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Collective dynamics of two-dimensional swimming bacteria: Experiments and models
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The physical properties of collectively swimming bacteria have been thoroughly investigated both experi-
mentally and theoretically using simulations. While models successfully predict some aspects of the dynamics
observed in experiments, both models and experiments vary in their underlying assumptions and physical
conditions. Hence, it is not clear which models are appropriate for which experimental setups. Here, we study,
both experimentally and using two types of models (agent-based and continuous), the statistics of two strains of
Serratia marcescens, wild-type and a nontumbling strain, swimming on a two-dimensional monolayer at varying
concentrations. The experimental setup allows for a direct comparison with simulation results. Both models
capture some aspects of the dynamics but fail at displaying others, especially at high densities. In particular, the
effect of tumbling is much more significant than mere rotational (angular) diffusion.
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I. INTRODUCTION

Motile bacteria are considered as self-propelled particles
because their rotating flagella create a thrust that pushes
them forward in viscous environments. At low cell densi-
ties, bacteria exhibit a movement pattern called “run and
tumble,” characterized by straight trajectories (runs) inter-
spersed by shorter, random reorientation events (tumbles) [1].
The chemotaxis signaling network operates in controlling
the frequency of tumbles, enabling an average bias toward
or away from desired regions in the medium [2]. Nontum-
bling, i.e., smooth-swimmer (SS), strains move in straight
lines, or weakly curved trajectories if close to surfaces, and
are unable to navigate. At high cell densities, such as in
crowded bulk cultures or in relatively thick swarm colonies,
interactions between the individuals become dominant [3–61].
These include cell-cell steric (contact) interactions that are
more dominant in rod-shaped cells [3–9], and hydrodynamic
interactions between the cells and the fluid in which they
move [10–14,62–66]. Such interactions lead to a collective
flow of the cells with dynamic whirls and jets composed of
thousands of individuals. Such collective motion of cells has
been named as mesoscale turbulence, active turbulence, or
bacterial turbulence, due to its phenomenological similarity
with hydrodynamical turbulence at high Reynolds numbers;
see, e.g., [5,15]. In recent theory, simple models for these have
been proposed and analyzed [16–19]. Related phenomena
were also found in experimental studies of other systems like
active colloids [20] and tissues [11]. In some situations, e.g.,
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during swarming, it is known that chemotaxis is suppressed
during high-density collective motion [21]. This implies that
tumbling events are uncoupled from the chemotaxis signaling
network and smooth-swimmers should form patterns similar
to those obtained for the wild-type (WT). In a recent work on
swarming bacteria [21], it was shown that tumbling (and not
chemotaxis) is responsible for some specific characteristics of
the swarm. For this reason, the exact role of flagellar tumbling
in forming collective motion is unclear.

Collective bacterial motion has also been observed in
cells that are confined to move within thin, two-dimensional
(2D) films. These include swimming bacteria that inhabit a
single layer or a film, or 2D swarm colonies where the cells
spread ahead in a monolayer and do not form stacked layers
(e.g., [12,22–26]). In this work, we study experimentally and
theoretically the role of tumbling (rotational diffusion) in
collective motion of bacteria swimming in a monolayer, by
gradually changing their density from sparsely moving cells to
densely packed ones. Therefore, these experiments are more
appropriate for comparison with theoretical predictions than
previous experiments with multilayer swarms (e.g., [3,21,27–
37]), in which the density could not be controlled.

Here, we compare the experimental collective statistics of
the bacterial flow [Figs. 1(a) and 1(b)] with two previously
studied models of collective bacterial motion, adapted to the
system studied here—one discrete or agent-based [Figs. 1(c)
and 1(d)], and one continuous [Figs. 1(e) and 1(f)]. In the dis-
crete approach, the characteristics of individuals (or groups)
are described, for example, the rules for interactions between
single agents or their environment. Agent-based simulations
offer a simple, yet versatile, method for modeling complicated
many-particle systems (e.g., [37]). In contrast, continuous
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FIG. 1. Collective swimming of wild-type S. marcescens; experi-
mental observations. (a) A microscopic phase-contrast image and (b)
the velocity field obtained using optical flow analysis. Red and blue
arrows indicate clockwise and counterclockwise rotation, respec-
tively. (c) A snapshot from the agent-based simulation and (d) the
velocity field of the flow. The inset shows an image from experiments
at a similar magnification. (e) A snapshot of the polarization and (f)
velocity fields in the continuous model.

models describe characteristics shared by many cells, for
example, local density averages, polar or nematic alignment,
etc. Such coarse-grained descriptions have been proposed for
different active systems ranging from flying birds and schools
of fish to moving bacteria or artificial microswimmers (see
Marchetti et al. [62] for a recent review, and [67]).

In [14,35,38], Ryan et al. have studied an agent-based
model in which the motion of each cell is determined by its
self-propulsion, hydrodynamic interaction with the local fluid
flow, and near-field excluded-volume interactions. Each bac-
terium is modeled as a point dipole in a Stokes flow and a soft
repulsive potential. Particles are advected and rotated by the
local flow generated by other cells around it. The point dipole
approach is computationally efficient for simulating a wide
range of experimentally observable densities. Nonetheless,
some model assumptions (for example, the soft-core repulsion
and additivity of the flow generated by cells) may not be valid

at very high densities. Here, we adapt the point dipole model
successfully used in [35] to describe the bacterial dynamics
in thin films. A detailed formulation of the model is given in
Sec. II D.

In [39], Dunkel et al. proposed a phenomenological theory
to model the collective motion of dense bacterial suspensions.
The model involves derivatives up to the fourth order of an
effective coarse-grained velocity field. The main motivation
was to reproduce the experimental phenomenology reported
by Wensink et al. [5], which was achieved by combining
characteristic features of the Swift-Hohenberg equation with
the Toner-Tu approach. In some dynamical states found ex-
perimentally [21,35,40], it is necessary to distinguish between
orientation and the hydrodynamic flow of the suspension.
Recently, the phenomenological model [39] was extended and
derived from a microscopic model, similar to the agent-based
approach described above, that captures the hydrodynamic
flow and the orientational dynamics of cells [64,65]. Recently,
extended fourth order model equations have been derived
from the microscopic dynamics of hydrodynamically interact-
ing swimmers with short-range polar alignment in 2D [64] and
with short-range polar and nematic alignment in 2D and three
dimensions (3D) [65]. The continuum theory was derived by
coarse-graining the microscopic model. A key assumption to
this approach was that the bacterial concentration of the sus-
pension is constant and density fluctuations can be neglected.
Here, we use a variant continuum equation from [68] in which
the collective dynamics of bacteria with polar alignment are
confined to a quasi-2D film. In addition, steric interactions
are not directly considered, but alignment interactions are
included. A detailed formulation of the model is given in
Sec. II E.

Computer simulations and models often describe tum-
bling as an effective angular diffusion, which phenomeno-
logically takes into account any form of noise in the cell
direction. These include thermal fluctuations, random turns
due to hydrodynamic interactions with fluctuating flows, and
tumbling (flagellar rotor switching). By varying the angular
diffusion coefficient, one can study the effective contribution
of tumbling on the collective motion at varying bacterial
concentrations. Overall, the comparison between experiments
and simulation shows that, while models successfully capture
some of the essential features of the bacterial dynamics at low
to moderate concentrations, they fail at high surface fractions.
Moreover, we show that the role of flagellar motor switching
goes beyond simple effective diffusion.

