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Role of fluid-structure interaction in generating the characteristic tip path
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This study shows that characteristic modes, such as the figure-eight mode, can be created in the path of the
wing tip, which is caused by the fluid-structure interaction, using a flapping model wing with two lumped flexi-
bilities describing the elevation motion as well as the pitching motion. A direct numerical simulation based on the
three-dimensional finite element method for fluid-structure interaction (FSI) analyzes the behaviors of the model
wing, the surrounding air, and their interaction, where the dynamic similarity law for the FSI is used to incorpo-
rate actual insect data, and the parallel computation algorithm is used to perform the systematic parametric study.
Characteristic modes, such as the figure-eight mode, are observed in the path of the wing tip from the elevation
motion of the simulated wing. This motion is considered as the forced vibration caused by the interaction with the
surrounding fluid excited by the flapping of the wing. Therefore, this motion can be modulated by the flexibility
to change the natural frequency, which can be controlled by the muscles at the base of the wing in the actual
insect. The present simulation shows that the selection between these modes in the path of the wing tip depends
on the ratio between the natural frequency of the elevation motion and the flapping frequency. In the case of the
figure eight, the upward elevation motion of the wing acts on the leading-edge vortex (LEV) so as to keep its
momentum upon stroke reversal. Therefore, this LEV can remain in the wake of the wing after stroke reversal and
enhance the next LEV. Because of this effect, the lift increases significantly as the mode of the wing tip path shifts
to the figure-eight mode. This understanding will contribute to a developed field of bioinspired micro air vehicles;
i.e., it will reduce the complexity of electromechanical devices that prescribe entire motions of their wings.
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I. INTRODUCTION

Approximately 300 million year ago, insects were the first
organisms on Earth to take to the sky, which was a momentous
evolutionary step [1]. The advantages of flight over other
forms of locomotion resulted in the dispersal of insects all
over the world. Their flight abilities have become increasingly
refined throughout their long period of development. Their
flapping wings exhibit characteristic motions in flight [2].
Therefore, it is important to reveal the role of the wing
motion in generating enough lift [3] and the mechanism of
its creation [4].

Many researchers have considered the path of the wing
tip relative to the body or the wing tip path. Early research
reported that this path forms a figure eight (mode of two-loop
with one crossing), and subsequent studies reported that the
path can also take other characteristic modes, such as a three-
loop with two crossings or a four-loop with three crossings
[1,2,5–10]. The mode shift can be controlled according to the
airstream over the antennae [5], while the wing tip path may
be indirectly altered by changes in articulation at the wing
base, which control flapping parameters such as the stroke
angle [2]. Most recently, it was shown through a dynamically
scaled experiment that the figure-eight mode resulted in a
lift increase [11]. Furthermore, electromechanical devices for
active generation of the figure-eight mode have been designed
and fabricated for micro air vehicles (MAVs) [12–14].

Reference [15] mentioned the possibility of the wing-hinge
compliance to allow the wing’s elevation motion for bioin-

spired MAVs [16]. In the present study, the mechanism that
creates the characteristic wing tip path is investigated from
the viewpoint of the vibration theory.

The insect flapping flight system consists of hierarchi-
cal subsystems with different length and time scales from
anatomical, physiological, ecological, energetic, and mechan-
ical perspectives. Therefore, because of the complexity of
this composite system, its decomposition into subsystems is
useful in order to understand the specific mechanism. The
articulation at the wing base consists of steering muscles,
tendons, and both flexible and rigid components. This artic-
ulation works as a transmission that redirects power from
the flight muscles to the wing and allows control over its
motion [17–20]. However, the mechanism of this transmission
remains unclear due to the complexities of the interactions
with other subsystems as well as its own dynamics.

