j th time at nth step [60], Eq. (I.1.9)]:

F j
n (s0|s0) =

n∑
i=1

F
j−1
n−i (s0|s0)Fi (s0|s0) for j ∈ Z+, (D10)

with F 1
n (s0|s0) = Fn(s0|s0). With Eq. (D10) we can obtain

Hn(s0|s1) recursively via

Hn(s0|s1) = Pa

n∑
j=1

F
j

n+j (s0|s0)(1 − Pa )j−1 for

j ∈ Z+, n ∈ N. (D11)

The generating function of Hn(s0|s1) is related to the generat-
ing function of Fn(s0|s0):

H (s0|s1; z) =
∞∑

n=0

Hn(s0|s1)zn

= Pa

∞∑
n=0

∞∑
j=1

F
j

n+j (s0|s0) (1 − Pa )j−1zn

= Pa

∞∑
j=1

(1 − Pa )j−1z−j

∞∑
n=0

F
j

n+j (s0|s0) zn+j

= Pa

∞∑
j=1

(1 − Pa )j−1z−j

∞∑
n=0

F j
n (s0|s0) zn,

(D12)

where in the last step we have
∑j−1

k=1 F
j

k (s0|s0) zn = 0 since
for all k such that k < j − 1, the return probability is zero.
Using [[60], Eq. (I.20)]

∞∑
n=0

F j
n (s0|s0) zn = F (s0|s0; z)j (D13)

in Eq. (D12) we then have

H (s0|s1; z) = Pa

∞∑
j=1

(1 − Pa )j−1z−jF (s0|s0; z)j

= PaF (s0|s0; z)

F (s0|s0; z)(Pa − 1) + z
. (D14)

Finally, the total rebinding probability of an in-contact pair on
lattice is obtained by taking the limit z → 1:

Hreb = lim
z→1

H (s0|s1; z) = Pa

Pa + 1
F (1) − 1

, (D15)

where F (1) = F (s0|s0; z = 1) ≈ 0.256 318 ([62], p. 153) is
the return probability on hcp lattice.

a. Rebinding probability at long times

The asymptotic behavior of the rebinding-time probability
distribution Hn(s0|s1) at large n can be estimated directly
from the generating function. First, we expand the generating
function of the return probability Pn(s|s) for the hcp lattice
around z = 1 up to the O(1 − z) term [see [60], Eq. (D.8b),
and [62], Eq. (A.237)]

P (s|s; z) ≈ P (1) − c1

√
1 − z + O(1 − z), (D16)

where P (1) = P (s|s; z = 1) ≈ 1.344 661 and c1 = 33/2/2π .
The corresponding expansion of the generating function of
Fn(s|s) is then

F (s|s; z) = 1 − 1

P (s|s; z)

≈ 1 − 1

P (1) − c1
√

1 − z

≈ 1 − 1

P (1)
− c1

P (1)2

√
1 − z, (D17)

where we have ignored the term equal to or higher than
O(1 − z).

Recall that the generating function of the rebinding-time
probability distribution for the activation-limited case:

H (s0|s1; z) = PaF (s0|s0; z)

z + F (s0|s0; z)(Pa − 1)

= PaF (s0|s0; z)

z[1 − F (s0|s0; z)(1 − Pa )/z]
. (D18)

By the expansion of the denominator we have

H (s0|s1; z) = PaF (s0|s0; z)

z

{
1 + (1 − Pa )F (s0|s0; z)

z

+
[

(1 − Pa )F (s0|s0; z)

z

]2

+ · · ·
}

= Pa

z

{
F (s0|s0; z) + (1 − Pa )

z
F (s0|s0; z)2

+
[

(1 − Pa )

z

]2

F (s0|s0; z)3 + · · ·
}

. (D19)
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Substituting Eq. (D17) into H (s0|s1; z) and collecting the
leading terms gives

H (s0|s1; z) ≈ w
√

1 − z + O(1 − z), (D20)

where

w = − c1Pa

zP (1)2

{
1 − 2

(Pa − 1)[P (1) − 1]

zP (1)

+ 3

[
(Pa − 1)[P (1) − 1]

zP (1)