II. MATERIALS AND METHODS

A. Bacterial strains and growth protocol

Experiments were performed with Serratia marcescens
274, which is a gram-negative flagellated species, used
as a model system in many previous quantitative exper-
iments [12,22,26,34]. During exponential growth (density
∼107 cells/ml) the cells are rod shaped (aspect ratio ∼3)
but in overnight cultures they reach a much higher density
(2 × 109 cells/ml) and the cells shrink to a nearly spherical
shape (average aspect ratio of about 1.5) possibly due to
starvation. Individual wild-type (WT) cells swimming within
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sparse suspensions control the frequency of rotor switching
between states of runs and tumbles, depending on the chemo-
tactic sensing system. Chemotactic signal transduction and
the corresponding motor output enable the cells to navigate
toward (or away from) chemical gradients in the medium.
In sparse situations, the WT cells exhibit run durations that
last 1.8 ± 0.6 s with tumbling durations of 0.2 ± 0.07 s. By
contrast, the nontumbling mutants (Sm1420) are smooth-
swimmers (SS) that do not exhibit flagellar rotor switching
because the flagellar rotor is nearly exclusively biased in the
counterclockwise direction. As a result, cells experience the
run mode only and move, in the absence of collisions, i.e.,
sparse suspensions, in straight trajectories. Both strains swim
at similar speeds; 13 ± 2.2 μm/s for the WT during the run
state and 11.2 ± 1.8 μm/s for smooth-swimmers.

The two strains look alike under the microscope, with
similar typical cell dimensions of ∼1 × 3 μm in LB broth
medium. All bacteria were stored at −80 ◦C in 50% glycerol
stocks (kanamycin 100 μg/ml was added to frozen stocks of
the Sm1420), selected on an LB plate (with the appropriate
antibiotic), and grown overnight in LB broth at 30 °C and
shaking (200 rpm) without antibiotics.

A small (5-μl) drop of an overnight culture was placed on a
glass slide. The drop was constrained by a superhydrophobic
ring printed on glass [polytetrafluoroethylene (PTFE) printed
slides 63429-04, Electron Microscopy Sciences, Hatfield, PA]
in order to prevent wetting and spreading, which may affect
the dynamics of the bacteria or cause drifting. To prevent both
evaporation and the blowing of air on the sample, the drop
was enclosed in a small chamber, the top of which comprised a
thin glass cover slip, while the surrounding wall was a metallic
ring attached to the glass with vacuum grease (the glass cover
slip was not in contact with the drop). The WT cells were
swimming toward the drop surface and remained there while
moving, increasing cell density from minimal to maximal
within 6 min (which is slightly different than reported in
[12]). On the liquid-air surface, cells formed a monolayer and
were swirling in dynamic whirls and jets. Bacteria from the
smooth-swimming strain were also found to form a swirling
monolayer with dynamic whirls and jets, but they increased
surface density on the drop surface slower because they were
not migrating chemotactically to the surface. Increasing the
surface density of cells from minimal to maximal lasted 35
min during which external conditions such as temperature and
oxygen availability remained constant.

B. Observations

An optical microscope (Zeiss Axio Imager Z2) equipped
with a LD 60 × phase-contrast objective lens was used to
follow the microscopic motion. The microscope was placed
in a temperature and humidity-controlled environment. A dig-
ital camera (GX 1050, Allied Vision Technologies) captured
the microscopic motion at a rate of 100 frames per second
and a spatial resolution of 1024 × 1024 pixels. Movies were
taken for 20-min periods, streamed directly to the hard drive,
resulting in 120 000 images in a sequence. The fraction of
area occupied by bacteria, ρ, was calculated by measuring the
number of dark pixels (above a threshold) covering the frame,
then dividing by the entire number of pixels (1024 × 1024).

In Fig. 1(a), we show a top-view image of the upper surface
of the drop, taken by the optical microscope. The nearly
spherical dark objects are the bacteria. See [12] for additional
details.

C. Flow analysis

Recorded movies were converted to a sequence of single-
frame images. Following standard preprocessing for noise re-
duction, the optical flow between each set of two consecutive
frames was obtained using the Horn-Schunck method and
reduced to a 64 × 64 grid. See [12] for details. Figure 1(b)
shows an example of the velocity field calculated using the
optical flow analysis for the cells shown in Fig. 1(a). Thus,
the velocity field represents a coarse-grained description of
the collective (and averaged) velocity of many bacteria in an
effective grid cell.

In addition, we also calculated the vorticity of the flow,
defined as the z component of the curl of the flow. The spatial
correlation function of a vector field ψ (x, t ) ∈ R2 is defined
as

S(r ) = Z−1[〈ψ (x, t ) · ψ ( y, t )〉|x− y|=r,t

−〈ψ (x, t )〉|x− y|=r,t · 〈ψ ( y, t )〉|x− y|=r,t ],

where Z is a normalization constant such that S(0) = 1 and
〈· · · 〉|x− y|=r,t denotes averaging over all pairs of grid points x
and y separated by distance r and over all frames with con-
centration in a given range. The temporal correlation function
is taken as

T (t ) = W−1[〈ψ (x, s ) · ψ (x, s + t )〉x,s}
− 〈ψ (x, s )〉x,s · 〈ψ (x, s + t )〉x,s],

where W is a normalization constant such that T (0) = 1 and
〈· · · 〉x,t denotes averaging over all grid points x and times t .

D. Agent-based model

In order to investigate the experimental observations, we
introduce a simplified model derived from the balance of
forces and torques on each cell. Several agent-based ap-
proaches have been suggested, including dumbbells [41],
regularized Stokeslets, [68] and dipoles [14,35,38]. The model
introduced here adopts the dipole form and has been success-
fully used to study the different swimming behaviors of both
motile and immotile cells. See Fig. 1(c) for a snapshot from
a simulation. One of the main advantages of the model is that
it is relatively simple to simulate. This is mostly due to the
fact that the fluid equation for a point dipole has an analytical
solution.

In comparison to real swimming bacteria, the streamlines
generated by the model [depicted in Fig. 1(d)] in the in-
termediate to far field are qualitatively similar, but the ap-
proximation breaks down at the cell surface [69]. To make
up for this inconsistency, a short-range repulsive potential in
the form of a truncated Lennard-Jones potential is employed.
The repulsive force also acts as an effective excluded-volume
interaction. While other repulsive forces have been suggested
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(e.g., Yukawa is used in [69]), the truncated Lennard-Jones
potential has been used reliably in the past.

We consider N point particles (bacteria) i = 1, . . . , N ,
with location xi and orientation di , a unit vector. We assume
that bacteria move in a thin film and use the fluid velocity
derived from two oppositely oriented force monopoles in
a thin film, satisfying the Stokes equation [63]. The main
difference between this thin film solution and the free-space
solution is that the former decays as the cube of the distance
while the latter decays only as the square of the distance.
The faster decay results from the thin layer confinement on
the flow. The only assumption required to use the thin film
solution is that the film thickness is much smaller than the
other relevant length scales [63].

To be precise, the fluid velocity at position x ∈ R2 and time
t , u(x, t ), is given by

u(x, t ) = − l1

3π

N∑
{i=1}

{∇3[log(|x − xi |)] · di (t )}pi di (t ),

(1)

where pi is the size of the cell dipole moment (positive for
pushers and negative for pullers) and l1 is the film thickness.
Noting that bacterial swimming results in a low Reynolds
number flow, the cell dynamics are overdamped. Thus, con-
sidering the balance of forces and torques on each cell, we
have

ẋi = v0di + u(xi , t ) + ϕ
∑
{i �=j}

F(xi − xj ), (2)

ḋi = −di ×
[
∇ × u + B

2
di × (∇u + ∇T u)di

]
. (3)

The first term in (2) represents self-propulsion of each
bacterium in the direction it is oriented with (isolated) swim-
ming speed v0. In general, this can be prescribed for each cell
or may be time dependent, but in simulations it is taken as
constant. The second term is the advection of the bacterium
by the local flow generated by all the surrounding cells. The
third term in (2) is a short-range soft repulsion between cells.
For simplicity, we use a truncated (purely repulsive) Lennard-
Jones-type potential that repels all cells within one cell length,
l, and ϕ represents the strength of this interaction. The only
difference between the smooth-swimmers and WT is that the
WT tumbles on average once every τ s. The time between
tumbles is modeled as an inhomogeneous Poisson process.
When a cell is picked to tumble, a small rotational diffusion
is added which is selected from a von Mises distribution with
zero mean μ and standard deviation σ .