In the present study, the articulation at the wing base is
expressed as a reduced-order model using the lumped flexi-
bilities, where the articulation providing the adequate flexibil-
ities is described as the macroscopic constitutive relationship
between the force and the deformation. The lumped flexibility
model [21–36] has been gaining popularity to consider the
flexibility of the insect wing, which is one of most important
features of the insect wing, while to avoid the aforementioned
complexities. Typically, this model has been used to describe
the pitching motion of the wing. The high torsional flexibility
of the insect wing suggests the passivity of the pitch motion
[4,37]. The evidence from a mechanical point of view was first
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presented demonstrating the inertial cause of the wing rotation
using the two-dimensional rigid wing [38,39]. Then, an elastic
spring was introduced as the torsional flexibility, and this
model demonstrated that the basic pattern of the pitch motion
can be caused by the fluid-structure interaction [15,21,22].
This type of model or the lumped torsional flexibility model is
also useful for discussing the effect of the torsional flexibility
on the lift generation [31–33,36]. This type of model intro-
duced a three-dimensional wing in order to consider the three-
dimensional effect [25,26,29,35]. The role of the torsional
flexibility in flapping locomotion was investigated using this
type of model [23,30]. The maneuver mechanism based on
the mechanical properties of the wing’s hinge was explained
using this type of model [24,40]. In contrast, in the present
study, this model is extended to describe the elevation motion
of the wing from the stroke plane as well as the pitching
motion of the wing.

Most recently, numerical fluid-structure interaction
analysis has been used in studies on insect flapping
flight [22,25,28,41,42]. Some studies have reported three-
dimensional simulations of flexible wings using numerical
fluid-structure interaction analysis in order to take into
account the three-dimensional effects [34,42–45]. In the
present study, three-dimensional finite element analysis
for the interaction of an incompressible viscous fluid and
an elastic body [46,47] is used to accurately simulate
the behavior of the model wing in air [25]. This direct
numerical simulation is guided by the dynamic similarity
law for the fluid-structure interaction (FSI) [26] such that
the model wing is dynamically similar to the actual insect
wing. The parallel computation algorithm is introduced
to the present numerical FSI analysis method in order to
reduce the computational time associated with the systematic
investigation.

The simulation results of the present study show that the
characteristic wing tip path modes, including the figure-eight
mode, can be created by the fluid-structure interaction. The
motion is considered as the forced vibration caused by the
interaction with the surrounding air excited by the wing’s
flapping. Therefore, the compliance of the wing’s elevation
modulates the elevation motion by changing the natural fre-
quency, and the selection between the modes in the path of the
wing tip depends on the ratio between the natural frequency
of the elevation motion and the flapping frequency.

The upward elevation motion of the wing in the figure-
eight mode acts on the leading-edge vortex (LEV) so as to
keep its momentum upon stroke reversal. Therefore, this LEV
can remain in the wake of the wing after stroke reversal and
enhance the new LEV at the beginning of the next half stroke.
Because of this effect, the lift increases significantly as the
mode shifts from a higher mode to the figure-eight mode. Let
us recall the passivity of the mode creation and the mode
selection using the compliance of the wing’s elevation. It
follows from these results that the insect can take the specific
modes of the wing tip path automatically by changing the
compliance of the wing’s elevation in order to control the lift.

II. WING MODEL AND NUMERICAL METHOD

A. Lumped flexibility model

The lumped flexibility model, which is based on the macro-
scopic constitutive relationship [21], has been used in studies
related to the passivity of the wing’s pitching motion [15,21–
23,34]. In the present study, as shown in Fig. 1, this model
is extended so as to allow the wing’s elevation motion from
the stroke plane. In this section, the conventional model is
described and is then extended to have lumped flexibility for
the wing’s elevation.
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FIG. 1. Extended lumped flexibility model, where the conventional model with lumped torsional flexibility only is extended so as to allow
the wing’s elevation motion from the stroke plane. The flexibility of the wing with respect to elevation from the stroke plane is modeled using
the lumped flexibility at the base of the wing, which is expressed schematically as a spring. The wing base is placed at the origin O of a
Cartesian coordinate system. The horizontal x axis is positive in the forward direction of the longitudinal axis of the insect body. The stroke
plane is set in the horizontal xz plane. The flapping axis coincides with the vertical y axis, and ϕ is the angular displacement of the flapping
motion. The axis of the torsion is placed along the leading edge, and θ is the pitch angular displacement. The axis of the elevation is placed in
the stroke plane and is normal to the axis of torsion, and χ is the elevation angular displacement.
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FIG. 2. Implementation of the lumped torsional flexibility. In the
left figure (a), the torsional spring is used to illustrate the concept of
the lumped torsional flexibility. In the right figure (b), it is replaced
with the plate spring as its implementation. The stiff leading-edge
beam and wing plate are connected by the flexible plate spring. The
wing plate occupies a large part of the model wing. The plate spring
works as the lumped torsional flexibility, since the plate spring is
narrow.