]2

+ · · ·
}

= − c1Pa

zP (1)2

∞∑
n=1

n(−1)n+1

[
(Pa − 1)[P (1) − 1]

zP (1)

]n−1

= − c1Pa

zP (1)2

[
1 + (Pa − 1)[P (1) − 1]

zP (1)

]−2

= − c1Pa

z{1 + Pa[P (1) − 1] + P (1)(z − 1)}2

= − c1Pa

{1 + Pa[P (1) − 1]}2 . (D21)

By means of singularity analysis of the generating function
[see [94], Eq. (2.3)], the corresponding asymptotic behavior
of Hn(s0|s1) as n → ∞ is therefore

Hn(s0|s1) ≈ − w

2
√

π
n−3/2 + O(n−5/2). (D22)

b. Rate coefficient at long times

From the definition of rate coefficient on lattice using
the particle-pair formalism, we have the m-step reaction rate
coefficient:

km = k′
a

[
1 −

m∑
n=0

Hn(s0|s1)

]
for m, n ∈ N, (D23)

which can be rewritten as

km = k′
a

[
1 −

∞∑
n=0

Hn(s0|s1) +
∞∑

n=m

Hn(s0|s1)

]
. (D24)

The first summation term is the total rebinding probability
while the second term can be evaluated using the Euler-
Maclaurin formula

∞∑
n=m

Hn(s0|s1) ≈
∫ ∞

m

dn
w

2
√

π
n−3/2

≈ w√
πn

≈ lw√
6Dπt

, (D25)

where we have used the definition nl2 = 6Dt in the last step.
Now, we have the asymptotic reaction rate as

lim
t→∞ k(t ) ≈ k′

a

[
1 − Hreb + lw√

6Dπt

]
. (D26)

After rearrangement we have

lim
t→∞ k(t ) ≈ k′

a (1 − Hreb)

[
1 + lw

(1 − Hreb)
√

6Dπt

]

≈ k′
a (1 − Hreb)

[
1 + c1Pal

{1 + [P (1) − 1]Pa}
√

6Dπt

]
.

(D27)

Using the definition k′
a (1 − Hreb) = k′

eff , and applying the ex-
pressions for reaction acceptance probability in Eq. (B2) and
voxel size in Eq. (C1), we obtain the long-time approximation
as

lim
t→∞ k(t ) ≈ k′

eff

[
1 + kaR

(ka + kD )
√

πDt

]
, (D28)

which has the exact same form as the continuum case.

2. Diffusion-influenced case (ka � kD, α < 1)

The derivation of the effective rate coefficient in the
diffusion-influenced case differs from the activation-limited
case due to the difference in the simulation scheme (see
Algorithm 1 in main text), namely, in the presence of nonunity
step acceptance probability Pw = α. The diffusion step n is
therefore no longer the same as the simulation step. Specifi-
cally, a successful arrival at a new target voxel (or a successful
reaction attempt with a reactant) after n = 1 step could have
had multiple k simulation steps in the past with hopping
failures (or failed reaction attempts). As a result, the actual
simulation time corresponding to n steps is not a single value
nt ′ = ntdα, but follows some distribution.

The purpose of this section is to derive the long-time
asymptotic behavior of the rate coefficient, which is inde-
pendent of the transient time-dependent behavior. Hence, we
parametrize the rebinding time according to the eventful step
n (which will be incremented after a physical movement or a
reaction attempt), rather than the actual simulation step k. The
time-dependent behavior of rate coefficient on the other hand,
will be treated in Appendix D 3.

As shown in the main text, the rebinding-time probability
distribution Gn(s0|s1) is defined as

Gn+1(s0|s1) = Sn(s1|s1) p(s1 → s0) for n ∈ N, (D29)

where p(s1 → s0) is the reaction probability and Sn(s1|s1) is
the in-contact probability of a reactive pair after n steps.