The equation for the orientation di was first introduced
by Jeffery in 1922 [70] and allows the point dipoles to
interact with the fluid as if they were prolate ellipsoids with
aspect ratio λ. This shape is contained in the Bretherton
constant B = (λ2 − 1)/(λ2 + 1), which is between 0 (sphere)
and 1 (pin). The first term in (3) represents the contribution
to the orientation change due to the local vorticity while
the second term in (3) represents rotation due to the local
shear.

The system size used in the simulation is L = 100l, rep-
resenting 100 particle lengths in each dimension, and an

effective surface fraction ρ = Nπl2/4L2 for N (up to 10 000
in simulations) was chosen to match experimental densities.
Simulations were performed in a square computational do-
main with periodic boundary conditions. The dipole moment
pi = Fpl = ζηl2v0 derived from the Stokes drag law relates
the propulsion force Fp to the isolated swimming speed
through the viscosity of the fluid η and a shape coefficient ζ .
Simulations parameters are ζη = 1, τ = 2 s, and σ = π/12.
The cell aspect ratio is taken as 2:1, resulting in B = 0.6;
swimming speed v0 = 10 μm/s; ϕ = 0.001; and l = l1 =
2 μm.

E. Continuum theory

Large collections of active moving particles are often
modeled with continuum fields for the velocity and order
parameter. In the last decade, several continuum theories have
been proposed to investigate the collective dynamics of active
moving particles [71].

Recently, a continuum model was derived by Heidenreich
et al. [64,65] from a simple swimmer model first introduced
by Saintillan and Shelley [71]. The derivation of the field
equations allows us to link properties of the individual swim-
mers, such as the aspect ratio and propulsion speed, to the
coefficients of the field theory describing collective dynamics.
The swimmer model proposed in [71] is similar to the agent-
based model introduced in the previous chapter. Using the
same notation as Eqs. (2) and (3), the continuum model was
derived from the overdamped Langevin equation:

ẋi = v0di + u(xi , t ) +
√

2D ηx (t ), (4)

ḋ i = −di ×
[
∇ × u + B

2
di × (∇u + ∇T u)di

]

+
∑
{i �=j}

�(di , dj ) + 1√
τ

ηd (t ). (5)

Here, ηx and ηd denote Gaussian white noise modeling trans-
lational and rotational diffusion. The hydrodynamic flow u
is given by the Stokes equation including an active stress
of microswimmers. The term involving � is a potential that
describes the alignment interaction of the microswimmer (for
details, see [65]). The additional term

∑
{i �=j} F(xi − xj )

which appears in (2) describes short-range soft repulsion.
Including such a term in the overdamped Langevin equa-
tion, Eq. (4), is possible, but the derivation of continuum
models becomes challenging due to the anisotropy of the
force.

The continuum model without repulsion forces has been
considered in previous studies and shows an excellent agree-
ment with many aspects of the collective dynamical behavior
of Bacillus subtilis in quasi-2D and -3D domains in a detailed
comparison with experiments [5,39,65].

The continuum model consists of a polarization field
P (x, t ), and a hydrodynamic flow field u(x, t ). See Figs. 1(e)
and 1(f) for a snapshot from a simulation. We assume that the
density ρ is constant and the incompressibility of u yields a
divergence free field P . The relaxation equation for the polar
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order parameter is then given by

Ṗ = −u · ∇ P + � · P + κ � · P − λ0 P · ∇ P − α P

−β |P |2 P + �2∇2 P + �4∇4 P − p∗, (6)

and the Stokes equation for the hydrodynamic flow reads

∇2u = cF

(
6 cI P · ∇ P + ∇2 P + 1

28
∇4 P

)
+ ∇peff , (7)

where � and � are the asymmetric and the symmetric part of
the tensor ∇u. The first three terms of Eq. (6) describe advec-
tion, rotation, and stretching caused by the hydrodynamic flow
gradients and the fourth term models self-advection. The next
two terms involving α and β are the derivative of a Landau
potential that models the isotropic-to-polar phase transition.
The next two terms (with �2 and �4) describe hydrodynamic
interactions and polar alignment. For sufficiently large self-
propulsion speeds the parameter �2 can take negative values
which destabilizes the homogeneous state (polar or isotropic).
The symbols p∗ and peff are the hydrodynamic pressure and a
Lagrange multiplier (to satisfy incompressibility).

The effective parameters �2,�4, κ, λ0, α, β, cF, cI are
linked to several physical quantities: the relaxation time of
the rotational diffusion τ , the effective (kinematic) viscosity
of the suspension μeff , the polar interaction range ε, the polar
interaction strength γ0, and several details of the microswim-
mers including the aspect ratio, length, self-propulsion speed,
and the location of the hydrodynamic center (see below and
[64,65] for details). In addition, some of these quantities, such
as the viscosity, may also depend on the average density ρ. A
detailed linear stability analysis reveals that the ratio �4/�2 is
related to the fastest growing mode in the system [64]. This
finite mode sets a typical length scale and typical vortex size,
� = 2 π

√−2�4 /|�2 |.
The difference between the wild-type and smooth-

swimmer strains can in principle be modeled by using differ-
ent values of the relaxation time τ for the rotational diffusion.
Large values of τ are related to large persistence lengths
(relaxation time multiplied by the isolated swimming speed)
of the swimmer (smooth-swimmer) where small values are
related to small persistence lengths (WT). In principle, the
smooth-swimmer can be modeled by using larger values of τ ,
around 20 s. However, the parameter involving the nonlinear
term, P · ∇ P, increases quadratically with the rotational
relaxation time λ0 ∝ τ 2 and large τ values lead to numerical
instabilities. As a result, we only present results with τ = 1 s,
which is in accordance with realistic tumbling times of WT
cells.

For numerical simulations, we use periodic boundary con-
ditions and a pseudospectral code combined with an operator
splitting technique for time integration [39]. The parame-
ters follow from the microscopic properties of the swimmer,
which we adapted to values realistic for wild-type cells of
S. marcescens. The box length is L = 50 μm and the length
of the bacteria is l = 2 μm. The area fraction is varied in the
range ρ = 0.3−0.9 to match experimental densities. A cell as-
pect ratio of 2:1 and a self-propulsion velocity v0 = 20 μm/s
is chosen. The range of polar interaction is assumed to be
ε = 3 μm. The strength of the polar alignment interaction is
assumed to be γ0 = 0.004 1/μm. This particular choice of

microscopic parameter fixes the coefficients of (6) and (7)
according to [65] as

�2 = 1

10

(ε

l

)2 cI

Pr

− B

15
PrcF, �4 = − B

420
cFPr, (8)

λ0 = 3

5
cI

(
1 + 2

3
BcFPr

)
, κ = 3

5
B

(
1 − cI

3

)
, (9)

α = 1 − cI

Pr

, β = 3

5
cI

2/Pr, (10)

where Pr = v0 τ/ l is the persistence number (persistence
length v0 τ scaled by the microswimmer length l) and B is
the shape parameter (Bretherton constant). The dimensionless
parameter cI denotes the strength of the polar interaction
compared to the rotational diffusion time scale τ , i.e.,

cI = 8 π

9

ε3

V0
γ0 v0 ρτ, (11)

and the second dimensionless parameter cF characterizes the
strength of the flow’s response to the activity,

cF = 2π

10

μ0

μeff

l3

V0
ρ, (12)

where V0 is the volume of one bacterium and μ0 is the
viscosity of the surrounding fluid (see below and [65] for
details).

