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Clusters of IP3 receptor channels in the membranes of the endoplasmic reticulum of many nonexcitable cells
release calcium ions in a cooperative manner giving rise to dynamical patterns such as Ca2+ puffs, waves,
and oscillations that occur on multiple spatial and temporal scales. We introduce a minimal yet descriptive
reaction-diffusion model of IP3 receptors for a saturating concentration of IP3 using a principled reduction of a
detailed Markov chain description of individual channels. A dynamical systems analysis reveals the possibility
of excitable, bistable, and oscillatory dynamics of this model that correspond to three types of observed patterns
of calcium release: puffs, waves, and oscillations, respectively. We explain the emergence of these patterns via a
bifurcation analysis of a coupled two-cluster model, compute the phase diagram, and quantify the speed of the
waves and period of oscillations in terms of system parameters. We connect the termination of large-scale Ca2+

release events to IP3 unbinding or stochasticity.
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I. INTRODUCTION

Ionic calcium (Ca2+) is a second messenger involved in
many processes such as fertilization, cell proliferation, differ-
entiation, embryonic development, secretion, muscular con-
traction, immune response, brain functions, chemical sensing,
light transduction, etc. [1,2]. While many types of Ca2+ re-
lease channels are implicated in these processes, in this paper
we are concerned with the dynamics of Ca2+ released into
the cytosol from inositol 1,4,5-triphosphate receptor (IP3R)
channels [2] that are triggered by IP3 secondary messen-
ger molecules. IP3R channels are usually present in nonex-
citable cells and are mainly localized in the endoplasmic
reticulum (ER) membrane where they are believed to form
tight clusters to enable Ca2+ signaling. Experimental obser-
vations [3,4] suggest that the distribution of clusters varies by
cell type. For example, SH-SY5Y neuroblastoma cells contain
around four to six channels per cluster (a few contain up to
ten channels), HeLa cells clusters on average contain two to
three channels, and Xenopus oocytes clusters contain around
20 channels each [5]. However, theoretical and experimental
investigations of clustering and the mechanisms by which it
regulates Ca2+ signaling are incomplete and are the subject of
ongoing research.

Ca2+ signaling events corresponding to release from Ca2+

channels [1] constitute a multiscale hierarchy consisting of
three distinct types of events taking place at different spatial
and temporal scales involving individual channels, clusters of
channels, and groups of channel clusters. The events occurring
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at the smallest scale (∼10 nm and ∼10 ms) are called blips.
They are the building blocks of signals on larger scales.
Blips occur when Ca2+ is released from a single channel
into the cytosol. Coordinated Ca2+ release from a cluster of
channels, a collection of co-occurring blips, is called a puff
and appears at the second level of the hierarchy (∼100 nm
and ∼100 ms). This cooperation between signaling events
is regulated by Ca2+ in a concentration-dependent feedback
mechanism. Low Ca2+ concentrations (maximum activity for
200–500 nM) diffuse around the cytosol and cause further
release from neighboring channels, whereas Ca2+ in high
cytosolic concentrations inhibits further Ca2+ release. This
feedback mechanism is called Ca2+-induced Ca2+ release
(CICR). The final level in the hierarchy (∼1 μm and ∼1 s)
is associated with Ca2+ spikes, waves, and oscillations. Spikes
correspond to local or global transient releases from a group of
clusters. Ca2+ waves are formed as sequential releases travel
from excited clusters to neighboring ones. Ca2+ oscillations
are repetitive Ca2+ spikes or waves. All the events on the
highest hierarchical level that we consider (spikes, waves, and
oscillations) consist of the coordinated release of Ca2+ puffs
from a group of clusters.

Ca2+ oscillations are experimentally observed in various
types of cells [6]. Many models associate the occurrence of
Ca2+ oscillations with the IP3 regulation [6–10]. Some studies
connect the emergence of Ca2+ oscillations with the oscillat-
ing level of IP3 triggered by binding to various enzymes, such
as phospholipase C (PLC) or IP3 kinase [6,9]. Others report
that Ca2+ oscillations may occur even if the IP3 concentration
is nonoscillatory [7,8]. Various studies explain oscillatory
Ca2+ behavior as a sequence of stochastic spikes [11–13].
Apart from oscillations and spikes, propagating wavefronts
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have also been much studied. These are implicated, for in-
stance, in oocyte fertilization and are generated when a sperm
cell makes contact with an oocyte.

There is extensive literature on the deterministic modeling
of Ca2+ front propagation. References [7,8,14–17] consider
the averaged Ca2+ dynamics from a well-mixed ER mem-
brane without addressing the clustering of channels. Channel
clusters, including inhomogeneous cluster distributions [18],
are considered in deterministic [19–21] and stochastic mod-
els [19,22] of Ca2+ wave propagation. The current paper stud-
ies the deterministic properties of Ca2+ waves and oscillations
occurring in the ER membrane containing multiple clustered
channels. The models in [20,21] inject a burst of Ca2+ ions
at each cluster which diffuses between clusters. While the
burst size is represented by a parameter in their models, we
choose to represent the release mechanism by a reduced ver-
sion of the De Young–Keizer (DYK) [7] model proposed by
Rüdiger [23]. This gives our model access to single-channel
characteristics [7] and cluster properties [23] providing more
mechanistic insight into the link between single-channel prop-
erties and features of waves and oscillations at higher levels
in the spatial hierarchy. We use dynamical systems analysis to
explore the different dynamical regimes at the single-cluster
level and relate these properties to larger spatial scales. Thus,
unlike the fire-diffuse-fire model [20,21], we can study the
characteristics of global Ca2+ release events such as waves
and oscillations, including their inhibition and termination,
using channel and cluster parameters. We also build on the
results of a detailed hybrid stochastic-deterministic single-
cluster study [24] and its extension on a grid of clusters [25]
that show different durations of Ca2+ events depending on the
IP3 level.

In detail, we introduce a spatial model of Ca2+ waves and
oscillations building upon qualitative insights from dynamical
systems theory applied to reduced few-variable models [8,23]
of IP3R channel subunits [7] integrated into channels and het-
erogeneous clusters of channels [24]. We assume the IP3 con-
centration to be sustained at a high level so that it increases the
probability of the occurrence of Ca2+ waves and oscillations,
extending the observation of excitability of channel clusters
in [23]. Further, we account for variability of [IP3] levels
by including the IP3 unbinding. The extended model also
gives insight into the numbers of activatable channels (all four
subunits have IP3 bound [26]) in agreement with [24,25]. The
model we propose is of a deterministic reaction-diffusion type
where diffusion of Ca2+ between clusters of channels smooths
the Ca2+ releases from individual activated clusters modeled
by reaction dynamics. Here we study the dependence of the
velocity and period of waves and oscillations on the diffusion
coefficient, equilibration rate, and the number of channels in
each cluster. We observe a curious spatially alternating wave
pattern in a regime of parameter space that is reminiscent
of the occurrence of intracellular spatially organized Ca2+

alternans [27]. The termination of large-scale events such
as waves and oscillations has been a topic of considerable
discussion [28–32]. We provide evidence for two different
mechanisms, a stochastic termination and a deterministic IP3

unbinding, that can be accommodated in our models in order
to account for the decay of Ca2+ excitations in simulation
traces.

II. METHODS

A kinetic model of channel activation and deactivation
is the basis for models of Ca2+ dynamics, and many
models [8,23] have been proposed that reduce the detailed
kinetic scheme laid out by De Young and Keizer, the
so-called DYK model [7], as a starting point. Our approach to
simplifying the complexity of the problem is based on several
basic models briefly discussed in this section. The assumption
of a well-mixed membrane where spatial effects are ignored is
a shared limitation of these models [7,8]. The spatial extension
of the three-state model [23] is proposed in Sec. II C. For
further details refer to the Appendixes and Supplemental
Material [33].

A. The DYK and derived models of Ca2+ signaling

The DYK model [7] is one of the first models which
successfully accounts for key empirical findings of IP3R
channels. In the model each channel consists of four subunits,
at least three of which need to be activated for channel
opening, reflecting the three conductance levels experimen-
tally observed in [34]. Each subunit has three binary state
variables i, j, k ∈ {0, 1}, corresponding to three binding sites
(for IP3, activating Ca2+, and inhibiting Ca2+) with a state
transition diagram shown in Fig. 1(a) and described in its
caption. The fraction of subunits in a given state (ijk) is
represented by the variable xijk such that they sum up to
unity, i.e.,

∑1
i=0

∑1
j=0

∑1
k=0 xi,j,k = 1. The presence of IP3

at each channel enhances Ca2+ release, while calcium either
amplifies or inhibits further Ca2+ release (called calcium-
induced calcium release).