The reaction probability is defined as

p(s1 → s0) = PaαP1(s0|s1)
∞∑

k=0

{[1 − P1(s0|s1)](1 − Pw )}k

= PaαP1(s0|s1)

1 − (1 − Pw )[1 − P1(s0|s1)]
, (D30)

where the nominator term accounts for the probability of hop-
ping to s0 from s1 and successfully reacting with the reactant
located at s0 in one diffusion step, while the denominator term
comes from the infinite sum representing the total probability
of unsuccessful escape to s ∈ {adjacent voxel of s1} \ s0 at the
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previous simulation step.2 When Pw = 1 and α = 1 as in the
activation-limited case, then the reaction probability becomes
p(s1 → s0) = PaP1(s0|s1).

Next, we derive the generating functions of two first-
passage time distributions Fn(s1|s1) and Fn(s1|s2) that corre-
spond to the current scheme. We start from

Fn+1(s1|s1) =
∑

s

P1(s|s1)Fn(s1|s) for n ∈ N

= P1(s0|s1)δn,1 + P1(s1|s1)δn,0

+P1(s2|s1)Fn(s1|s2), (D31)

where the first term on the right-hand side relates to the failed
reaction attempt s1 → s0 → s1,3 the second term describes
the hop from s1 → s1, and the last term accounts for the
trajectory s1 → s2, which is continued by a series of n steps
that have ended up in s1 again.

From Eq. (D31), we obtain the generating function of
Fn(s1|s1) as

F (s1|s1; z) = z2P1(s0|s1) + zP1(s1|s1)

+ zP1(s2|s1)F (s1|s2; z). (D32)

Thus, we obtain

F (s1|s2; z) = F (s1|s1; z) − z2P1(s0|s1) − zP1(s1|s1)

zP1(s2|s1)
,

(D33)
where

F (s1|s1; z) = 1 − z2P1(s0|s1)

P (s0|s0; z) − 1
(D34)

is given in terms of the generating function of Pn(s0|s0) [the
detailed derivation of Eq. (D34) is given in Appendix D 2 a].

Now, we define the probability that a particle is in contact
after n step as

Sn(s1|s1) = γ1Sn−1(s1|s1) +
n−1∑
m=0

γ2Sm(s1|s1) F̄n−m−1(s1|s2)

+ δn,0S0(s1|s1) for n ∈ N, (D35)

where the first term accounts for the trajectories s1 → s0 → s1

and s1 → s1, the second term represents the trajectories s1 →
s2 → s1, and the last term accounts for the initial condition.
In detail, the coefficient

γ1 = [(1 − Paα)P1(s0|s1) + PwP1(s1|s1)]

×
∞∑

k=0

{[1 − P1(s0|s1)](1 − Pw )}k

= (1 − Paα)P1(s0|s1) + PwP1(s1|s1)

1 − [1 − P1(s0|s1)](1 − Pw )
(D36)

accounts for the total probability of arrival at s1 from a
rejected reaction attempt (first subterm) or from the adja-
cent neighbor s1 (second subterm) given that there was no

2There are k simulation steps in-between each diffusion step n.
3Only s1 → s0 is considered as a diffusion step, whereas the

rejection s0 → s1 is not.

successful escape to s ∈ {adjacent voxel of s1} \ s0 at the last
simulation step k before the arrival, while the coefficient

γ2 = PwP1(s2|s1)
∞∑

k=0

{[1 − P1(s0|s1)](1 − Pw )}k

= PwP1(s2|s1)

1 − [1 − P1(s0|s1)](1 − Pw )
(D37)

accounts for the total probability of arriving at s2 from
s1 given that there was no successful escape to s ∈
{adjacent voxel of s1} \ s0 at the last simulation step k before
the arrival, and finally F̄n(s1|s2) = Fn(s1|s2) denotes the first-
passage time distribution of the scheme with step-acceptance
probability Pw = α (proof given in Appendix D 2 b).