III. RESULTS

The velocity and vorticity fields were measured exper-
imentally for a range of surface densities ρ, from ∼0.2
to ∼0.85 [Figs. 2(a) and 2(b)]. In both the WT and the
smooth-swimmers, the average speed and absolute vorticity
were found to grow with increasing cell density reaching
a maximum at about ρ = 0.67. This trend, in which speed
increases with density, is the hallmark of collective bacte-
rial swimming. At higher densities both measures decrease,
possibly due to a jammed state. The two strains behaved
similarly with a small difference in the value of the maximal
absolute vorticity [Fig. 2(b)]. We have then looked at the
distribution of velocities and vorticities by plotting the scaled
fourth moment (kurtosis). The distribution of velocities and
vorticities of the two strains was qualitatively different. Wild-
type cells exhibited a normal distribution for all cell densities
(kurtosis = 3). In contrast, smooth-swimmers had a normal
distribution only at high densities and shifted from normal
toward an exponential one (kurtosis = 6) for smaller densities
[Figs. 3(a) and 3(b)].

Next, we looked at the spatiotemporal correlations of the
moving cells [Figs. 4(a) and 4(b)]. See the Materials and
Methods section for the precise definition. The correlation
length and the correlation time of both the velocity and
vorticity fields were calculated for the two strains at all cell
densities, in each case by taking the value (on the x axis)
at 1/e of the correlation. The results indicate no significant
difference between the strains with fairly constant values of
characteristic length and time scales along a large part of
the measured densities (except for an abrupt increase for the
velocity field at large densities).
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FIG. 2. Movement statistics. The mean average speed (a), (c),
(e) and mean absolute vorticity (b), (d), (f) as a function of density
obtained in experiments (a), (b), agent-based model middle (c), (d),
and continuous model (e), (f). Both models capture the collective
effect in which at low to medium concentrations, the mean speed
increases with concentration. However, they fail to reproduce, or
understimate, the jammed state observed experimentally at very high
densities.

The most surprising difference between the WT and the
smooth-swimmers in experiments was found in the correlation
between the local (linear) speed and the vorticity (rotational
speed). Figure 5(a) shows that for WT cells, velocity and
vorticity are uncorrelated; i.e., the speed of the cells does not
depend on how fast the cells are rotating. However, in the
smooth-swimmers, higher speeds are obtained for cells with
larger vorticities and vice versa. In addition, this correlation is
higher at low cell densities compared to crowded states. These
results demonstrate that the collective dynamics of short
elongated bacteria differ between WT and smooth-swimmers,
in particular at low cell densities where direct short-range
cell-cell interactions are weaker.

In order to gain insight on the mechanisms underlying the
collective dynamics of the bacteria, the experimental results
were compared with simulations. We begin with the discrete,
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FIG. 3. Analysis of fluctuations. Experiments (a), (b) show that
the velocity and vorticity distributions of WT cells are always
Gaussian. However, smooth-swimmers show non-Gaussian statistics
at low concentrations. In agent-based simulations (c), (d), both
strains transition from non-Gaussian statistics at low concentrations
to Gaussian at high densities. The continuous model (e), (f) shows
Gaussian statistics of velocities for all concentrations. The kurtosis
of the vorticity is noisy and high fluctuating.

agent-based model detailed in Sec. II D. In this model, each
bacterium is represented as an individual point dipole that
swims and interacts with the fluid flow generated by all other
cells. The average (2D) area fraction, ρ = Nπl2/4L2 was
varied as in the experiments from ∼0.2 to ∼0.85 [Figs. 2(c)
and 2(d)]. We find that in both the WT and the smooth-
swimmers, the average speed and absolute value of the vor-
ticity grow with the density; however, unlike the experiment,
they continue to increase even at larger values. This is mainly
due to the fact that at large densities the suspension in the
experiments enters a jamming regime where excluded-volume
effects dominate. Our model approximates hard-core steric
interaction as a soft potential. As a result, it is expected that
this description will become inaccurate at very high densities
since the soft repulsion allows some overlap between the cells.
Otherwise, the two strains behaved similarly in magnitude and
qualitatively in behavior.
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FIG. 4. Correlation length (a), (c), (e) and time (b), (d), (f) scales
in experiments (a), (b), agent-based model (c), (d), and continuous
(e), (f) simulations.

Next, as in the experiment, we looked at the shape of
the probability distributions of velocities and vorticities by
examining the kurtosis of each distribution [Figs. 3(c) and
3(d)]. At high densities, the kurtosis of both strains approaches
3 (normal distribution) and deviates from normal at lower den-
sities. Moreover, we consider the spatiotemporal correlations
generated by the flow [Figs. 4(c) and 4(d)]. As expected, the
simulated correlation length and time increase as a function of
density, and both strains show qualitatively similar behavior
also matching the experimental observation.

The most notable difference between the experiment and
agent-based simulations was found in the correlation coeffi-
cient between the local flow speed and the absolute vorticity
[Fig. 5(b)]. In the model, the correlation coefficient decreases
with density, but the two strains show qualitatively no differ-
ence. This differs from the experiment [Fig. 5(a)] where the
WT shows no correlation. In addition, the magnitude of the
correlation coefficient is larger in the agent-based simulations.

In order to gain insight into the physical origins of the
jammed phase, which the agent-based model described above
did not reproduce, we study a small variation. We hypothesize

that jamming is due to some inelasticity which is significant
when two cells become very close so they collide (inelas-
tically), or their flagella overlap, creating friction. To this
end, we incorporated an interaction that models some loss in
velocity to two particles closer than a distance l, the cell size.
At a distance r < l, cells experience a drag with rate (l − r )/l.
In other words, we add an additional force, (l − r )vi/ l.

At high concentrations, the cells are forced to be closer
together. As a result, energy loss due to friction becomes sig-
nificant and the overall speed decreases, as depicted in Fig. 6.
We note that with the current parameters, the velocity decrease
occurs at a higher concentration than observed in experiments;
in addition the decrease is not as sharp. Nonetheless, our
results indicate that the jammed phase may indeed be due to
friction or other inelastic interactions at very short cell-cell
distances.

Finally, we consider simulation results obtained with the
continuum model described in Sec. II E. We find that the
average speed and the absolute vorticity increase with in-
creasing bacterial concentration similarly to the experiment
(ρ < 0.6) and the agent-based model [Figs. 2(e) and 2(f)].
However, both speed and vorticity are too small by a factor
of about 2. The monotonic increase of the collective velocity
is related to the parameters of the Landau potential; i.e.,
vcoll = v0

√−α(ρ)/ β(ρ). Furthermore, our simulations show
a decrease in speeds at high densities, although not as sharp
as in experiments.

The values of the kurtosis in the velocity distribution
[Fig. 3(e)] were independent of the density and approximately
equal to 3, which is in accordance with the experimental
WT results. However, the kurtosis of the vorticity [Fig. 3(f)]
is highly noisy and does not seem reliable. The correlation
length and time [Figs. 4(e) and 4(f)] are qualitatively in
agreement with experiments and are of the same order of mag-
nitude. There is some deviation at low densities, which is ex-
pected for a coarse-grained model. The difference can be ex-
plained by advection. In the continuum model, the correlation
time depends on the advection, which increases with increas-
ing bacterial concentration and in turn the correlation time
decreases. Finally, we study the correlation between the local
speed and the absolute value of the local vorticity. Here we
found small correlations with a slight increase with density.

IV. DISCUSSION

We have studied the dynamics of collectively swimming
bacteria, moving in a monolayer on a liquid-air surface. Our
analysis shows that the contribution of flagellar tumbling to
the collective motion changes across a range of bacterial
concentrations.

In the experiment we have shown that short rods (aspect
ratio ∼1.5−2) of S. marcescens bacteria grown in broth
will form a monolayer of collective flow with whirls and
jets that occupy the upper surface of the liquid. While the
dynamics of WT and smooth-swimming cells are similar at
high cell density, it differs at low densities. This indicates
that tumbling plays a role in the collective dynamics. For
instance, Figs. 3(a) and 3(b) show that the distribution of
velocities and vorticities depends on whether the cells are able
to tumble, and the kurtosis deviates from normal values at
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small, as in WT, but are increasing with density.

densities around ρ = 0.35, fairly above the critical density
for collective motion (ρ = 0.25). In addition, Fig. 5 shows
that tumbling qualitatively changes the structure of the flow,
as the correlation between the local speeds and vorticities
depends on the ability to tumble, with obvious differences at
even much higher densities such as ρ = 0.6. These results are
consistent with experiments using swarming B. subtilis that
are more elongated and form multilayer colonies [21].