The DYK model assumes that all four-subunit channels
are “well mixed” in the membrane and dispenses with spatial
effects such as clustering. The complexity of the state space
of the model makes it computationally difficult to obtain
properties of the spatial distribution of channel clusters in
the ER membrane. Hence, multiple attempts at reducing its
complexity have been made in the past few decades, the
majority of which share the common feature of IP3-dependent
activation and CICR.

In one such reduced model [8], the variables corresponding
to the DYK cube [Fig. 1(a)] are dispensed with by assuming
that activation by IP3 and Ca2+ is fast, compared with the
slow inhibition by Ca2+. The state indices (i, j, 0) and (i, j, 1)
distinguish the two states of the site where the inhibiting Ca2+

binds. The fractions xij0 and xij1 of states with variable IP3

and activating Ca2+ binding sites on the left and the right faces
of the DYK cube [Fig. 1(a)] are slow variables in the slow-fast
reduction. The pairs of fractions (x0j0, x1j0) and (x0j1, x1j1)
are determined from the steady state of the fast IP3 binding
and unbinding processes. The dynamics of the reduced model
is governed by the compound dynamics of the left-right faces
and Ca2+.

B. Single-cluster models

Another reduction of the dynamics of a group of DYK
subunits is introduced in [23] where, in contrast to [8], dy-
namical variables capture the collective behavior of a cluster
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FIG. 1. (a) The DYK cube: schematic diagram of the DYK eight-
state gating model of the activation of a single subunit of an IP3R
channel; the eight corners of the schematic will be referred as the
DYK cube [7]. Each vertex of the cube directly corresponds to a
specific state of a subunit labeled with numbers ijk, where i corre-
sponds to the IP3 activating site, j to the Ca2+ activating site, and k

to the Ca2+ inhibiting site. Each binding site can be either unbound
(i, j, k = 0) or bound (i, j, k = 1). The vertical green double arrow
indicates binding (unbinding) of IP3 to the binding site while red
dashed and blue dot-dashed arrows correspond to Ca2+ activating
and inhibiting transitions, respectively. The transitions between the
states are governed by the second-order (alp or alc, where p = [IP3],
c = [Ca2+]) and the first-order (bl) rate constants, where l = 1, 5.
(b) Upper DYK plane. When p is high, most of the transitions take
place in the upper plane of the cube. (c) Four-state model: the scheme
of the model [23] for high p at the level of a cluster of channels. The
fractions of the states in a cluster are marked as a, g, z, h′ instead of
110, 111, 100, 101 for subunits. The transition rates between channel
states are k±

a,i and k̃+
i = k+

i cs to indicate the elimination of detailed
balance in a cluster of channels [35]. (d) Three-state model. The final
model includes a compound state h formed from the states g and h′

with the effective rates k1,2.

of IP3R channels. This model shows that for large values of
IP3 the dynamics is excitable, and explains the occurrence of
Ca2+ puffs. As this model is the starting point of our analysis,
we present the reduction of the IP3 dynamics explicitly in
Appendix A for completeness. Here we discuss its funda-
mental assumptions. The reduction scheme follows a similar
slow-fast approach [8], but for the case of high p = [IP3]. This
assumption leads to fast transitions with rates a1,3p [Fig. 1(a)]
and all channel subunits are forced to have the IP3 binding site
occupied, leaving only 1jk states to be dynamical [the upper
plane of the DYK cube in Fig. 1(a)]. The dynamical variables
of the four subunits shown in Fig. 1(b) are gathered together
to introduce cluster variables a, g, h′, and z. These represent
the fractions of channels within a cluster in the corresponding
states shown in Fig. 1(c). The transition rates k−

a and k±
i

TABLE I. Parameters used in the model in [23] and the single-
cluster model of this paper.

Parameter Ref. [23] Present study

Ca2+ activation binding

rate a5 (μM−1 s−1) 100 100

Ca2+ activation unbinding

rate (b5, k
−
a )a (s−1) 20 20

Ca2+ inhibition binding

rate (a2, k
+
i )a (μM−1 s−1) 0.1 0.02a

Ca2+ inhibition unbinding

rate (b2, k
−
i )a (s−1) 1.7 1.56b

local [Ca2+] at opened

channel k̃+
i = k+

i cs (s−1) 30 6b

rest level of [Ca2+]

c0 (μM) 0.025 0.025–0.6

channel coupling constant
α (μM) 0.74 0.74
number of activatable
channels N 9 or 25 5 or 6
equilibration rate λ (s−1) 103 103

characteristic of the step ε 0.1 0.1

aHere we show the transition rates for the subunit and channel as
shown in Figs. 1(b) and 1(c), respectively. These rates are assumed
to be the same in this study.
bThese values are determined from patch-clamp data on the proba-
bility distribution for channel opening typical for Xenopus oocytes at
high [IP3] [24].

are derived from the parameters in the DYK model [7]. The
transition rate k+

a is obtained from the requirement that at least
three subunits need to be activated to open a channel (A28).
The numerical values of the coefficients [23] are provided
in Table I. A further simplification, corresponding to the
passage from Fig. 1(c) to Fig. 1(d), is introduced [23] by
replacing the pair of states (g, h′) representing IP3 -bound,
inactivating Ca2+ -bound states with a compound state h

whose kinetics has effective rates k1 and k2 [(A32) and (A33)].
This reduces the cluster dynamics to a two-state model as
the subunit fractions within a cluster sum to unity, z = 1 −
a − g − h′ = 1 − a − h. A significant modeling assumption
is made whereby the rates k̃+

i and k+
i c in Fig. 1(c) are taken to

be different [35], in contrast to the equal rates a2c on the upper
plane of Fig. 1(a) made in [7], a condition that implies detailed
balance.

The three-state model of a cluster of IP3 channels thus ob-
tained exhibits excitable and bistable dynamical regimes [23].
In our study, we modify the model slightly, by setting the
parameters for a single cluster of channels to fit the open
probability distribution of IP3 channels in the presence of
Ca2+ in Xenopus oocytes [24]. This leads to changes in the
transition rates a2 and b2 as shown in Table I. Consequently,
an oscillatory regime emerges in addition to the excitable
and bistable regimes found in [23]. Later in this paper, we
spatially extend this model in a cluster-based manner to study
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the interplay between the different regimes of clusters in
producing wave and oscillation dynamics in a membrane.

The dynamics of a cluster is governed by the set of dy-
namical variables x(t ) = {a(t ), h(t ), c(t )} corresponding to
the fraction in the cluster of opened channels a(t ), inhibited
channels h(t ), and the cytosolic Ca2+ concentration c(t ). The
dynamical variables in the phase space, as shown in Fig. 1(d),
are governed by a system of coupled ordinary differential
equations [23] ẋ = F (x(t )) with appropriate initial condi-
tions:

da

dt
= k+

a (c)c(1 − a − h) − k−
a a + k1(c)h − k̃+

i a

� f (a, h, c), (1)

dh

dt
= k+

i c(1 − a − h) − k1(c)h − k2(c)h + k̃+
i a

� g(a, h, c). (2)

The rates ka (c), k1(c), and k2(c) are given in Eqs. (A28),
(A32), and (A33), respectively [23,32]. It is assumed in [35]
that after a blip Ca2+ levels at a channel pore remain high
while neighboring channels in a cluster relax to levels around
cd . According to [36], [Ca2+] at a nanodomain drops rapidly
from several hundreds of μM to a few μM. Thus, at the
timescales of the dynamics studied in [23] and in our paper,
the calcium-dependent inactivation rate is taken to be frozen at
k̃+
i = k+

i cs as shown in the transition scheme in Figs. 1(c) and
1(d). The dynamics of the c variable accounts for homeostatic
mechanisms such as pumps and buffers in the simplest way,
whereby Ca2+ levels relax back to a steady-state level cd (a)
at rate λ,

dc

dt
= −λ[c − cd (a)], (3)

where λ = 103 s−1 [23] sets the fast timescale so that cd (a)
is slaved to the dynamics of a(t ). The activation barrier
for a cluster of channels is modeled separately by setting a
threshold below which the cytosolic level of calcium is c0

and above which the concentration of Ca2+ is approximately
linear in the number of opened channels Na,

cd (a) = c0 + 0.5αNa{1 + tanh[(Na − 1)/ε]}, (4)

where ε sets the scale for smoothing the transition from
zeroth- to first-order dependence on opening and α is a
constant defining the strength of the coupling between
channels in a cluster. Such a step is proposed in [23] to avoid
Ca2+ release from the inactive clusters where the number of
opened channels Na < 1. This modeling step is necessary
because a and h denoting fractions of opened or inhibited
channels are continuous variables.