We then multiply Eq. (D35) with zn:

Sn(s1|s1) zn = γ1zSn−1(s1|s1) zn−1

+ γ2z

n−1∑
m=0

Sm(s1|s1) zmFn−m−1(s1|s2)zn−m−1

+ δn,0S0(s1|s1) zn, (D38)

and take the sum to infinity to obtain

S(s1|s1; z) = γ1zS(s1|s1; z) + γ2zS(s1|s1; z)F (s1|s2; z)

+ S0(s1|s1). (D39)

After collecting the terms, we obtain the generating function
of Sn(s1|s1):

S(s1|s1; z) = S0(s1|s1)

1 − γ1z − γ2zF (s1|s2; z)
. (D40)

Substituting Eqs. (D30) and (D40) into Eq. (D29) then gives
the rebinding-time probability distribution:

Gn+1(s0|s1)

= PaαP1(s0|s1)

1 − [1 − P1(s0|s1)](1 − Pw )
Sn(s1|s1) for n ∈ N,

(D41)

with the corresponding probability generating function

G(s0|s1; z) = PaαP1(s0|s1)

1 − [1 − P1(s0|s1)](1 − Pw )
S(s1|s1; z).

(D42)

In the diffusion-influenced scheme of SPATIOCYTE, we have
P1(s0|s1) = 1/12, P1(s1|s1) = 4/12, P1(s2|s1) = 7/12, and
Pw = α. Using these parameters, we then have the following
quantities:

γ1 = (1 − Paα) + 4α

12[1 − 11(1 − α)/12]
, (D43)

γ2 = 7α

12[1 − 11(1 − α)/12]
, (D44)

F (s1|s2; z) = F (s1|s1; z) − z2/12 − 4z/12

7z/12
, (D45)

F (s1|s2; z = 1) = F (s1|s1; z = 1) − 1/12 − 4/12

7/12

= 8 − 1/F (1)

7
, (D46)
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where we have used definition (D58) in Eq. (D46). Using
Eq. (D46), we obtain the limit of Eq. (D40) as

S(s1|s1; z = 1)

=
[

1 − (1 − Paα) + 4α

12[1 − 11(1 − α)/12]

− 7α

12[1 − 11(1 − α)/12]
F (s1|s2; z = 1)

]−1

=
[

1 − (1 − Paα) + 4α

12[1 − 11(1 − α)/12]

− 7α

12[1 − 11(1 − α)/12]

8 − 1/F (1)

7

]−1

= 12[1 − 11(1 − α)/12]

Paα − α + α/F (1)
. (D47)

Finally, we substitute Eq. (D47) into (D42) to obtain

G(s0|s1; 1) = Paα/12

1 − 11(1 − α)/12

12[1 − 11(1 − α)/12]

Paα − α + α/F (1)

= Pa

Pa + 1
F (1) − 1

. (D48)

Therefore, we have the total rebinding probability as

Greb = G(s0|s1; z = 1) = Pa

Pa + 1
F (1) − 1

. (D49)

a. Return probability Fn(s1|s1)

We denote Pn(s|s0) as the voxel occupation transition
probability from s0 to s. It is related to Fn(s|s0) via the
convolution relation ([62], p. 121)

Pn(s|s0) = δss0δn,0 +
n∑

j=1

Fj (s|s0)Pn−j (s|s) for n ∈ N.

(D50)

If a random walker started at s0, it must go through s1 before
reaching the destination voxel s. Then, we have

Pn(s|s0) = δss0δn,0 + δs0s1δn,1P1(s|s1)

+
n∑

j=1

Fj (s1|s0)Pn−j (s|s1). (D51)

Note that Pn(s|s1) = Pn+1(s|s). Thus, with s0 = s1, we have

Pn+1(s|s) = δn1P2(s|s) +
n∑

j=1

Fj (s1|s1)Pn−j+1(s|s). (D52)

Multiplying both sides with zn+1 gives

zn+1Pn+1(s|s) = δn1z
n+1P2(s|s)

+
n∑

j=1

zjFj (s1|s1)zn−j+1Pn−j+1(s|s).