In order to test whether the experimental results can be
explained by known cell-cell interactions, two modeling ap-
proaches were considered.

As explained above, the approximation of the hydrody-
namic cell-cell interaction as a Stokes dipole is expected to fail
at high densities. Thus, the failure of the agent-based model
to reproduce the jammed phase is consistent with the model
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range friction. At high concentrations, the cells are forced to be closer
together and energy loss due to friction becomes significant. As a
result, the overall speed decreases, in qualitative agreement with the
jammed phased observed in experiments. Blue: WT; red: smooth-
swimmers.

assumptions. The modified model with inelastic short-range
interactions suggests that dissipative effects such as inelastic
collisions or friction play a significant role at such high densi-
ties. However, more work is required in order to understand
the precise role of these effects. At lower densities, it is
surprising that the differences between the WT and smooth-
swimming strains cannot be accounted for by the inclusion of
tumbling as random reorientation events at exponentially dis-
tributed times. The quantitative differences between the exper-
imental and modeled dynamics, across all measured densities,
suggest that tumbling has a more fundamental role in the bac-
terial dynamics than merely increasing rotational diffusion.

The continuum model has two assumptions that yield to
simplifications which are mainly responsible for deviations
from experiments: first, that the self-propulsion velocity of
all bacteria is constant (in time), and second, that the den-
sity is constant (both in time and space). Moreover, mod-
eling smooth-swimmers by adapting the rotational diffusion
is probably too simple and neglects the discrete nature of
tumbling events. Even though such assumptions are typical
for continuous, coarse-grained models, we have shown here
that they can have a significant impact on the dynamics.

Overall, our results indicate that modeling the collective
dynamics of two-dimensional swimming bacteria is a com-
plex task where the theory often fails to describe the full range
of the dynamics across densities. Moreover, we find that our
agent-based model may be more valid for the modeling of
smooth-swimmers, while the continuous model gives reason-
able results for WT cells in which the fluctuations of viscosi-
ties is Gaussian and uncorrelated with the local vorticity.

The results presented here compare only two bacterial
strains from the same species and two models. However, the
physical view of bacteria as self-propelled particles or natural
examples of active matter suggest such systems share some
universal properties. As a result, it is expected that other
bacterial species that exhibit collective dynamics will behave
similarly. Our experimental results represent a useful basis
for checking other two-dimensional models for collective mo-
tion of swimmers including self-propelled rods [61,72–76],
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models with complex alignment interactions [77], or other
more realistic models with detailed cell-cell interactions [78].

ACKNOWLEDGMENTS

We thank Rasika M. Harshey and Jonathan D. Partridge
for sending the strains. G.A. and A.B. are thankful for

partial support from The Israel Science Foundation’s Grant
No. 373/16. G.A., S.H., M.B., and A.B. are thankful
for partial support from The Deutsche Forschungsgemein-
schaft (The German Research Foundation DFG) Grants No.
HE5995/3-1 and No. BA1222/7-1. S.D.R. is thankful for
internal support from the Cleveland State University Office of
Research.

[1] L. Turner, W. S. Ryu, and H. C. Berg, J. Bac. 182, 2793 (2000).
[2] H. C. Berg, E. coli in Motion (Springer Science & Business

Media, New York, 2004).
[3] B. Ilkanaiv, D. B. Kearns, G. Ariel, and A. Be’er, Phys. Rev.

Lett. 118, 158002 (2017).
[4] L. H. Cisneros, J. O. Kessler, S. Ganguly, and R. E. Goldstein,

Phys. Rev. E 83, 061907 (2011).
[5] H. H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R. E.

Goldstein, H. Löwen, and J. M. Yeomans, Proc. Natl. Acad. Sci.
USA 109, 14308 (2012).

[6] F. Peruani, A. Deutsch, and M. Bär, Phys. Rev. E 74, 030904(R)
(2006).

[7] S. Weitz, A. Deutsch, and F. Peruani, Phys. Rev. E 92, 012322
(2015).

[8] F. Peruani, J. Starrus, V. Jakovljevic, L. Søgaard-Andersen, A.
Deutsch, and M. Bär, Phys. Rev. Lett. 108, 098102 (2012).

[9] J.-M. Swiecickia, O. Sliusarenko, and D. B. Weibel, Integr.
Biol. 5, 1490 (2013).

[10] A. Sokolov and I. S. Aranson, Phys. Rev. Lett. 103, 148101
(2009).

[11] C. Blanch-Mercader and J. Casademunt, Soft Matter 13, 6913
(2017).

[12] A. Rabani, G. Ariel, and A. Be’er, PLoS One 8, e83760 (2013).
[13] I. S. Aranson, A. Sokolov, J. O. Kessler, and R. E. Goldstein,

Phys. Rev. E 75, 040901(R) (2007).
[14] S. D. Ryan, B. M. Haines, L. Berlyand, F. Ziebert, and I. S.

Aranson, Phys. Rev. E 83, 050904(R) (2011).
[15] C. W. Wolgemuth, Biophys. J. 95, 1564 (2008).
[16] J. Dunkel, S. Heidenreich, M. Bär, and R. E. Goldstein, New J.

Phys. 15, 045016 (2013).
[17] R. Grossmann, P. Romanczuk, M. Bär, and L. Schimansky-

Geier, Phys. Rev. Lett. 113, 258104 (2014).
[18] V. Bratanov, F. Jenko, and E. Frey, Proc. Natl. Acad. Sci. USA

112, 15048 (2015).
[19] M. James and M. Wilczek, Eur. Phys. J. E 41, 21 (2018).
[20] D. Nishiguchi and M. Sano, Phys. Rev. E 92, 052309 (2015).
[21] M. Sidortsov, Y. Morgenstern, and A. Be’er, Phys. Rev. E 96,

022407 (2017).
[22] A. Be’er and R. M. Harshey, Biophys. J. 101, 1017 (2011).
[23] H. P. Zhang, A. Be’er, E.-L. Florin, and H. L. Swinney, Proc.

Natl. Acad. Sci. USA 107, 13626 (2010).
[24] A. Be’er, S. K. Strain, R. A. Hernández, E. Ben-Jacob, and E.-L.

Florin, J. Bacteriol. 195, 2709 (2013).
[25] X. Chen, X. Dong, A. Be’er, H. L. Swinney, and H. P. Zhang,

Phys. Rev. Lett. 108, 148101 (2012).
[26] X. Chen, X. Yang, M. Yang, and H. P. Zhang, Europhys. Lett.

111, 54002 (2015).
[27] S. Benisty, E. Ben-Jacob, G. Ariel, and A. Be’er, Phys. Rev.

Lett. 114, 018105 (2015).

[28] M. T. Butler, Q. Wang, and R. M. Harshey, Proc. Natl. Acad.
Sci. USA 107, 3776 (2010).

[29] M. F. Copeland and D. B. Weibel, Soft Matter 5, 1174 (2009).
[30] N. C. Darnton, L. Turner, S. Rojevsky, and H. C. Berg, Biophys.

J. 98, 2082 (2010).
[31] J. D. Partridge and R. M. Harshey, J. Bacteriol. 195, 909 (2013).
[32] G. Ariel, A. Shklarsh, O. Kalisman, C. Ingham, and E. Ben-

Jacob, New J. Phys. 15, 125019 (2013).
[33] A. Be’er, R. S. Smith, H. P. Zhang, E.-L. Florin, S. M. Payne,

and H. L. Swinney, J. Bacteriol. 191, 5758 (2009).
[34] G. Ariel, A. Rabani, S. Benisty, J. D. Partridge, R. M. Harshey,

and A. Be’er, Nat. Commun. 6, 8396 (2015).
[35] S. D. Ryan, G. Ariel, and A. Be’er, Biophys. J. 111, 247 (2016).
[36] D. Roth, A. Finkelshtein, C. Ingham, Y. Helman, A. Sirota-

Madi, L. Brodsky, and E. Ben-Jacob, Environ. Microbiol. 15,
2532 (2013).