The assumption of fast equilibration to steady-state level
cd in (3) flattens out c(t ) from its blip amplitude cs of
cytosolic Ca2+ at a cluster. For λ = 103 s−1 [23], it takes
∼1–10 ms for Ca2+ levels to reach cytosolic concentrations
in the 10–103 nM range. In what follows, we introduce a
diffusion term to enable Ca2+ to activate quiescent clusters
by CICR, thereby having blips combine to form puffs as
shown in Fig. 2(b). This is reminiscent of the fire-diffuse-fire
model [21].

t = 1 s

E  me b a e

cytosol
(a)

BLIP

t = 10 ms

m

Ca2+

FIG. 2. Schematic representation of the spatial and temporal
hierarchy of Ca2+ release events. (a) A blip as the release from
a single channel. The green plane represents a part of the ER
membrane and the red arrow indicates Ca2+ release from the opened
channel indicated by the dotted circle. (b) A puff is represented by
multiple blips occurring in a single cluster of coupled channels. The
coupling between channels (marked by black arrows) is defined by
the constant α in the nonlinear dependence (4). (c) Wave propagation
as a sequence of puffs (red lines) caused by raised levels of [Ca2+].
In our modeling approach, we consider clusters of channels to be
localized at single points in space. The activation of neighboring
clusters is caused by Ca2+ diffusion from the initial Ca2+ release
localized in the center (black dotted lines).

For a single cluster in a small domain of the membrane
a computational study [24] using a hybrid reaction-diffusion
model (a Markov chain description as per De Young and
Keizer [7] and partial differential equations for diffusing Ca2+

ions) shows the dependence of the transition from puffs to
waves on the numbers of channels in a cluster which initiate
Ca2+ release events under different IP3 loads. The complexity
of the analysis prompts us to look for a simplified model
that could probe the temporal patterns observed and provide
qualitative explanations for their origin via dynamical systems
theory. We extend this study to a larger domain containing
multiple clusters each described by (1) and (2) [23]. While
retaining the structure of the model given in [23], we chose
the parameters of [24] in order to study the effect of different
numbers of channels in each cluster and the interplay between
them. This allows us not only to study the transition from
puffs to waves but to obtain the characteristics of waves and
oscillations that emerge. This is the justification of applying
the principles of slow-fast reduction to the single-channel and
single-cluster models. We can elucidate how these reduced
models may be coupled to account for physiological behavior
that is manifest spatially.
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C. Cluster-based spatial model

In this section, we lay down our assumptions for build-
ing a spatially dependent model for a phenomenological
representation of a Ca2+ wave as a set of sequential Ca2+

releases from clusters [Fig. 2(c)] using features of earlier
models [7,8,15,21,23,24]. An examination of the dynamical
regimes of individual cluster-level reductions that account
for the blip to puff phenomena enables us to propose a
model of diffusively coupled clusters in the ER membrane
where Ca2+ release occurs. We analyze the clusters separately
using dynamical systems theory. We confirm the existence
of two qualitatively different Ca2+ behaviors in clusters with
different numbers of channels, viz., excitable (puff regime)
and bistable (wave regime) [23]. We will probe whether
introducing diffusive coupling and linear relaxation (3) (which
can subsume effects including buffering [16] or other modes
of reducing spatial gradients) can facilitate the occurrence
of oscillations in Ca2+ release in the ER membrane. This is
incorporated into the model by modifying the equilibration
equation (3) by introducing a one-dimensional diffusive trans-
port term

∂c

∂t
= D

∂2c

∂x2
− λ

∑
i

H (rcl − |x − xi |)[c − cd (ai )], (5)

where rcl is the cluster radius, cd (ai ) is given by Eq. (4), D

is an effective diffusion constant, x is a spatial coordinate,
and H (x) is the Heaviside step function ensuring that calcium
releases into the cytoplasm occur only at the clusters located
at xi , i = 1, L,

H (x) =
{

1 for x � 0
0 otherwise. (6)

For convenience of notation, we will assume that the i depen-
dence on ai is implicit hereafter.

The model proposed in the present paper is of the fire-
diffuse-fire type studied before [21]. Unlike previous studies,
we propose a direct link between the Ca2+ level c and the
proportion of opened channels a through the nonlinear equa-
tion (4). This also helps us to associate cellular behavior of
Ca2+ releases on a spatial scale larger than the cluster size rcl

to microscopic channel characteristics [7].
The system of (1) and (2) together with Eq. (5) is a

reaction-diffusion system. The first term in Eq. (5) corre-
sponds to the smoothing of a Ca2+ front and the spreading
of [Ca2+] from the active clusters to the neighboring ones
as sketched in Fig. 2(c). In the second reaction term, cd

[Eq. (4)] is a function of the number of opened channels and
accounts for the opening of IP3R channels in the clusters.
The equilibration of cytosolic Ca2+ to cd at rate λ is a linear
homeostatic reaction term that subsumes the action of pumps,
leaks, and buffers, which drives the cytosolic [Ca2+] to the
steady-state value cd .

We explore next how this model is able to generate waves
and oscillations and characterize these phenomena in terms of
the model parameters.

III. RESULTS

In Sec. III A we apply the three-state model to a case of
high [IP3] and corroborate the existence of a transition from
excitable to bistable behavior in a cluster of channels [23].
By continuously changing the resting Ca2+ concentration
parameter c0 in a cluster with no opened channels, we uncover
the existence of two Hopf bifurcations. This illustrates the
possibility that a single cluster could exhibit oscillations and
channel activity and homeostatic mechanisms could regulate
the state of the system to undergo dynamical regime shifts.

Instead of letting c0 be a fixed external control parameter
that sets the level of Ca2+ ions in the appropriate range for
oscillatory behavior in the bifurcation analysis, we allow Ca2+

levels to be dynamically set by diffusion, with the effective
diffusion constant D being the control parameter that sets
the Ca2+ levels locally and affecting the physiological output.
Diffusion levels gradients; in order to ascertain whether al-
tering the levels between a cluster primed for bistability and
that which is excitably monostable, we set up in Sec. III B a
two-cluster model to study its phase diagram by bifurcation
analysis. Once again, we find the existence of two Hopf
bifurcation points as D is altered and obtain the corresponding
limit cycle trajectories. We associate those trajectories with
the emergence of Ca2+ oscillations.

In Sec. III C we apply our cluster-based model to study
Ca2+ release from a domain in the ER membrane with clusters
containing different numbers of channels. We demonstrate
how the interplay between excitable and bistable clusters is
a mechanism for the emergence of Ca2+ oscillations within
the ER membrane. We also show that the cluster-based model
is capable of exhibiting Ca2+ waves that propagate throughout
the membrane.

In Sec. III D we show the role of the IP3 unbinding in the
termination of the Ca2+ release from a bistable cluster. We
account for the transitions between the upper and lower planes
of the DYK cube for varying [IP3] levels.

A. The Ca2+ dynamics at the scale of a single cluster

We study the three-state model in Eqs. (1) and (2) with
parameters as shown in the last column of Table I. We will
treat as control parameters for our bifurcation analysis N , the
number of channels in a cluster, and c0, the resting concentra-
tion of Ca2+ ions when none of the channels are opened, with
0.025 μM � c0 � 0.6 μM. The choice of transition rates
k+
i = 0.02 (μM s)−1 and k−

i = 1.56 s−1 were determined by
patch-clamp data on the probability distribution for channel
opening typical for Xenopus oocytes at high [IP3] [24]. This
has implications on the number of channels to be opened
within each cluster in shaping the model building and results
below.