(D53)

Then, taking the sum of both sides from n = 0 to infinity gives

P (s|s; z) − P0(s|s)

= z2P2(s|s) + F (s1|s1; z)[P (s|s; z) − P0(s|s)], (D54)

where

P (s|s; z) =
∞∑

n=0

znPn(s|s), F (s1|s1; z)

=
∞∑

n=0

znFn(s1|s1), and F0(s1|s1) = 0. (D55)

As such, we have

F (s1|s1; z) = 1 − z2P2(s|s)

P (s|s; z) − 1
. (D56)

The total return probability to s1 from s1 is then

∞∑
n=0

Fn(s1|s1) = lim
z→1−

F (s1|s1; z)

= 1 − P2(s0|s0)

P (s0|s0; 1−) − 1
. (D57)

Using definition Eq. (D1) and P2(s0|s0) = 1/12, finally we
have

∞∑
n=0

Fn(s1|s1) = 1 − 1/F (1) − 1

12
. (D58)

b. Return probability F̄n(s1|s2 )

If we increment the step count n for every successful step
to a new voxel, then the first-passage time distribution from s2

to s1 at step n is given by

F̄n(s1|s2) =
∞∑

m=n

(
m − 1

n − 1

)
P n

w(1 − Pw )m−nFn(s1|s2) for

n ∈ Z+, (D59)

where Pw = α is the step acceptance probability. It can be
shown that

F̄n(s1|s2) = P n
wFn(s1|s2)

∞∑
m=n

(
m − 1

n − 1

)
(1 − Pw )m−n

= P n
wFn(s1|s2)

1

P n
w

= Fn(s1|s2). (D60)

3. Continuous time limit of the diffusion-influenced scheme

In the diffusion-influenced scenario, SPATIOCYTE uses a
different approach for hopping and reaction. Simulation pro-
gresses with a smaller time step t ′ = tdα to resolve fast
reaction events. We show that as α becomes smaller, the
reaction and hopping events occur in a probabilistic manner
that follows exponential time distribution. This property pro-
vides us with an approximation to study the time-dependent
behavior of the reaction kinetics.

a. Hopping time distribution

Consider a single particle hopping on a completely vacant
lattice. Let Pw be the step acceptance probability for a particle
heading to a vacant voxel. Then, the probability of successful
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hopping after m trials is

Ph(t = m) = Pw(1 − Pw )m−1 for m ∈ Z+. (D61)

The survival probability (no hopping) until mth trial is then

Ph(t > m) =
∞∑
m

Pw(1 − Pw )m−1

= (1 − Pw )m−1. (D62)

If we perform the trial every δ sec such that Pw = β1δ, where
β1 = t−1

d is the average hopping rate per second. The survival
probability becomes

Ph(t > mδ) = Ph(t > t ′)

= (1 − β1δ)m−1, (D63)

where t ′ = mδ. Similarly, we have

Ph(t > t ′) = (1 − β1δ)
t ′
δ
−1

= (1 − β1δ)
t ′
δ

(1 − β1δ)
. (D64)

Taking the limit of small δ, we then have

lim
δ→0

Ph(t > t ′) =
[

lim
δ→0

(1 − β1δ)1/δ

]t ′

= exp(−β1t
′). (D65)

Since Pw = α, when α is small enough, the hopping time
distribution of a particle approximates the exponential distri-
bution

ψh(t ) = exp(−β1t ), (D66)

with β1 = t−1
d .

b. Reaction time distribution

Consider a reaction pair at an in-contact situation. The
survival probability that they are still at the in-contact situation
after n steps is

Sn = (1 − Pr − Pe )n for n ∈ N, (D67)

where Pr = Paα/12 is the reaction probability and Pe =
11Pw/12 = 11α/12 is the escape probability. Let the simu-
lation trial performed at infinitesimal time δ, such that t ′ =
nδ = tdα. The survival probability as a function of time is then

S(t ′) = lim
δ→0

Sn

= lim
δ→0

[
1 − α

12
(Pa + 11)

]n

= lim
δ→0

[
1 − δ

td

(Pa + 11)

12

]t ′/δ

=
[

lim
δ→0

(1 − βδ)1/δ

]t ′

= exp(−βt ′), (D68)

where β = (Pa + 11)/12td . Note that the survival probability
in this form includes both the probability of reaction and
hopping events. Since the two events are independent of each

other, the survival probability can be split into two separate
terms:

S(t ′) = exp(−β1t
′) exp

(
−11β2t

′

12

)
, (D69)

where β1 = Pa/12td is the average reaction rate and β2 =
1/td is the average hopping rate. Therefore, the survival prob-
ability of the reaction also follows the exponential function