[37] H. P. Zhang, A. Be’er, R. S. Smith, E.-L. Florin, and H. L.
Swinney, EPL 87, 48011 (2009).

[38] S. D. Ryan, A. Sokolov, L. Berlyand, and I. S. Aranson, New J.
Phys. 15, 105021 (2013).

[39] J. Dunkel, S. Heidenreich, K. Drescher, H. H. Wensink, M. Bär,
and R. E. Goldstein, Phys. Rev. Lett. 110, 228102 (2013).

[40] E. Lushi, H. Wioland, and R. E. Goldstein, Proc. Natl. Acad.
Sci. USA 111, 9733 (2014).

[41] J. P. Hernandez-Ortiz, P. T. Underhill, and M. D. Graham,
J. Phys.: Condens. Matter 21, 204107 (2009).

[42] L. Turner, R. Zhang, N. C. Darnton, and H. C. Berg, J. Bacteriol.
192, 3259 (2010).

[43] S. Zhou, A. Sokolov, O. D. Lavrentovich, and I. S. Aranson,
Proc. Natl. Acad. Sci. USA 111, 1265 (2014).

[44] M. F. Copeland, S. T. Flickinger, H. H. Tuson, and D. B. Weibel,
Appl. Environ. Microbiol. 76, 1241 (2010).

[45] H. H. Tuson, M. F. Copeland, S. Carey, R. Sacotte, and D. B.
Weibel, J. Bacteriol. 195, 368 (2013).

[46] A. Sokolov and I. S. Aranson, Phys. Rev. Lett. 109, 248109
(2012).

[47] A. Sokolov, I. S. Aranson, J. O. Kessler, and R. E. Goldstein,
Phys. Rev. Lett. 98, 158102 (2007).

[48] V. Gyrya, I. S. Aranson, L. V. Berlyand, and D. Karpeev, Bull.
Math. Biol. 72, 148 (2010).

[49] G. K. Nachiket and J. D. Shrout, PLoS One 6, e20888 (2011).
[50] M. Burkhart, A. Toguchi, and R.M. Harshey, Proc. Natl. Acad.

Sci. USA 95, 2568 (1998).
[51] S. Mariconda, Q. Wang, and R. M. Harshey, Mol. Microbiol.

60, 1590 (2006).
[52] Q. Wang, A. Suzuki, S. Mariconda, S. Porwollik, and R. M.

Harshey, EMBO J. 24, 2034 (2005).
[53] A. Toguchi, M. Siano, M. Burkart, and R. M. Harshey,