We assume that cytosolic [Ca2+] equilibrates to the steady-
state value cd very fast (λ = 103 s−1) in Eq. (3). Therefore, we
are able to represent the model of a single-cluster dynamics by
Eqs. (1) and (2) whose solutions are numerically obtained by
standard Runge-Kutta methods and shown in the (a, h) phase
plane in Figs. 3(a)–3(c). In the following sections, this value
will be reduced and the corresponding fast-slow decoupling
will no longer be valid.
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(a)
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(c)
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FIG. 3. The different regimes of Ca2+ release in the two-
dimensional three-state model (1) and (2) assuming c = cd given by
(4) [23]. (a) Phase diagram of the excitable cluster (N = 5); the red
solid line is h-nullcline for inhibition, the green dashed line is a-
nullcline for the opened channel with at least three active Ca2+ bound,
and the black solid line is a trajectory started from (a = 0.2, h = 0.1)
(black arrows) and finished at the stable fixed point (black cross).
(b) Phase diagram of the bistable cluster (N = 6); the diagram
depicts two stable fixed points. The trajectory starts at (a = 0.2,

h = 0.1) and finishes at the upper fixed point. (c) Oscillations in
the three-state model observed for N = 5 and c0 = 0.16 μM. The
only unstable fixed point is marked as the open circle in the inset. (d)
Temporal behavior of oscillations for a fraction of channels in open
state denoted by a (red solid), a fraction of closed channels denoted
by h (blue dot-dashed line), and cytosolic [Ca2+] denoted by c (green
dashed line).

Figures 3(a) and 3(b) show system behavior as determined
by the orientation and position of the ȧ = f (a, h) = 0 (green
dashed line) and ḣ = g(a, h) = 0 (red solid line) nullclines
and we mark by a cross the locations of the stable fixed points
where the nullclines intersect. The dotted arrow represents a
perturbation of the system away from the stable fixed point
closest to the origin. After excitation, the system evolves
following the trajectory which is guided by the nullclines
(green dashed and red solid lines). If the initial condition
for the dynamical variables in Fig. 3(a) lies to the right of
the middle green dashed line, the state variables return to
the (only) fixed point following the extended trajectory in
the phase plane shown in black. In Fig. 3(a) the trajectory
returns to the only fixed point and demonstrates that the
monostable state is an excitable one, while in Fig. 3(b) the
system settles into the fixed point corresponding to the higher
values of (a, h), a bistable state. The excitable dynamics
creates a short-lasting puff when the Ca2+ concentration is
pulselike. In contrast, the bistable cluster dynamics ensures
that the Ca2+ concentration does not return to a base level

but stays elevated for a longer period of time, the behavior
associated with a long-lasting puff. The termination of such
a long-lasting puff is attributed to IP3 unbinding, which is
discussed in Sec. III D. Also, we will show later the possible
role of the intracluster interchannel coupling represented by α

in Eq. (4) in accounting for termination of puffs.
We confirm the transition from monostable excitable and

bistable behavior [23] in Figs. 3(a) and 3(b). However, our
use of parameters adapted from [24] reveals that the bistable
state occurs when the number of channels is N � 6, unlike
the higher value N � 9 in [23]. An average number of open
channels was N ∼ 5, 6 when calcium waves were triggered
as a function of increasing IP3 in the hybrid reaction-diffusion
simulation [24]. Having confirmed that changing the total
number of channels that may be opened alters the dynamics,
we then analyze the stability of the lower fixed point in the
phase plane upon changes of parameter c0. As shown in
Figs. 3(a) and 3(b), the resting concentration of Ca2+ ions
is taken as c0 = 0.025 μM. We change c0 in a continuous
manner 0.025 μM � c0 � 0.6 μM to probe qualitative shifts
in system dynamics. The bifurcation diagram is shown in
Fig. 4(a) and the real and imaginary parts of the eigenvalues
(λ1,2) of the Jacobian of the system are shown in Figs. 4(c)
and 4(d), respectively. We find two Hopf bifurcation points
[Re(λ1, λ2) = 0 and Im(λ1, λ2) �= 0] in the range of c0 that
determine the onset or disappearance of limit cycles.

Here c0 is an external control parameter in the bifurcation
analysis with values in a physiologically plausible range. It is
the cytosolic [Ca2+ ] at a cluster before a Ca2+ release event
commences when no channels are opened. The oscillatory
behavior of the dynamical variables of the cluster with initial
condition c0 = 0.16 μM for the concentration of Ca2+ is
shown in Figs. 3(c) and 3(d) in two different representations.

To study the stability of the limit cycles emerging from the
Hopf bifurcation we perform a detailed dynamical systems
analysis, presenting the results of the continuation and bifur-
cation analysis performed using the MATCONT [37] package
for MATLAB in Fig. 4. This analysis keeps track of how a
continuous change in parameters such as c0 alters the fixed
point shown in Fig. 3(a) and thus the eigenvalues of the
Jacobian around the altered fixed point change as well [see,
e.g., Fig. 3(c)]. In particular, we calculate the first Lyapunov
coefficient l1 (see [38]) derived from the normal form of
the system of equations (1) and (2), at each Hopf point
(denoted HU and HL), assuming c = cd as in Eq. (4). If
l1 is positive (negative), the Hopf bifurcation is subcritical
(supercritical) and the limit cycle is unstable (stable). In our
case, l1 = −2.9 × 102 at HU, the upper point in Fig. 4(b)
(inset) where a stable limit cycle emerges via a supercritical
Hopf bifurcation, and l1 = 5.32 × 104 at the lower point HL.
We start the continuation analysis from a maximum value
of c0 = 0.5 μM where the fixed point is stable [top of the
blue curve in Fig. 4(a)] as shown by the negative real and
zero imaginary parts of the eigenvalues of Jacobian [right-
hand sides of Figs. 4(c) and 4(d)]. Upon decreasing c0 we
reach the HU (c0 = 0.34 μM) point where the stable limit
cycle emerges; we observe limit cycles with larger amplitudes
with the further decrease in c0 [blue cyclic trajectories in
Fig. 4(b)]. The cyclic trajectory for the intermediate value of
c0 = 0.16 μM is shown in Fig. 3(c). After reaching the HL
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FIG. 4. (a) Bifurcation diagram of the two-dimensional system
at N = 5 plotted versus control parameter c0; black crosses labeled
by HL and HU correspond to Hopf bifurcation points (Reλ = 0 and
Imλ �= 0) and LPC corresponds to the value of c0 where the fold
bifurcation of two limit cycles occurs. (b) The stable limit cycle
emerges at a supercritical Hopf point labeled as HU. The continuation
of the stable limit cycle is shown by blue solid lines. With the
decrease in c0 the unstable limit cycle occurs from the subcritical HL

point, as indicated by red dashed lines of small amplitude in the inset.
The black dotted line corresponds to the fold (limit point) bifurcation
of two limit cycles marked as LPC. (c) The real parts of the first
two eigenvalues of the system, which are zeros at Hopf points.
(d) The imaginary parts of the eigenvalues of the system are nonzeros
at Hopf points. Two saddle-node bifurcation points are also present
in the diagram at c0 ≈ 0.18 μM; however, we do not show them in
the plot as these points are not relevant to the analysis below and will
no longer be discussed.

point at c0 = 0.1585 μM the unstable limit cycle occurs as
marked by red dashed cycles of small amplitude in the inset of

Fig. 4(b). The stable cycle emerging from HU collides with the
unstable one emerging from HL close to c0 = 0.158 μM. This
fold bifurcation of limit cycles (LPC) is labeled and marked by
the black dotted trajectory. The limit cycle solution ceases to
exist while decreasing the c0 value lower than the LPC point.
Thus, we conclude that the stable limit cycle solutions exist in
a small range of [Ca2+] concentration between HU and LPC
points.

The bifurcation diagrams obtained from DYK [7] and Li-
Rinzel [8] models are different from the one presented above,
owing to different assumptions about the speed of dynamical
variables and different reduction schemes employed. In [7,8]
[Ca2+] and [IP3] are dynamical, whereas we keep [IP3] at a
high constant level. Moreover, the earlier models assume a
well-mixed membrane and do not account for the clustering of
channels that was introduced in [23], setting the inactivation
rate to be frozen at k̃+

i = k+
i cs . We study the different Ca2+

dynamics associated with IP3R clusters and physiological
parameters for which the transitions for different kinds of
behavior may occur.

The phenomenon described above shows the Ca2+ oscilla-
tions in a cytosolic [Ca2+] at a single cluster. The amplitudes
of oscillations lie within a physiologically plausible range and
their periods are similar to the oscillations found in several
cell types [39]. However, various studies [12,13] imply that
Ca2+ oscillations are collective in nature and emerge when
multiple clusters are involved. In our model, we therefore
cannot allow individual clusters to oscillate autonomously. We
will show how it is only via the coupling between clusters
that oscillations emerge, and switching off the intercluster
coupling leads to the loss of rhythmic behavior. Thus, we next
study the behavior of Ca2+ release from arrays of clusters.