1. Lumped torsional flexibility model

The lumped torsional flexibility is expressed schematically
using a spring, as shown in Figs. 1 and 2(a). The objective
of this is to simplify the complicated elastic behavior of insect
wings to the fundamental pitching mode to investigate the pas-
sive pitching kinematics caused by the inertial, aerodynamic,
and elastic torques [21,22]. The basis for this in nature is as
follows.

A high torsional flexibility at the base of an insect wing
[4,37] leads to a high angle of attack that separates the
air flow around the wing and creates a leading-edge vortex
that provides sufficient lift for the insect to maintain flight.
However, twist and camber are relatively small [48–50], and
flow separation is not very sensitive to such deformations
[51]. Therefore, as a first approximation, an insect wing and
its flexibilities can be modeled using a rigid flat-plate wing
and springs, respectively. This type of model [15,21–26,30–
32,34,52] as well as the rigid flat-plate wing model [3,39,53–
65] has recently gained popularity.

The wing base is placed at the origin O of a Cartesian
coordinate system. The horizontal x axis is positive in the
forward direction of the longitudinal axis of the insect body.
An ideal hovering state is assumed in the present study. The
stroke plane is set in the horizontal xz plane, because it is
approximately horizontal in many hovering insects [66]. The
flapping axis is defined as the vertical y axis. The angular
displacement of the flapping motion ϕ (−�/2 � ϕ � �/2,
where � is the stroke plane angle) is defined as the angle
between the leading edge of the wing and the z axis and is
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FIG. 3. Modeling of flapping motion. The time variation of ϕ is
close to sinusoidal but has a larger acceleration or deceleration during
stroke reversals and a constant velocity during the middle of each
half stroke. The time variation of dϕ/dt is expressed as a trapezoidal
function, where the acceleration or deceleration time ta is used to
define the period of increasing or decreasing of the flapping velocity
in each cycle, and tu

a and td
a are for the upstroke and the downstroke,

respectively. Tϕ is the flapping period, which is the inverse of the
flapping frequency fϕ . � is the stroke angle.

positive for counterclockwise rotation about the y axis. The
axis of the torsion is placed along the leading edge, which
runs from the base to the tip of the wing. The pitch angular
displacement θ is defined as the angle between the wing chord
and the vertical direction and is positive for counterclockwise
rotation about the torsional axis. Torsional flexibility can be
characterized by the compliance of the torsion Cθ [37], which
is defined as the ratio of θ to the applied moment around the
axis of the torsion. The mean aerodynamic force acting on
the wing is dependent on the nondimensional radius r2 of the
second moment of the wing area [50,67]. In many insects, r2

is very close to that of a rectangular wing at 1/
√

3 [48,50].
Therefore, for the sake of simplicity, a rectangular wing model
is used. Its planar shape can be defined in terms of aspect ratio
rA (= 2Lw/cm, where Lw is the span length of one wing, and
cm is the mean chord length).