ψr (t ′) = exp(−β1t
′). (D70)

c. Time-dependent survival probability

In summary, the survival probability of the reaction and
hopping events are [from Eqs. (D66) and (D70)]

ψr (t ) = exp(−β1t ), where β1 = Pa

12td
,

ψh(t ) = exp(−β2t ), where β2 = 1

td
. (D71)

Thus, the survival probability after one step is

ψ (t ) = ψr (t )ψh(t ) = exp{−βt}, (D72)

where β = β1 + β2. As a consequence, the survival probabil-
ity of a reactive pair at short time t after step n follows the
Poisson distribution:

Sn(t ) = (βt )n

n!
exp(−βt ) for n ∈ N, (D73)

where S0(t ) = exp(−βt ).

d. Rate coefficient at long times

Here, we study the time-dependent kinetics of the
diffusion-influenced scheme. We start with the definition of
continuous rebinding-time probability density, and use it to
express the time-dependent rate coefficient.

Denoting the continuous rebinding-time probability den-
sity after (n + 1) steps as

gn+1(t ) = β1Sn(s1|s1; t ) for n ∈ N, (D74)

where

Sn(s1|s1; t ) = δn,0S0(s1|s1; t )

+
∫ t

0
dt ′

n∑
j=0

Sn−j (s1|s1; t − t ′)Fj (s1|s1; t )

(D75)

is the survival-time probability density of a particle that
started and ended at s1 on the nth step. The first term on
the right-hand side of Eq. (D75) is the initial probability
density S0(s1|s1; t ) = exp(−βt ), while the last term involves
two convolutions: the continuous time convolution and the
discrete step convolution nested inside the time convolution.
Fn(s1|s1; t ) is the first-passage time density at the nth step,
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defined as

Fn(s1|s1; t ) = Fn(s1|s1)

[
δn,1β2 exp(−βt )

+ (1 − δn,1)
∫ t

0
dt ′β2 exp(−βt ′)

βn
2 (t − t ′)n−1

(n − 1)!

× exp[−β2(t − t ′)]
]
, (D76)

for n ∈ Z+. Intuitively, the first term describes the first-
passage time distribution for single step while the second
term accounts for the convolution of the probability of time
required for the n − 1 steps after the first step.

The continuous rebinding-time probability density is re-
lated to the rate coefficient of the particle-pair formalism
through

k(t ) = k′
a

[
1 −

∫ t

0
dt ′g(t ′)

]
, (D77)

as shown in the main text. We then take the Laplace transform
of k(t ) which is easier to work with:

sk̂(s) = k′
a[1 − ĝ(s)]. (D78)

Note that ĝ(s) is related to the rebinding-time and survival-
time probability densities via

ĝ(s) =
∞∑

n=1

ĝn(s1|s1; s) = β1

∞∑
n=1

Ŝn(s1|s1; s). (D79)

The corresponding Laplace transform of Eq. (D75) is given as

Ŝn(s1|s1; s) = δn,0

s + β
+

n∑
j=0

Ŝn−j (s1|s1; s)F̂j (s1|s1; s),

(D80)
where

F̂n(s1|s1; s) = Fn(s1|s1)
β2

s + β

[
δn,1+(1−δn,1)

(
β2

s+β2

)n]
.

(D81)

The infinite sum of Eqs. (D80) and (D81) is

∞∑
n=0

Ŝn(s1|s1; s) = 1

s + β
+

∞∑
n=0

n∑
j=0

Ŝn−j (s1|s1; s)F̂j (s1|s1; s),

= 1

s + β
+

∞∑
n=0

Ŝn(s1|s1; s)
∞∑

n=0

F̂n(s1|s1; s),

= 1

s + β

[
1 −

∞∑
n=0

F̂n(s1|s1; s)

]−1

, (D82)

∞∑
n=0

F̂n(s1|s1; s)

= β2

s + β

[
F1(s1|s1) +

∞∑
n=2

Fn(s1|s1)

(
β2

s + β2

)n
]

= β2

s + β

[
F1(s1|s1)

s

s + β2
+

∞∑
n=0

Fn(s1|s1)

(
β2

s + β2

)n
]