B. Cluster-based model of a discrete chain of clusters

Here we study the dynamics of a chain of clusters coupled
by diffusing Ca2+ ions. We start by analyzing a simple ex-
ample to illustrate the effect of coupling between neighboring
clusters. Consider L clusters coupled with the diffusion term
in Eq. (5). The discrete form of Eq. (5) for the ith cluster
is expressed in terms of the local Ca2+ concentration ci

whose rate of change is proportional to the spatial gradient
of the diffusion current Ji for i = 1, . . . , L. The continuum
diffusion equation is derived from

∂ci

∂t
= 1

�
(Ji − Ji−1) = 1

�

[
D

(
ci−1−ci

�

)
− D

(
ci−ci+1

�

)]
.

(7)

In our model with a discrete distribution of clusters, we will
take � ≈ 1.4 μm as the optimal distance between clusters
adapted for the current model and D, the effective diffusion
constant for Ca2+ ions, is taken to be D = 30 μm2/s−1 [40].
Here we assume the clusters to be arranged in a ring topology,
ci+L = ci . We numerically solve the system of (1), (2), and
(5), assuming the diffusion term as in Eq. (7) and model
parameters as in the preceding section. Only the equilibration
rate is modified for these simulations and set to λ = 230 s−1,
instead of the λ = 103 s−1 that was used earlier.

Here we consider the discrete lattice model for L = 2, a
typical unit cell of a discrete chain of clusters. The model
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FIG. 5. Initiation of Ca2+ oscillations in the array of two clusters D = 30 μm2/s and λ = 230 s−1. (a) Trajectory in cluster 1 with N = 9
channels. (b) Oscillatory trajectory in cluster 2 (N = 5) triggered by the diffusion from the first cluster. (c) Oscillating Ca2+ profiles in both
clusters. (d) Bifurcation diagram of the system of two coupled clusters plotted versus diffusion coefficient D. The points HL and HU represent
Hopf bifurcation points (Reλ = 0 and Imλ �= 0). (e) Continuation of a limit cycle (blue lines) performed by analogy to Fig. 4(b) varying
D. Similarly, the black markers correspond to the fold bifurcation of limit cycles (LPC). (f) Real (top) and imaginary (bottom) parts of the
eigenvalues of the system.

parameters for both clusters are the same apart from the
activatable numbers of channels in clusters, which are N = 9
(N = 5) in the first (second) cluster. In this case, our model is
given by

dai

dt
= f (ai, hi, ci ), i = 1, 2 (8)

dhi

dt
= g(ai, hi, ci ), i = 1, 2 (9)

dc1

dt
= −λ[c1 − cd (a1)] − 2D

�2
(c1 − c2), (10)

dc2

dt
= −λ[c2 − cd (a2)] − 2D

�2
(c2 − c1). (11)

We present the results of this unit cell L = 2 model in
Figs. 5(a)–5(c). Note that the unit cell case is a particular
example of a chain of clusters of length L. We use the discrete
chain approximation to illustrate the behavior of the clusters
in a one-dimensional membrane.

Unlike the single-cluster approach, calcium concentration
c in the cytosol is explicitly added to the model, the
equilibration rate λ is reduced, and the diffusion term is
introduced in Eqs. (10) and (11). The assumption that c will
be slaved to cd is inapplicable; we need to account for a
separate dynamics of Ca2+ cytosolic concentration away from
the steady-state value cd .

The oscillatory trajectories are exhibited in clusters 1
[Fig. 5(a)] and 2 [Fig. 5(b)] as the consequence of a diffusive
interaction between the clusters. Notably, the concentration

of Ca2+ at cluster 1 exhibits small-amplitude oscillations
[Fig. 5(c), top] around the fixed point with high c1 [here the
fixed point is associated with the higher fixed point in Fig. 3(b)
for the single-cluster case but now we solve the six-variable
system]. The influx from cluster 1 causes the emergence of
Ca2+ oscillations in cluster 2 [Fig. 5(c), bottom]. In order
to study this effect, we perform the continuation analysis of
the system of two coupled clusters given by Eqs. (8)–(11)
similarly to the single-cluster approach described earlier. The
dimensionality of the system used in the bifurcation analysis
remains 6, but we represent the results as two-dimensional
(three-dimensional) plots to depict the governing dynamics
at each cluster. We plot the bifurcation diagram shown in
Fig. 5(d), which represents the dependence of the a2 value of
the fixed point versus D as the control parameter. The effect
of Ca2+ flux from cluster 1 to cluster 2 is proportional to D,
which controls the strength of coupling. We observe a similar
diagram as shown in Fig. 4. We also observe HU and HL points
where stable and unstable limit cycles occur, respectively.
From the eigenvalues plotted in Fig. 5(f), we confirm that HU

and HL are Hopf bifurcation points. The continuation of the
stable limit cycle occurring at HU [Fig. 5(e)] shows that the
periodic solutions in cluster 2 exist in the range 29 μm2/s �
D � 120 μm2/s. This brings the range of concentrations of
Ca2+ to the one shown in Fig. 4 for the same λ. Thus, we
conclude that the emergence of oscillations in the second
cluster depends on the concentration influx from cluster 1 to
cluster 2, which raises the level of concentration in cluster 2 to
a range that drives oscillations in the single-cluster approach.
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Having accounted for the ability of diffusive couplings to
bring about oscillations in a coupled-cluster system when the
individual clusters exhibit nonoscillatory dynamics on their
own, we extend the model to a continuum description. In
the next section we apply this mechanism to a domain of
the membrane in order to qualitatively demonstrate the emer-
gence of Ca2+ waves and oscillations in the ER membrane.

C. Calcium waves and oscillations in the cluster-based model

As shown above, the behavior of the three-state model for
a single cluster depends on the number of channels N in a
cluster that are IP3 bound and may be activated or deactivated
by Ca2+, namely, excitable for small N transitioning for large
N to bistable dynamics. While the ER membrane would
typically contain clusters of different numbers of channels, we
study the simplest heterogeneous scenario with one bistable
cluster with N = 9 and the multiple excitable clusters with
N = 5. Here and in the following we refer to an N = 9 cluster
as bistable and an N = 5 cluster as excitable as per their
behavior in the isolated single-cluster case, even though it is
the entire system whose stability matters. The choice of this
figure is based on the study in [24], where the average number
of activatable channels in Xenopus oocytes ER membranes
tends to N = 5 with an increase in [IP3] and the distribution
of numbers of channels appears to be very close to a Poisson
distribution [3,24]. We chose these numbers to be consistent
with [24] and propose the modeling of more complex hetero-
geneous systems for future study. In the chosen situation the
excitable behavior may be associated with short-lasting puffs,
while the bistable behavior may be associated with waves
or long-lasting puffs, where the exit from the long-lasting
puffs that is thought to be driven by dissociation of IP3 or
other mechanisms which are discussed in Sec. III D. The exit
from the long elevated high Ca2+ concentrations might be
performed through the other mechanisms such as change in
coupling strength α, maximal Ca2+ elevation cs , or transition
rate k+

i .
In this section we model a domain of an ER membrane

which is assumed to contain multiple excitable clusters (N =
5) and only one bistable (N = 9) cluster in order to study
the interplay between excitable and bistable clusters. We
demonstrate the emergence of oscillations and quantify the
characteristics of the phenomena such as front velocity and
period.

We numerically solve Eqs. (1), (2), and (5) in the chosen
one-dimensional domain with open boundaries and Neumann
boundary conditions c′

x (x = 0, L) = 0 with the parameters
shown in Table I and II. Let us assume the part of the ER mem-
brane with the initial distribution of cytosolic [Ca2+] c(x, 0) =
c0 + A exp[−(x2/2σ 2)], where A = 2 μM and σ = 0.1 μm,
which travels from the left part of the membrane as shown
in Fig. 6(a). Calcium release upon activation occurs only
at channel clusters i in Eq. (5) via cd (a) and the cytosolic
concentration of Ca2+ is raised above the basal level c0 by dif-
fusion between clusters a constant distance � = 3.5 μm apart.
The results depicted in Fig. 6 are obtained for equilibration
rate λ = 230 s−1. The effect of changing the values of D, λ,
and � upon qualitatively differing Ca2+ release responses is
discussed further in this section.

TABLE II. Parameters used in the cluster-based reaction-
diffusion model.