J. Bacteriol. 182, 6308 (2000).

032415-9

https://doi.org/10.1128/JB.182.10.2793-2801.2000
https://doi.org/10.1128/JB.182.10.2793-2801.2000
https://doi.org/10.1128/JB.182.10.2793-2801.2000
https://doi.org/10.1128/JB.182.10.2793-2801.2000
https://doi.org/10.1103/PhysRevLett.118.158002
https://doi.org/10.1103/PhysRevLett.118.158002
https://doi.org/10.1103/PhysRevLett.118.158002
https://doi.org/10.1103/PhysRevLett.118.158002
https://doi.org/10.1103/PhysRevE.83.061907
https://doi.org/10.1103/PhysRevE.83.061907
https://doi.org/10.1103/PhysRevE.83.061907
https://doi.org/10.1103/PhysRevE.83.061907
https://doi.org/10.1073/pnas.1202032109
https://doi.org/10.1073/pnas.1202032109
https://doi.org/10.1073/pnas.1202032109
https://doi.org/10.1073/pnas.1202032109
https://doi.org/10.1103/PhysRevE.74.030904
https://doi.org/10.1103/PhysRevE.74.030904
https://doi.org/10.1103/PhysRevE.74.030904
https://doi.org/10.1103/PhysRevE.74.030904
https://doi.org/10.1103/PhysRevE.92.012322
https://doi.org/10.1103/PhysRevE.92.012322
https://doi.org/10.1103/PhysRevE.92.012322
https://doi.org/10.1103/PhysRevE.92.012322
https://doi.org/10.1103/PhysRevLett.108.098102
https://doi.org/10.1103/PhysRevLett.108.098102
https://doi.org/10.1103/PhysRevLett.108.098102
https://doi.org/10.1103/PhysRevLett.108.098102
https://doi.org/10.1039/c3ib40130h
https://doi.org/10.1039/c3ib40130h
https://doi.org/10.1039/c3ib40130h
https://doi.org/10.1039/c3ib40130h
https://doi.org/10.1103/PhysRevLett.103.148101
https://doi.org/10.1103/PhysRevLett.103.148101
https://doi.org/10.1103/PhysRevLett.103.148101
https://doi.org/10.1103/PhysRevLett.103.148101
https://doi.org/10.1039/C7SM01128H
https://doi.org/10.1039/C7SM01128H
https://doi.org/10.1039/C7SM01128H
https://doi.org/10.1039/C7SM01128H
https://doi.org/10.1371/journal.pone.0083760
https://doi.org/10.1371/journal.pone.0083760
https://doi.org/10.1371/journal.pone.0083760
https://doi.org/10.1371/journal.pone.0083760
https://doi.org/10.1103/PhysRevE.75.040901
https://doi.org/10.1103/PhysRevE.75.040901
https://doi.org/10.1103/PhysRevE.75.040901
https://doi.org/10.1103/PhysRevE.75.040901
https://doi.org/10.1103/PhysRevE.83.050904
https://doi.org/10.1103/PhysRevE.83.050904
https://doi.org/10.1103/PhysRevE.83.050904
https://doi.org/10.1103/PhysRevE.83.050904
https://doi.org/10.1529/biophysj.107.118257
https://doi.org/10.1529/biophysj.107.118257
https://doi.org/10.1529/biophysj.107.118257
https://doi.org/10.1529/biophysj.107.118257
https://doi.org/10.1088/1367-2630/15/4/045016
https://doi.org/10.1088/1367-2630/15/4/045016
https://doi.org/10.1088/1367-2630/15/4/045016
https://doi.org/10.1088/1367-2630/15/4/045016
https://doi.org/10.1103/PhysRevLett.113.258104
https://doi.org/10.1103/PhysRevLett.113.258104
https://doi.org/10.1103/PhysRevLett.113.258104
https://doi.org/10.1103/PhysRevLett.113.258104
https://doi.org/10.1073/pnas.1509304112
https://doi.org/10.1073/pnas.1509304112
https://doi.org/10.1073/pnas.1509304112
https://doi.org/10.1073/pnas.1509304112
https://doi.org/10.1140/epje/i2018-11625-8
https://doi.org/10.1140/epje/i2018-11625-8
https://doi.org/10.1140/epje/i2018-11625-8
https://doi.org/10.1140/epje/i2018-11625-8
https://doi.org/10.1103/PhysRevE.92.052309
https://doi.org/10.1103/PhysRevE.92.052309
https://doi.org/10.1103/PhysRevE.92.052309
https://doi.org/10.1103/PhysRevE.92.052309
https://doi.org/10.1103/PhysRevE.96.022407
https://doi.org/10.1103/PhysRevE.96.022407
https://doi.org/10.1103/PhysRevE.96.022407
https://doi.org/10.1103/PhysRevE.96.022407
https://doi.org/10.1016/j.bpj.2011.07.019
https://doi.org/10.1016/j.bpj.2011.07.019
https://doi.org/10.1016/j.bpj.2011.07.019
https://doi.org/10.1016/j.bpj.2011.07.019
https://doi.org/10.1073/pnas.1001651107
https://doi.org/10.1073/pnas.1001651107
https://doi.org/10.1073/pnas.1001651107
https://doi.org/10.1073/pnas.1001651107
https://doi.org/10.1128/JB.00080-13
https://doi.org/10.1128/JB.00080-13
https://doi.org/10.1128/JB.00080-13
https://doi.org/10.1128/JB.00080-13
https://doi.org/10.1103/PhysRevLett.108.148101
https://doi.org/10.1103/PhysRevLett.108.148101
https://doi.org/10.1103/PhysRevLett.108.148101
https://doi.org/10.1103/PhysRevLett.108.148101
https://doi.org/10.1209/0295-5075/111/54002
https://doi.org/10.1209/0295-5075/111/54002
https://doi.org/10.1209/0295-5075/111/54002
https://doi.org/10.1209/0295-5075/111/54002
https://doi.org/10.1103/PhysRevLett.114.018105
https://doi.org/10.1103/PhysRevLett.114.018105
https://doi.org/10.1103/PhysRevLett.114.018105
https://doi.org/10.1103/PhysRevLett.114.018105
https://doi.org/10.1073/pnas.0910934107
https://doi.org/10.1073/pnas.0910934107
https://doi.org/10.1073/pnas.0910934107
https://doi.org/10.1073/pnas.0910934107
https://doi.org/10.1039/b812146j
https://doi.org/10.1039/b812146j
https://doi.org/10.1039/b812146j
https://doi.org/10.1039/b812146j
https://doi.org/10.1016/j.bpj.2010.01.053
https://doi.org/10.1016/j.bpj.2010.01.053
https://doi.org/10.1016/j.bpj.2010.01.053
https://doi.org/10.1016/j.bpj.2010.01.053
https://doi.org/10.1128/JB.02063-12
https://doi.org/10.1128/JB.02063-12
https://doi.org/10.1128/JB.02063-12
https://doi.org/10.1128/JB.02063-12
https://doi.org/10.1088/1367-2630/15/12/125019
https://doi.org/10.1088/1367-2630/15/12/125019
https://doi.org/10.1088/1367-2630/15/12/125019
https://doi.org/10.1088/1367-2630/15/12/125019
https://doi.org/10.1128/JB.00660-09
https://doi.org/10.1128/JB.00660-09
https://doi.org/10.1128/JB.00660-09
https://doi.org/10.1128/JB.00660-09
https://doi.org/10.1038/ncomms9396
https://doi.org/10.1038/ncomms9396
https://doi.org/10.1038/ncomms9396
https://doi.org/10.1038/ncomms9396
https://doi.org/10.1016/j.bpj.2016.05.043
https://doi.org/10.1016/j.bpj.2016.05.043
https://doi.org/10.1016/j.bpj.2016.05.043
https://doi.org/10.1016/j.bpj.2016.05.043
https://doi.org/10.1111/1462-2920.12160
https://doi.org/10.1111/1462-2920.12160
https://doi.org/10.1111/1462-2920.12160
https://doi.org/10.1111/1462-2920.12160
https://doi.org/10.1209/0295-5075/87/48011
https://doi.org/10.1209/0295-5075/87/48011
https://doi.org/10.1209/0295-5075/87/48011
https://doi.org/10.1209/0295-5075/87/48011
https://doi.org/10.1088/1367-2630/15/10/105021
https://doi.org/10.1088/1367-2630/15/10/105021
https://doi.org/10.1088/1367-2630/15/10/105021
https://doi.org/10.1088/1367-2630/15/10/105021
https://doi.org/10.1103/PhysRevLett.110.228102
https://doi.org/10.1103/PhysRevLett.110.228102
https://doi.org/10.1103/PhysRevLett.110.228102
https://doi.org/10.1103/PhysRevLett.110.228102
https://doi.org/10.1073/pnas.1405698111
https://doi.org/10.1073/pnas.1405698111
https://doi.org/10.1073/pnas.1405698111
https://doi.org/10.1073/pnas.1405698111
https://doi.org/10.1088/0953-8984/21/20/204107
https://doi.org/10.1088/0953-8984/21/20/204107
https://doi.org/10.1088/0953-8984/21/20/204107
https://doi.org/10.1088/0953-8984/21/20/204107
https://doi.org/10.1128/JB.00083-10
https://doi.org/10.1128/JB.00083-10
https://doi.org/10.1128/JB.00083-10
https://doi.org/10.1128/JB.00083-10
https://doi.org/10.1073/pnas.1321926111
https://doi.org/10.1073/pnas.1321926111
https://doi.org/10.1073/pnas.1321926111
https://doi.org/10.1073/pnas.1321926111
https://doi.org/10.1128/AEM.02153-09
https://doi.org/10.1128/AEM.02153-09
https://doi.org/10.1128/AEM.02153-09
https://doi.org/10.1128/AEM.02153-09
https://doi.org/10.1128/JB.01537-12
https://doi.org/10.1128/JB.01537-12
https://doi.org/10.1128/JB.01537-12
https://doi.org/10.1128/JB.01537-12
https://doi.org/10.1103/PhysRevLett.109.248109
https://doi.org/10.1103/PhysRevLett.109.248109
https://doi.org/10.1103/PhysRevLett.109.248109
https://doi.org/10.1103/PhysRevLett.109.248109
https://doi.org/10.1103/PhysRevLett.98.158102
https://doi.org/10.1103/PhysRevLett.98.158102
https://doi.org/10.1103/PhysRevLett.98.158102
https://doi.org/10.1103/PhysRevLett.98.158102
https://doi.org/10.1007/s11538-009-9442-6
https://doi.org/10.1007/s11538-009-9442-6
https://doi.org/10.1007/s11538-009-9442-6
https://doi.org/10.1007/s11538-009-9442-6
https://doi.org/10.1371/journal.pone.0020888
https://doi.org/10.1371/journal.pone.0020888
https://doi.org/10.1371/journal.pone.0020888
https://doi.org/10.1371/journal.pone.0020888
https://doi.org/10.1073/pnas.95.5.2568
https://doi.org/10.1073/pnas.95.5.2568
https://doi.org/10.1073/pnas.95.5.2568
https://doi.org/10.1073/pnas.95.5.2568
https://doi.org/10.1111/j.1365-2958.2006.05208.x
https://doi.org/10.1111/j.1365-2958.2006.05208.x
https://doi.org/10.1111/j.1365-2958.2006.05208.x
https://doi.org/10.1111/j.1365-2958.2006.05208.x
https://doi.org/10.1038/sj.emboj.7600668
https://doi.org/10.1038/sj.emboj.7600668
https://doi.org/10.1038/sj.emboj.7600668
https://doi.org/10.1038/sj.emboj.7600668
https://doi.org/10.1128/JB.182.22.6308-6321.2000
https://doi.org/10.1128/JB.182.22.6308-6321.2000
https://doi.org/10.1128/JB.182.22.6308-6321.2000
https://doi.org/10.1128/JB.182.22.6308-6321.2000


GIL ARIEL et al. PHYSICAL REVIEW E 98, 032415 (2018)

[54] H. C. Berg, Curr. Biol. 15, R599(R) (2005).
[55] R. M. Harshey and T. Matsuyama, Proc. Natl. Acad. Sci. USA

91, 8631 (1994).
[56] S. D. Ryan, L. Berlyand, B. M. Haines, and D. Karpeev,

Multiscale Model. Simul. 11, 1176 (2013).
[57] D. B. Kearns and R. Losick, Mol. Microbiol. 49, 581 (2004).
[58] A. Sokolov, L. D. Rubio, J. F. Brady, and I. S. Aranson, Nat.

Commun. 9, 1322 (2018).
[59] H. M. López, J. Gachelin, C. Douarche, H. Auradou, and E.