The initial state of the wing chord is set to be at rest
and oriented vertically (normal to the stroke plane). The time
variation of ϕ is close to sinusoidal but has a larger acceler-
ation or deceleration during stroke reversals and a constant
velocity during the middle of each half stroke [2]. Therefore,
dϕ/dt can be expressed as a trapezoidal function, as shown
in Fig. 3, where the acceleration or deceleration time ta is
used to define the period of increasing or decreasing of the
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flapping velocity in each cycle. In the present study, tu
a for

the upstroke and td
a for the downstroke, which can express the

difference in flapping motion between the upstroke and the
downstroke, are newly introduced. The flapping period Tϕ is
the inverse of the flapping frequency fϕ . The initial value of
ϕ is set to −�/2. FS is the total fluid surface force acting
on one wing nondimensionalized by the dynamic pressure
ρfAwV 2

m/2, where ρf is the fluid density, Aw is the area of one
wing, and Vm is the mean flapping velocity, which is defined
as 2r2�Lwfϕ . The nondimensional lift FL is defined as the y

component of FS, and the nondimensional drag FD is defined
as the inner product of F∗

S and n∗, where F∗
S is the projection

of FS onto the stroke plane, n is the unit vector normal to the
upper surface of the wing, and n∗ is the projection of n onto
the stroke plane.

2. Extension of lumped torsional flexibility model

The flexibility of the wing with respect to elevation from
the stroke plane is modeled using the lumped flexibility at
the base of the wing, which is expressed schematically as a
spring, as shown in Fig. 1. The elevation angular displacement
χ is defined as the angle between the axis of torsion and its
projection onto the stroke plane and is positive when the wing
is over the stroke plane. The axis of the elevation is placed
in the stroke plane and is normal to the axis of torsion. The
lumped flexibility for the elevation is characterized by the
compliance of the elevation Cχ , which is defined as the ratio
of χ to the applied moment around the axis of the elevation.

3. Implementation of lumped torsional flexibility model

As shown in Fig. 2, the plate spring is the implementation
of the lumped torsional flexibility expressed schematically by
the torsional spring, and is used to allow for passive rotation
of the wing plate.

The motivation of this is the accuracy of the numerical
analysis for the flapping wing in fluid. In contrast to the case of
the torsional spring, the finite element modeling error is very
small. Therefore, the present finite element method has been
sufficiently validated using the corresponding dynamically
scaled experiment [25,28].

The plate spring is set in Sec. II F such that it works as the
lumped torsional flexibility; i.e., it simplifies the complicated
elastic behavior of insect wings to the fundamental pitching
mode. The result showing this consistency is described in the
Appendix.
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FIG. 4. Schematic view of domain decomposition.

FIG. 5. Finite element mesh of the model wing. The white do-
main is the plate spring for the concentrated torsional flexibility,
the black domain is the plate spring for the concentrated elevation
flexibility, the gray domain is the stiff wing plate, and the red domain
is the stiff leading edge. The chordwise lengths of the leading edge,
the plate spring, and the wing plate are set as 16%, 23%, and 61%,
respectively, of the total chord length.

B. Governing equations

The interaction between the flexible wing and the sur-
rounding fluid can be described by the three-dimensional
partial differential equations of motion for an elastic body, the
three-dimensional incompressible Navier-Stokes (NS) equa-
tions for a fluid, and the compatibility and equilibrium condi-
tions for a fluid-structure interface [68].

FIG. 6. Finite element mesh of the surrounding fluid.
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FIG. 7. Wing’s motion during one stroke from 8.75 to 9.70 cycles in the case of the natural frequency of the elevation f n
χ = 2.8fϕ . The

view direction is (0, 0, 1).

The equilibrium equation for an elastic body can be ex-
pressed as

ρs dvs
i

dt
= ∂σ s

ij

∂xj

, (1)

where d/dt in the left-hand side is the Lagrangian time deriva-
tive, the superscript “s” indicates a quantity corresponding to
the structure, ρ is the mass density, vi is the ith component
of the velocity vector, and σij is the ij th component of the
Cauchy stress tensor. The present wing consists of both stiff
and flexible components, which can be expressed as a single
elastic body. Therefore, the motion can be described by Eq. (1)
with the adequate initial and boundary conditions. The active
flapping motion is imposed as the time-dependent elementary
boundary condition.