Parameter Value Description

c0 0.025 μM rest level of [Ca2+]
N 5 or 9 number of activatable channels

in a cluster (IP3 bound)
λ 230 s−1 equilibration rate
D 30 μm2/s diffusion coefficient
� 3.5 μm intercluster distance
rcl 0.1 μm cluster radius

In Figs. 6(c) and 6(d) we observe the emergence of Ca2+

oscillations at the bistable cluster (black dot) triggered by the
initial front [Fig. 6(a)]. The front occurs from an initial Ca2+

increase close to the point x = 0 μm and diffuses throughout
the membrane. While the initiation event is set by choosing
the initial condition in our deterministic model, it reflects the

secondary front secondary front

initial front

(c)

(b)

initial front
[Ca2+]
N=5
N=9

(a)

secondary frontsecondary front(d)
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FIG. 6. Ca2+ front propagation from the spatial model for two
types of clusters (D = 30 μm2/s and λ = 230 s−1). The orange dots
represent excitable clusters with N = 5 channels as long as the large
black dot corresponds to a bistable cluster with N = 9 channels.
(a) Propagation of a front caused by the raised initial [Ca2+] in the
left part of the membrane. (b) The Ca2+ peak occurs at the bistable
cluster. (c) Diffusion from the peak causes initiation of a secondary
wave. (d) The front propagates after that subsequent front occurs.
The waves occur periodically from the bistable cluster.
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potential occurrence of an initial peak by either an internal
or external stimulus or a stochastic fluctuation. After passing
the bistable cluster the initial front raises the concentration at
this cluster to the value of c which corresponds to the upper
fixed point in Fig. 5(a). This behavior induces a long-lasting
state which is terminated by IP3 unbinding, a feature which
we discuss later. Therefore, in Fig. 6(b) a residual peak occurs
at cluster N = 9. Thereafter, two secondary fronts emerge
from the residual peak as shown in Fig. 6(c). As we consider
deterministic oscillations, this process repeats periodically
with a constant period [Fig. 6(d)].

This behavior can be observed because of two different
regimes underlying Ca2+ release in clusters: excitable for
short-lasting puffs and bistable for long-lasting events. Our
model shows that bistable clusters can produce long-lasting
puffs that might cause the emergence of Ca2+ oscillations in
cellular membranes.

The diffusion coefficient D and relaxation parameter λ

incorporate spatial effects without explicitly modeling buffers
in the membrane. As these are likely to influence the char-
acteristics of the Ca2+ waves and oscillations, we vary D

to study how these characteristics change. Furthermore, by
changing the equilibration rate λ we can model the inclusion
of a linearized reaction Ca2+ leak flux and pump action terms
in Eq. (5). There are different timescales for the activation and
inhibition of the channels “hidden” in Eqs. (1) and (2). The
action of pumps occurs on much slower timescales compared
to the λ chosen.

In Fig. 7(a) we show the values of the average time cal-
culated between two subsequent Ca2+ release events at each
cluster. This value appears to be almost constant. We map
the change in a period of Ca2+ oscillations to physiological
ranges of D and λ [Fig. 7(a)]. Dark regions correspond to
a nonoscillatory response, while oscillations occur within
the purple triangular zone. A curious effect is observed at
the lower edge of the triangle in the range 100 s−1 � λ �
200 s−1. The light spots marked by white circles correspond
to the region on the diagram where oscillations exhibit periods
approximately equal to 10 s and belong to Ca2+ alternans: A
pulse travels alternately to the right, followed by another to
the left, and so on (see Fig. S2 in [33]). Under given initial
conditions, this effect can be explained by the fact that the
concentration diffusing from the irregular cluster is sufficient
to excite a neighboring cluster only from one side at a time.
Thus, we observe the oscillations occurring on alternate sides
of the bistable cluster sequentially. In Fig. 7(b) we show the
velocity of propagation of the initial front for a similar range
of D and λ, the dark regions corresponding to abortive waves
or puffs and the light trapezium corresponding to propagating
Ca2+ waves.

The distance between clusters in the various cell types
lies in range 1–7 μm [41]. Figures 7(c) and 7(d) show
the dependence of the periods and the velocities on λ for
different values of the distance � between the clusters. In
both graphs, we consider the effective diffusion constant to
be fixed at a typical value of D = 30 μm2/s. The periods of
the oscillations [Fig. 7(c)] generally reach larger values for
long distances between clusters. This can be explained by the
fact that the front travels a longer distance in order to reach
neighboring clusters. Interestingly, the oscillatory behavior
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FIG. 7. (a) Phase diagram representing different kinds of Ca2+

dynamics such as puffs, waves, and oscillations. The domain with
zero periods [dark-blue zone in (a)] contains both puffs and waves in
a coexisting manner. The triangular light-blue domain with nonzero
periods contains oscillatory behavior of the system. The white circles
indicate the regions with Ca2+ alternans. (b) Phase diagram repre-
senting two regimes of Ca2+ dynamics such as puffs and waves in the
case when all the clusters are excitable. The zero-velocity domain
in dark blue corresponds to puffs and abortive waves, while the
nonzero-velocity domain (shown in blue to red colors) represents
waves. (c) Dependence of the period on λ for different intercluster
distances D = 30 μm2/s. (d) Dependence of velocity on λ; the
distances and the diffusion coefficient are the same as in (c).

exists in wider ranges of λ for smaller distances between
the clusters [Fig. 7(c)]; oscillations are more robust to the
equilibration process if the distances between clusters are
smaller. The same processes define the velocities [Fig. 7(d)];
these are higher for shorter distances because a front reaches
a neighboring cluster faster and is able to trigger a response
there. The data with comparatively large periods approxi-
mately equal to 4–5 s for � = 5, 4, and 3 μm in Fig. 7(c)
exhibit the nonregular alternans emerging similarly as in
Fig. 7(a).

D. The IP3 dependence

The assumption of high levels of [IP3] leads to a sustained
Ca2+ release from the bistable cluster. In the current section,
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ch in analogy to the
Li-Rinzel model [8]. (b) and (c) Trajectories in the (a, h, y ) phase space, where y corresponds to the fraction of the channels in a cluster
occupying the lower plane of the DYK cube and N is the number of activatable channels in a cluster. (d) and (e) The oscillatory regime
corresponding to Fig. 5 (blue solid lines) for high [IP3] is terminated due to the decrease in [IP3] (red dashed lines).

we aim to link the termination of this event to the change
in the [IP3] levels [red dashed lines in Figs. 8(d) and 8(e)]
on timescales slower than the oscillations found in previous
sections [blue solid lines in Figs. 8(d) and 8(e)].

The extension of the model is sketched in Fig. 8(a). In the
case of two coupled clusters the IP3 dependent model (8) and
(9) reads

dai

dt
= fp(ai, hi, yi, ci ), i = 1, 2 (12)

dhi

dt
= gp(ai, hi, yi, ci ), i = 1, 2 (13)

dyi

dt
= C+(ci )(1 − yi ) − C−

ch(ci, p)yi, (14)

where fp and gp are given in Eqs. (A34) and (A35) and C+
and C−

ch are given in Eqs. (A23) and (A29), respectively. The
IP3 changes as

p(t ) =
{

p0 for t � tdur

paσ
2
0

σ 2
0 +2Dpt

exp
( −x2−y2

4Dpt+2σ 2
0

)
otherwise,

(15)

where the initial value of [IP3] at a cluster p0 = 3.5 μM and
the duration of the IP3 stimulus is tdur = 10 s. We assume
the shape of the initial [IP3] distribution to be Gaussian of
amplitude pa = 4.6 μM and with variance σ 2

0 = 1 μm2 (see
the Supplemental Material [33], Sec. S3). After stimulus ter-
minates, [IP3] diffuses in an infinite two-dimensional domain
(Dp = 10 μm2/s [42]). We calculate time traces shown by
red dashed lines in Figs. 8(d) and 8(e) at clusters positioned
at x = ±(� + rcl )/2 and y = 0 (here the distance between
clusters � = 1.4 μm and the cluster radius rcl = 0.1 μm). The
Ca2+ dynamics remains unaltered as in Eqs. (10) and (11).

The trajectories in (a, h, y) phase space for both clusters
are exhibited in Figs. 8(c) and 8(d). The global oscillations
occur in our model at [IP3] ≈ 3–4 μM, which is compatible
with the levels considered in [43]. The termination of the
oscillations [solid blue lines in Figs. 8(e) and 8(d)] at both
clusters is caused by the decrease in [IP3] under a level of
several tens of nM, which is typically taken as the resting
value of the [IP3] [24]. It might be useful to reconsider the
influence of the calcium pumps in the termination process as
we had argued that their effects are subsumed in a linearized
equilibration rate λ. We have checked that the effect of in-
troducing an explicit pump term [7] to the wave termination
behavior can be accommodated by adjusting λ.