Clément, Phys. Rev. Lett. 115, 028301 (2015).
[60] Y. L. Chuang, T. Chou, and M. R. D’Orsogna, Phys. Rev. E 93,

043112 (2016).
[61] Y. Yang, V. Marceau, and G. Gompper, Phys. Rev. E 82, 031904

(2010).
[62] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool,

J. Prost, M. Rao, and A. Simha, Rev. Mod. Phys. 85, 1143
(2013).

[63] B. Cui, H. Diamant, B. Lin, and S. A. Rice, Phys. Rev. Lett. 92,
258301 (2004).

[64] S. Heidenreich, J. Dunkel, S. H. L. Klapp, and M. Bär, Phys.
Rev. E 94, 020601(R) (2016).

[65] H. Reinken, S. H. L. Klapp, M. Bär, and S. Heidenreich, Phys.
Rev. E 97, 022613 (2018).

[66] A. Baskaran and M. C. Marchetti, Proc. Natl. Acad. Sci. USA
106, 15567 (2009).

[67] K. Tunstrøm, Y. Katz, C. C. Ioannou, C. Huepe, M. J. Lutz, and
I. D. Couzin, PLoS Comput. Biol. 9, e1002915 (2013).

[68] R. Cortez, L. Fauci, and A. Medovikov, Phys. Fluids 17, 031504
(2005).

[69] K. Drescher, J. Dunkel, L. H. Cisneros, S. Ganguly, and R. E.
Goldstein, Proc. Natl. Acad. Sci. USA 108, 10940 (2011).

[70] G. B. Jeffery, Proc. R. Soc. London, Ser. A 102, 161
(1922).

[71] D. Saintillan and M. J. Shelley, C. R. Phys. 14, 497 (2009).
[72] H. H. Wensink and H. Löwen, J. Phys.: Condens. Matter 24,

464130 (2012).
[73] A. Kaiser and H. Löwen, Phys. Rev. E 87, 032712 (2013).
[74] A. Kaiser, A. Sokolov, I. S. Aranson, and H. Löwen, IEEE

Trans. NanoBiosci. 14, 260 (2015).
[75] S. R. McCandlish, A. Baskaran, and M. F. Hagan, Soft Matter

8, 2527 (2012).
[76] M. Abkenar, K. Marx, T. Auth, and G. Gompper, Phys. Rev. E

88, 062314 (2013).
[77] R. Grossmann, P. Romanczuk, M. Bär, and L. Schimansky-

Geier, Eur. Phys. J.: Spec. Top. 224, 1325 (2015).
[78] A. Zöttl and H. Stark, Phys. Rev. Lett. 112, 118101 (2014).

032415-10

https://doi.org/10.1016/j.cub.2005.07.042
https://doi.org/10.1016/j.cub.2005.07.042
https://doi.org/10.1016/j.cub.2005.07.042
https://doi.org/10.1016/j.cub.2005.07.042
https://doi.org/10.1073/pnas.91.18.8631
https://doi.org/10.1073/pnas.91.18.8631
https://doi.org/10.1073/pnas.91.18.8631
https://doi.org/10.1073/pnas.91.18.8631
https://doi.org/10.1137/120900575
https://doi.org/10.1137/120900575
https://doi.org/10.1137/120900575
https://doi.org/10.1137/120900575
https://doi.org/10.1046/j.1365-2958.2003.03584.x
https://doi.org/10.1046/j.1365-2958.2003.03584.x
https://doi.org/10.1046/j.1365-2958.2003.03584.x
https://doi.org/10.1046/j.1365-2958.2003.03584.x
https://doi.org/10.1038/s41467-018-03758-z
https://doi.org/10.1038/s41467-018-03758-z
https://doi.org/10.1038/s41467-018-03758-z
https://doi.org/10.1038/s41467-018-03758-z
https://doi.org/10.1103/PhysRevLett.115.028301
https://doi.org/10.1103/PhysRevLett.115.028301
https://doi.org/10.1103/PhysRevLett.115.028301
https://doi.org/10.1103/PhysRevLett.115.028301
https://doi.org/10.1103/PhysRevE.93.043112
https://doi.org/10.1103/PhysRevE.93.043112
https://doi.org/10.1103/PhysRevE.93.043112
https://doi.org/10.1103/PhysRevE.93.043112
https://doi.org/10.1103/PhysRevE.82.031904
https://doi.org/10.1103/PhysRevE.82.031904
https://doi.org/10.1103/PhysRevE.82.031904
https://doi.org/10.1103/PhysRevE.82.031904
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/PhysRevLett.92.258301
https://doi.org/10.1103/PhysRevLett.92.258301
https://doi.org/10.1103/PhysRevLett.92.258301
https://doi.org/10.1103/PhysRevLett.92.258301
https://doi.org/10.1103/PhysRevE.94.020601
https://doi.org/10.1103/PhysRevE.94.020601
https://doi.org/10.1103/PhysRevE.94.020601
https://doi.org/10.1103/PhysRevE.94.020601
https://doi.org/10.1103/PhysRevE.97.022613
https://doi.org/10.1103/PhysRevE.97.022613
https://doi.org/10.1103/PhysRevE.97.022613
https://doi.org/10.1103/PhysRevE.97.022613
https://doi.org/10.1073/pnas.0906586106
https://doi.org/10.1073/pnas.0906586106
https://doi.org/10.1073/pnas.0906586106
https://doi.org/10.1073/pnas.0906586106
https://doi.org/10.1371/journal.pcbi.1002915
https://doi.org/10.1371/journal.pcbi.1002915
https://doi.org/10.1371/journal.pcbi.1002915
https://doi.org/10.1371/journal.pcbi.1002915
https://doi.org/10.1063/1.1830486
https://doi.org/10.1063/1.1830486
https://doi.org/10.1063/1.1830486
https://doi.org/10.1063/1.1830486
https://doi.org/10.1073/pnas.1019079108
https://doi.org/10.1073/pnas.1019079108
https://doi.org/10.1073/pnas.1019079108
https://doi.org/10.1073/pnas.1019079108
https://doi.org/10.1098/rspa.1922.0078
https://doi.org/10.1098/rspa.1922.0078
https://doi.org/10.1098/rspa.1922.0078
https://doi.org/10.1098/rspa.1922.0078
https://doi.org/10.1016/j.crhy.2013.04.001
https://doi.org/10.1016/j.crhy.2013.04.001
https://doi.org/10.1016/j.crhy.2013.04.001
https://doi.org/10.1016/j.crhy.2013.04.001
https://doi.org/10.1088/0953-8984/24/46/464130
https://doi.org/10.1088/0953-8984/24/46/464130
https://doi.org/10.1088/0953-8984/24/46/464130
https://doi.org/10.1088/0953-8984/24/46/464130
https://doi.org/10.1103/PhysRevE.87.032712
https://doi.org/10.1103/PhysRevE.87.032712
https://doi.org/10.1103/PhysRevE.87.032712
https://doi.org/10.1103/PhysRevE.87.032712
https://doi.org/10.1109/TNB.2014.2361652
https://doi.org/10.1109/TNB.2014.2361652
https://doi.org/10.1109/TNB.2014.2361652
https://doi.org/10.1109/TNB.2014.2361652
https://doi.org/10.1039/c2sm06960a
https://doi.org/10.1039/c2sm06960a
https://doi.org/10.1039/c2sm06960a
https://doi.org/10.1039/c2sm06960a
https://doi.org/10.1103/PhysRevE.88.062314
https://doi.org/10.1103/PhysRevE.88.062314
https://doi.org/10.1103/PhysRevE.88.062314
https://doi.org/10.1103/PhysRevE.88.062314
https://doi.org/10.1140/epjst/e2015-02462-3
https://doi.org/10.1140/epjst/e2015-02462-3
https://doi.org/10.1140/epjst/e2015-02462-3
https://doi.org/10.1140/epjst/e2015-02462-3
https://doi.org/10.1103/PhysRevLett.112.118101
https://doi.org/10.1103/PhysRevLett.112.118101
https://doi.org/10.1103/PhysRevLett.112.118101
https://doi.org/10.1103/PhysRevLett.112.118101