The incompressible NS equations using the arbitrary
Lagrangian-Eulerian (ALE) method [69] can be expressed as

ρf ∂vf
i

∂t
+ ρf

(
vf

j − vm
j

) ∂vf
i

∂xj

= ∂σ f
ij

∂xj

and
∂vf

i

∂xi

= 0, (2)

where ∂/∂t in the left-hand side is the ALE time deriva-
tive, and the superscripts “f” and “m” indicate quantities
corresponding to the fluid and the ALE coordinate systems,
respectively.

The geometrical compatibility and equilibrium conditions
can be expressed, respectively, as

vf
i = vs

i and σ f
ij n

f
j + σ s

ij n
s
j = 0, (3)

where ni is the ith component of the outward unit normal
vector on the FSI corresponding to the fluid or the structure.

The damping from the air viscosity and the structure itself
seems to be underdamping with damping ratio on the order of
less than 5% [70]. Therefore, it is assumed that the structural
damping can be ignored in this study.

C. Dynamic similarity law for FSI

In the studies of insect flapping flight using the dynam-
ically scaled model, the dynamic similarity law is used to
correctly incorporate morphological and kinematical data
from the actual insect into the model wing. Initially, the
dynamic similarity law for the fluid dynamics was used for
the experimental model [3,53]. Most recently, the dynamic
similarity law for the FSI was introduced in the numerical
model [22], and then it was used for the experimental model
[25,26]. This dynamic similarity law is briefly summarized
in the following, since it is used to guide the present direct
numerical simulation.

The nondimensional parameter α, the Reynolds number
Re, the Cauchy number Ca, and the mass ratio M are obtained
by the dimensional analysis for the governing equation system
of Eqs. (1)–(3) with respect to the characteristic length or
the mean chord length cm, the characteristic velocity or the
mean flapping velocity Vm, and the characteristic time or the
flapping frequency Tϕ = 1/fϕ as follows [25,26,28]:

α = fϕcm/Vm, (4a)

Re = ρfcmVm/μf , (4b)

Ca = ρfV 2
mc3

mCθ, (4c)

M = mw
/(

ρfc3
m

)
, (4d)
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FIG. 8. Time histories of the wing’s elevation angle χ for the various natural frerquencies of the wing’s elevation motion f n
χ under the

symmetric flapping condition.

where mw is the mass of the wing. The expression (4d) in
Refs. [71–73] was used, since the data for mw are available
from many works in the literature. The hovering state is
assumed in this study. Therefore, the flow velocity can be
characterized by the mean flapping speed Vm. The definition

of Vm reduces the expression of α to 1/(r2rA�). This pa-
rameter specifies the translational motion of the wing [60].
A similar parameter is also presented in Ref. [74]. These
four nondimensional parameters can make two different FSI
systems dynamically similar to each other.
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FIG. 9. Trajectories of the wing tip in the (ϕ, χ ) plane, which show the mode of the tip path motion under the symmetric flapping condition.
In each figure, the gray lines indicate each trajectory for the nth cycle (n = 5, . . . , 10), and the black line indicates the mean of them. Note
that fϕ multiplied by the real number in the upper right-hand side of each figure denotes the value of f n

χ .

D. Direct numerical simulation

The interaction between the flexible wing and the sur-
rounding fluid can be described by the governing equations
(1)–(3). In the present study, the projection method for the

FSI [46,47] is used to solve Eqs. (1)–(3) efficiently, which is
briefly described as follows.

Applying finite element discretization to Eqs. (1) and (2),
the nonlinear equilibrium equations can be obtained in
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FIG. 10. Schematics showing the aerodynamic force acting on
the wing during the middle of each half stroke. The pitch angle keeps
a large angle during the middle of each half stroke, where the flapping
speed is constant. Therefore, the elevation component of the dynamic
pressure force acting on the wing appears as shown in this figure.

matrix-vector form. Applying the interface conditions (3) to
these equations, the monolithic equation system for the FSI

can be obtained as

LMa + Cv + N + q(u) − Gp = g, (5a)

τ Gv = 0, (5b)

where M, C, and G are the mass, diffusive, and divergence
operator matrices; N, q, g, a, v, u, and p are the convective
term, elastic internal force, external force, acceleration, ve-
locity, displacement, and pressure vectors, respectively, and
subscripts L and τ indicate the lumping of the matrix and the
transpose of the matrix, respectively.