IV. DISCUSSION AND CONCLUSION

In this paper we presented a reaction-diffusion model of a
membrane containing clusters of IP3 receptor channels of the
fire-diffuse-fire [21] type but with a mechanistic description
of channel firing similar to the spatial FitzHugh-Nagumo
model [44,45]. This mechanistic model was built on top
of a dynamical systems analysis of a previously proposed
simplification [23] of the DYK model [7]. We noticed that
incorporating the transition rates given in [24] into the model
revealed the emergence of Ca2+ oscillations even in a single
cluster, which inspired the membrane level formulation of a
model of Ca2+ puffs, waves, and oscillations whose charac-
teristics were quantified under varying cluster configurations
and physiological conditions. Our model allows us to observe
Ca2+ waves with the velocities in agreement with experiments
by Marchant et al. [43] for various distances between clusters
and equilibration rates [Figs. 7(b) and 7(d)].
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Here we propose the mechanism of initiation of oscillatory
behavior in the membrane that consists of the following
sequence.

(i) Upon receiving an IP3 stimulus the membrane con-
figures IP3 receptor channels to form clusters with different
numbers of channels [3] with bound IP3 that are primed for
activation by Ca2+ binding.

(ii) If the number of primed channels in a cluster is higher
than a threshold value, then the cluster is bistable. When an
initial surge of Ca2+ passes the bistable cluster [Fig. 6(b)] it
drives Ca2+ concentration there into the higher fixed point of
the dynamics as shown in Fig. 5(a). Sustained Ca2+ elevation
at a bistable cluster corresponds to a long-lasting release
event.

(iii) The residual [Ca2+] at the bistable cluster diffuses to
the neighboring clusters.

(iv) This drives [Ca2+] at the neighboring clusters into an
oscillatory regime as in Fig. 5. These oscillations spread to
further clusters due to diffusive coupling.

It is generally known that high Ca2+ concentrations might
lead to cell death and this renders the presence of bista-
bility and consequent sustained Ca2+ release in our model
an unhappy feature. Due to fast luminal Ca2+ refilling [46],
sustained Ca2+ release, such as what follows from a transition
to the upper fixed point of the bistable regime, cannot be
terminated by ER depletion at the timescales considered by
present paper. The mechanistic origins of our model enable
us to propose possible physiological possibilities that might
explain the termination of Ca2+ release from the bistable
cluster.

(a) IP 3 unbinding. In the full DYK approach, Rüdiger
et al. [32] attribute the termination of long-lasting Ca2+ release
events to IP3 unbinding. A simplified model with inclusion
of the lower plane of the DYK cube shown in Sec. III D
has also displayed the termination of a Ca2+ wave in the
bistable cluster in Fig. 8. Thus, we argue that neglecting
IP3 unbinding completely might lead to results which seem
unrealistic. Therefore, the limits of the applicability of our
model are bound to the change of the IP3 levels in the cell.

(b) The uncoupling of IP 3R channels. Our bifurcation
analysis shows that the system ceases to be bistable if the
coupling between channels α decreases. Hence, if α decreases
on timescales slower than oscillation periods observed in
the model, the long-lasting event can terminate (see Fig. 9).
In this paper we have considered α to be constant, which
might not always be the case in real clusters. It is known
from experiments that the coupling (uncoupling) of IP3R
channels is caused by IP3 binding (unbinding) [3,47,48]; the
mechanisms which connect channels remain largely unknown
however. If an increase in p leads to a fast (hundreds of
milliseconds according to [48]) increase in coupling strength
α could acquire a value as taken in this paper. Following
the initial stimulus that triggers this increase of IP3 and its
consequent effect on α, a gradual diminution of IP3 levels
could still restrict the dynamical states to the upper place of
the DYK cube while reducing the coupling between channels
in a cluster. This would lead to the termination of puffs on
the timescales defined by the change in [IP3] levels. However,
only decreasing α under 0.1 [Fig. 9(a)], which corresponds to
a Ca2+ concentration at a single cluster, leads to the exit from

(a)

(b)
t (s)

t (s)

t (s)

(c)

c 
(μ

M
)

c 
(μ

M
)

α 
(μ

M
)

FIG. 9. (a) Change of the coupling strength α in Eq. (4) on a
slow timescale caused by the uncoupling of IP3R channels due to
IP3 unbinding. (b) Termination of the sustained Ca2+ release at the
bistable cluster shown in Fig. 6. (c) Termination of the oscillatory
Ca2+ release in one chosen excitable cluster shown in Fig. 6.

the bistable state. A mechanism which causes decoupling of
channels in large clusters has been discovered in the RyR clus-
ters [49], although a similar property has not been reported for
IP3 receptors.

(c) ER depletion. In this study we assumed the same
availability of Ca2+ in the luminal pool in (4). Even though
the ER pool can be large and its fast refilling can prevent
local depletion [46], other studies suggest that the large pool
can be completely depleted by high-amplitude sustained Ca2+

releases [50].
(d) Stochastic termination. The bistability found in the

single-cluster model can also be terminated stochastically.
Figure 10 shows the distribution of interpuff intervals (IPIs)
obtained from the Langevin model based on Eqs. (1) and (2).
We consider the additive Wiener noise as shown in (B1) and
(B2) and compare the results with experimental puff data [5].
The duration of the events lies in a range of hundreds of
milliseconds, which is also consistent with the experimental
data available.

There are other consequences for the fixed levels of IP3

in the model. Due to the fixed high level of [IP3] assumed,
our model exhibits periods of oscillations lower than the wide
range found in typical experimental studies. Although the
high IP3 assumption narrows the range of periods observed,
it helps us to study the main characteristics of waves and os-
cillations phenomenologically. The variability of the periods
can be achieved by incorporating more complex features of
Ca2+ signals such as stochasticity [12,13] and array-enhanced
coherence resonance [11] under dynamical [IP3] loads.

There are other characteristics of the emergent Ca2+ waves
and oscillations in our model that match those reported in the
extensive experimental literature [39,43,51,52]. In particular,
Marchant and Parker [52] have shown that an increase in [IP3]
shortens intervals between Ca2+ release events. Our model
agrees with these experiments by exhibiting oscillations with
frequency increasing with an increase in [IP3]. The periods of
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FIG. 10. Interpuff intervals of the stochastic single-cluster model
(B1), (B2), and (3) containing N = 7 channels with additive Wiener
noise. Gray bars are fitted with the blue solid curve and represent
the distribution of IPIs obtained from the modeling of 622 puffs.
White bars with black solid fit are reproduced from the experiments
reported in [5].

oscillations are also consistent with those of Rückl et al. [24].
The amplitudes of oscillations are in a range of observed
puffs and waves [53]. Also, the effect of wave collision found
experimentally is present in our model.

In this paper a reduced description of clustered channels
with a parametric representation of the dynamics of subunits
of channels is present alongside membrane-level diffusion-
enabled interactions. While the simplifications introduced in
the reduction scheme can lead to model behavior inconsistent
with empirical observations, the dynamical systems analysis
presented here as a means of linking phenomena at different
scales also enables us to propose explanatory mechanisms that
could be accommodated in more elaborate models.
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APPENDIX A: THE DYK REDUCTION
TO THE THREE-STATE MODEL

The kinetics governing the upper plane of the DYK cube
[Fig. 1(b)] is formulated as the next set of differential equa-
tions

ẋ110 = −x110(b1 + a2c + b5) + x010a1p

+ x111b2 + x100a5c, (A1)
ẋ100 = −x100(b1 + a2c + a5c) + x000a1p

+ x101b2 + x110b5, (A2)
ẋ101 = −x101(b2 + a2c + a5c) + x100a2c

+ x001a3p + x111b5, (A3)
ẋ111 = −x111(b2 + b3 + b5) + x110a2c

+ x011a3p + x101a5c, (A4)

where x110 + x100 + x101 + x111 = 1 − y and y = x000 +
x001 + x011 + x010. The fractions of subunits in state ijk are
denoted by xijk .