= β2

s + β

[
F1(s1|s1)

s

s + β2
+ F

(
s1|s1; z = β2

s + β2

)]
,

(D83)

where F (s1|s1; z) is the generating function, and∑∞
n=0 F (s1|s1)zn is as defined in Eq. (D56). Hence, we

have

∞∑
n=0

Ŝn(s1|s1; s) = [s + β − sF1(s1|s1)z − β2F (s1|s1; z)]−1,

(D84)

where z = β2/(s + β2).
Substituting Eq. (D84) into (D79) and with the final value

theorem, we obtain the long-time behavior of k(t ) by tak-
ing the limit s → 0 in Eq. (D78). Assuming the asymp-
totic Laplace form of the rate coefficient on lattice [52],
Eq. (2.37a)],

sk̂(s) ≈ k′
eff (1 + a′

eff

√
s/D + · · · ). (D85)

We then set s = 0 to obtain the effective lattice reaction rate
constant:

k′
eff = k′

a[1 − ĝ(0)]. (D86)

Evaluating ĝ(0) by referring to Eq. (D79), we then get

k′
eff = 3

√
2PaDl

1 + Pa/[1/F (1) − 1]
, (D87)

which is consistent with the result shown in the main text.
The second order term of Eq. (D85) is evaluated by expanding
sk̂(s) around s = 0:

lim
s→0

d

d
√

s
sk̂(s)

= lim
s→0

d

d
√

s
(−k′

aĝ(s))

= −k′
aβ1√
β2

lim
q→0

d

dq

∞∑
n=0

Ŝn(s1|s1; s)

= k′
aβ1

√
β2[β − β2F (1)]−2 lim

q→0

d

dq
F (q )

= 2k′
aPa√
β2

[
1 + Pa

1/F (1) − 1

]−2

lim
q→0

q
d

dz
P (s0|s0; z),

(D88)

where q = √
s/β2 and z = 1/(q2 + 1). Thus, by comparing

the terms we obtain

a′
eff =

√
D

k′
eff

2k′
aPab√
β2

[Pa{P (s0|s0; 1) − 1} + 1]−2

=
√

2/3bPal

1 + Pa/[1/F (1) − 1]
, (D89)
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where

b = lim
q→0

q
d

dz
P (s0|s0; z) = 3

√
3

4π
. (D90)

Applying the definitions of reaction acceptance probability
(B2) and voxel size (C1), we obtain

a′
eff = kaR

ka + kD

. (D91)

Note that the corresponding time domain form of Eq. (D85) is
given as

k(t ) ≈ k′
eff [1 + a′

eff

√
πDt + · · · ]. (D92)

Hence, the long-time behavior of the lattice rate coefficient
follows the same form as in the continuum case:

k(t ) ≈ k′
eff

[
1 + kaR

(ka + kD )
√

πDt

]
. (D93)

APPENDIX E: PRODUCTION-DEGRADATION PROCESS

In the coupled reactions ∅ k1−→A, A + B
k2−→B, the survival

probability of a newly produced A molecule in an equilibrated

pool of B is

Srad(t |eq ) = exp

[
−[B]

∫ t

0
krad(t ′)dt ′

]
, (E1)

where [B] is the concentration of B and krad(t ) is the ir-
reversible rate coefficient according to the radiation bound-
ary condition. Since A is removed from the system via the
bimolecular reaction, the concentration of A will eventually
reach a steady state. The corresponding mean lifetime of the
decay τ is used to define the steady-state rate coefficient kss

[52]:

τ = 1

[B]kss

≡
∫ ∞

0
Srad(t |eq ) = Ŝrad(0|eq ), (E2)

where the hat denotes Laplace transform. For small [B], kss is
given by [[52], Eq. (4.5)]

kss ≈ kon

{
1 + [

4π
(
Rrad

eff

)3
[B]

]1/2}
, (E3)

where kon = 4πDRrad
eff is the macroscopic rate constant,

Rrad
eff = kaR/(ka + 4πRD) is the effective radius, and ka is the

intrinsic reaction rate constant. The equilibrium concentration
of A is then

[A] = k1

kss[B]
. (E4)
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