Equations (5a) and (5b) are solved using the monolithic
method [75], where the interface conditions are implicitly
satisfied in order to avoid spurious numerical power on
the interface, which yields numerical instability. However,
this formulation leads to an ill-conditioned system of equa-
tions. Therefore, a projection method using algebraic splitting
[46,47] is used in order to avoid this difficulty. This method
splits the monolithic equation system (5) into the following
three equations:

M∗�â = �g, (6)

γ�t τ GLM−1G�p = −τ Gv̂, (7)

M∗�a − G�p = �g, (8)
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FIG. 11. (a–c) are the time histories of the ideal wing’s elevation motion, where the sinusoidal motions with the frequencies 2fϕ , 3fϕ , and
4fϕ are assumed, respectively, and the unit amplitude is considered. (d–f) are the relationships between the stroke motion and the elevation
motion.
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FIG. 12. Trajectories of the wing tip in the (ϕ, χ ) plane, which show the mode of the tip path motion under the symmetric flapping
condition. In each figure, the gray lines indicate each trajectory for the nth cycle (n = 5, . . . , 10), and the black line indicates the mean of
them. Note that fϕ multiplied by the real number in the upper right-hand side of each figure denotes the value of fχ .

where the pressure and elastic interior force terms are
evaluated implicitly; â is the intermediate acceleration; v̂
is the intermediate velocity, which is given by â; M∗ is
the generalized mass matrix, which is composed of the
lumped mass matrix and the tangential stiffness matrix;
� denotes the increment; t denotes the time; �g is the
residual vector of Eq. (5a), and the relations among the

state variables are based on Newmark’s method. Equa-
tion (7) is the pressure Poisson equation. Solving this
equation, the incompressibility constraint (5b) is satisfied
implicitly.

In the nonlinear iteration of each time step, Eqs. (6)–(8)
are solved to derive the intermediate velocity field, the current
pressure field such that the current velocity field satisfies the
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incompressibility constraint, and the current velocity field,
respectively.

E. Parallel computation based on mesh decomposition

In the present study, the parallel computation algorithm
is introduced in order to reduce the computational time.
The following matrix-vector product is the most expensive
computation in an iterative solver:

τ GLM−1G�p(k), (9)

where �p(k) is the solution vector at the kth iteration in
the iterative solver. Assuming that the number of degrees of
freedom (DOFs) of the structure is far smaller than that of
the fluid, we use the following parallel solution procedure
based on the mesh decomposition. The mesh is decomposed
as shown in Fig. 4. The symbols �s and �f denote the struc-
tural and fluid meshes, respectively, and �f

i (i = 1, 2, . . . , Nd )
denotes the ith submesh of �f . Note that �f

i surrounds �s so
that the matrix-vector product concerning the fluid-structure
interface can be computed at a single computational node.
The computations related to �f

i are executed at computational
node Pi , while the computations related to �s are executed at
P1. Under the above setup, the parallel computation of (9) is
executed using the following steps.

(Step 1) The matrix-vector product (9) is computed at Pi

using the element-by-element method as

Ap =
∑

e

A(e)p(e) =
∑

e

q(e) = q, (10)

where A denotes the global matrix; p denotes the global
vector; q denotes their matrix-vector product; A(e) and p(e)

are their elemental counterparts, respectively; and e denotes
the element number.

(Step 2) The nodal data of the matrix-vector product (9) on
the interface between �f

i and �f
j (j �= i) computed at Pj are

transferred to Pi in order to complete the corresponding nodal
data computed in Step 1.

The algorithm presented in this section is implemented
using the message passing interface (MPI) library.