In the case of high [IP3] the IP3 binding sites are saturated.
Therefore, we can apply the condition of detailed balance
between upper and lower planes of the DYK cube: aipx0jk =
bix1jk for four sets of i, j , and k such as (i = 1; j = 0, 1; k =
0) and (j = 3; j = 0, 1; k = 1). From these conditions we
derive

x000 = x100b1

a1p
, (A5)

x010 = x110b1

a1p
, (A6)

x001 = x101b3

a3p
, (A7)

x011 = x111b3

a3p
. (A8)

We substitute Eqs. (A5)–(A8) into the system of equa-
tions (A1)–(A4). The resulting four-state model appears as

ẋ110 = −x110(a2c + b5) + x111b2 + x100a5c, (A9)

ẋ100 = −x100(a2c + a5c) + x101b2 + x110b5, (A10)

ẋ101 = −x101(b2 + a5c) + x100a2c + x111b5, (A11)

ẋ111 = −x111(b2 + b5) + x110a2c + x101a5c, (A12)

where x110 + x100 + x101 + x111 = 1 − y due to conservation
of probability and y = x010 + x000 + x001 + x011.

Now we introduce a reduction of the DYK model similarly
to Li and Rinzel [8]. However, here we separate the upper and
lower planes of the DYK cube [Fig. 1(a)]. Considering the
lower plane of the DYK cube in a steady state, we obtain

x000 = d5d4y

(c + d5)(c + d4)
, (A13)

x001 = d5cy

(c + d5)(c + d4)
, (A14)

x010 = d4cy

(c + d5)(c + d4)
, (A15)

x011 = c2y

(c + d5)(c + d4)
, (A16)

where di = bi/ai , i = 1, 5. Similarly, the upper plane is in a
steady state gives

x100 = d5d2(1 − y)

(c + d5)(c + d2)
, (A17)
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TABLE III. Parameters of the IP3-dependent model adapted
from [24,25].

Parameter Value

First-order rates (μM−1 s−1)

a1 2
a3 4
a4 1

Second-order rates (s−1)

b1 2 × 10−3

b3 8
b4 3.9 × 10−2

Dissociation constants di = bi/ai (μM)

d1 0.001
d3 2
d4 0.039

x101 = d5c(1 − y)

(c + d5)(c + d2)
, (A18)

x110 = d2c(1 − y)

(c + d5)(c + d2)
, (A19)

x111 = c2(1 − y)

(c + d5)(c + d2)
. (A20)

To calculate the transition rates between these two groups we
use steady-state equations for the upper plane (A14)–(A16)
and lower plane (A18)–(A16),

K− = a1p(x000 + x010) + a3p(x001 + x011)

= (a3c + a1d4)py

c + d4
, (A21)

K+ = b1(x100 + x110) + b3(x101 + x111)

= (b3c + b1d2)(1 − y)

c + d2
, (A22)

where we define transition rates between upper and lower
planes of the DYK cube as

C+ = b3c + b1d2

c + d2
, C− = (a3c + a1d4)p

c + d4
, (A23)

which are used in (14); the corresponding transition rates are
given in Table III.

The results presented by the system of equations (A9)–
(A12) are applicable to a subunit of a channel. In order to
describe the behavior of a cluster of channels, similarly to
[23], we introduce variables a, g, h′, and z that represent
fractions of channels in states 110, 111, 101, and 100,
respectively. Thus including the IP3 dependence, the system
(A10)–(A12) transforms into

da

dt
= k+

a cz − k−
a a + k−

i g − k̃+
i a, (A24)

dg

dt
= k+

a ch′ − k−
a g − k−

i g + k̃+
i a, (A25)

dh′

dt
= k−

a g − k+
a ch′ + k+

i cz − k−
i h′, (A26)

dy

dt
= C+(1 − y) − C−

chy, (A27)

where z = 1 − a − g − h′ − y as the sum of the fractions
of all states to unity, y defines the fraction of IP3R unbound
channels (occupying the lower plane of the DYK cube), and
C+ and C−

ch are given by Eqs. (A23) and (A29), respectively.
The kinetics of these variables is governed by rates k±

a

and k±
i and concentrations c and cs , where we substitute two

parameters k+
i and cs as k̃+

i = k+
i cs . These transition rates are

obtained from the original DYK rates. Earlier simulations [23]
showed that most of the reactions (k−

a , k+
i , and k−

i ) in the
four-state model are obtained from b5, a2, and b2, respectively.
In contrast, k+

a rate has been constructed from the condition
of channel opening (at least three subunits should be ac-
tive). The probability of the single subunit activated is Pact =
a5c/(a5c + b5). According to the binomial distributions, the
probability of none of the subunits being active is P0 = (1 −
Pact )4. If only one of four subunits is active and all remain-
ing ones are inactive, P1 = 4Pact(1 − Pact )3. There are C2

4 =
4!

2!2! = 6 ways for two of four subunits to be activated, thus
P2 = 6P 2

act(1 − Pact )2. Therefore, the transition to this state is
possible only after the activation of two subunits. The proba-
bility that two subunits are active under the condition that the
channel is closed is P (2|{0, 1, 2}) = P2/(P0 + P1 + P2).

We calculate k+
a as a transition rate from a closed channel

with two active subunits to an open channel with three acti-
vated subunits. One of two remaining inactive subunits might
be activated, thus we obtain

k+
a = 2a5P (2|{0, 1, 2}). (A28)

Similarly to k+
a we derive C−

ch, which requires four subunits to
bind IP3 [26],

C−
ch = C−PIP(3|{0, 1, 2, 3}), (A29)

where C− is given by Eq. (A23), PIP(3|{0, 1, 2, 3}) =
P IP

3 /(P IP
0 + P IP

1 + P IP
2 + P IP

3 ), and similarly P IP
act =

C−/(C+ + C−), P IP
0 = (1 − P IP

act )
4, P IP

1 = 4P IP
act(1 − P IP

act )
3,

P IP
2 = 6(P IP

act )
2(1 − P IP

act )
2, and P IP

3 = 4(P IP
act )

3(1 − P IP
act ).

In order to reduce the number of variables, similarly
to [23], we introduce a compound state h which contains g

and h′ [Fig. 1(d)]. The effective rates of transitions to this
state are obtained from a detailed balance between g and h′.
We introduce the fraction of channels in the compound state
as the sum of components h = g + h′, where from detailed
balance

h = k−
a

k+
a c

g + g = k+
a c + k−

a

k+
a c

g, (A30)

h = h′ + k−
a

k+
a c

h′ = k+
a c + k−

a

k−
a

h′. (A31)

Considering that the rates of transition to the compound state
are

k1 = k−
i

k+
a c

k+
a c + k−

a

= k−
i g0, (A32)

k2 = k−
i

k−
a

k+
a c + k−

a

= k−
i (1 − g0), (A33)
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where g0 = k+
a c/(k+

a c + k−
a ), the resulting model reads

da

dt
= k+

a (c)(1 − a − h − y) − k−
a a + k1(c)h − k̃+

i a

� fp(a, h, y, c), (A34)
dh

dt
= k+

i c(1 − a − h − y) − k1(c)h − k2(c)h + k̃+
i a

� gp(a, h, y, c), (A35)

where fp and gp are used in Eqs. (12) and (13).
The solution of Eq. (A27) separately is

y(t ) = Ae−(C++C− )t + C+

C+ + C− . (A36)

It follows that the equilibrium solution for the system is

yeq = C+

C+ + C−

= (b3c + b1d2)(c + d4)

(a1d4 + a3c)(c + d2)p + (b1d2 + b3c)(c + d4)

p�1−→ const

p
. (A37)

In the case of IP3 saturation, we consider p = [IP3] to be high.
Taking that into account and assuming that the waiting time is
long enough t � 1/(C+ + C−), we obtain y → 0. Consider-

ing all the assumptions made before, we further operate with
the three-variable system taking into account the summing
fractions to unity a + h + z = 1. Using the assumption of
high [IP3] from (A34), (A35), and (A27), we obtain the model
illustrated in Fig. 1(d) and given by Eqs. (1) and (2).

APPENDIX B: STOCHASTIC MODEL

In this Appendix we introduce the Langevin model of Ca2+

release from a single cluster of channels. By introducing the
noise terms into the model from Eqs. (1) and (2) we obtain

da = f (a, h, c)dt + AsadW, (B1)

dh = g(a, h, c)dt + AshdW, (B2)

where dW are Wiener increments (generated by the Wiener
process also known as Brownian motion [54]), sa and sh

are the functions of the system state in the general case
of multiplicative noise, but here for simplicity, we consider
sa = sh = 1, which corresponds to the additive noise case,
and A = 0.37 is the amplitude of the noise. We integrate the
system of (B1) and (B2) under the assumption c = cd using
the Euler-Maruyama method [55] with parameters given in
the last column of Table I and N = 7. The results presented
in Fig. 10 are obtained by analyzing the intervals between 622
puffs using [Ca2+] traces of several thousands of seconds.
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