F. Problem setup

Figures 5 and 6 show the finite element meshes of the
model wing and the surrounding fluid domain, respectively.
In Fig. 5, the white domain is the plate spring corresponding
to the concentrated torsional flexibility, the black domain is
the plate spring corresponding to the concentrated elevation
flexibility, the gray domain is the stiff wing plate, and the red
domain is the stiff leading edge. As described in Sec. II C,
two different FSI systems are dynamically similar to each
other if the conditions of the nondimensional parameters α,
Re, Ca, and M , as well as geometrical similarity, are satisfied.
Therefore, these values are set as α = 0.07, Re = 260, Ca =
0.19, and M = 16, which are in the range of the values for
actual insects [25], and are very close to those of a crane
fly. Moreover, rA and � are set to be 11 and 120°, respec-
tively, which are in the range of the values for actual insects
[2,48,50] for geometric and dynamic similarity, as described
in Secs. II A and II C, and are very close to those of a crane fly.
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FIG. 13. Relationship between f n
χ /fϕ and the ratio of the mean

wing tip speed and the mean flapping speed in the case of the
symmetric flapping.

The mass of the model wing mw is divided by the wing area
[25,28] following the mass distribution along the wing chord
measured for an actual insect wing [39]. Also, Cχ is given
such that the amplitude of χ is approximately equivalent to
that observed for an actual insect [49].

The example of the dimensional parameters corresponding
to the above setup are mw = 2.5 × 10−7 kg, � = 120◦, fϕ =
51 Hz, and Cθ = 2.5 × 108 ◦/(Nm) for Lw = 1.3 × 10−2 m
and the material properties of air (ρf = 1.205 kg/m3, the
dynamic viscosity νf = 1.502 × 10−5 m2/s), which are very
close to the data of the actual crane fly [2,37,48,50].

G. Analysis setup

The leading edge, the plate springs, and the wing plane are
modeled using mixed interpolation of tensorial components
shell elements [76] (Fig. 5, number of nodes: 149; number
of elements: 124), while the fluid domain is modeled using
stabilized linear equal-order-interpolation velocity-pressure
elements [77] (Fig. 6, number of nodes: 46 920; number of
elements: 254 592). �t is set at 1/fϕ/5 000.

The present setup for the domain size, the boundary
condition, and the mesh size is almost equivalent to that
in Refs. [25,28]. Furthermore, the present nondimensional
parameters, which measure the magnitude of the interaction
quantitatively, are very close to those in Refs. [25,28]. The
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FIG. 14. Relationship between f n
χ /fϕ and the mean lift coeffi-

cient in the case of the symmetric flapping.
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FIG. 15. Time histories of the stroke angle ϕ, the wing’s elevation angle χ , the pitch angle θ , and the nondimensional lift FL. The black
lines indicate the time histories for the f n

χ = 2.8fϕ , and the gray lines indicate the time histories for the f n
χ = 4.0fϕ .

present simulation software system was carefully validated
in Refs. [25,28]. Furthermore, it was validated using several
problems including the typical benchmark problems in the
area of the finite element method [46,47] and the other type of
experiment [78]. Therefore, the present simulation software
system can analyze the problem in the present study accu-
rately.

In the computational environment of a multicore processor
(8-core Xeon 3.3 GHz × 4 CPUs, 64 GB shared memory),
the performance of the parallel computation in Sec. II E is

examined as follows: The number of fluid subdomains Nd is
set as 10, 16, 20, and 32. The present parallel efficiency and
speed-up are 98% and 9 times for Nd = 10, 93% and 14 times
for Nd = 16, 88% and 16 times for Nd = 20, and 76% and 22
times for Nd = 32, respectively.

The reduction of the parallel efficiency for the larger Nd is
because of the following reason. The present parallel compu-
tation in Sec. II E parallelizes the computation for the pressure
Poisson equation (7), which has the degrees of freedom of
the fluid domain. On the contrary, it does not parallelize the
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FIG. 16. Fluid velocity field around the wing from 9.15 to 9.25 cycles on a cylindrical plane, whose radius divided by the wing longitudinal
length is approximately equal to the nondimensional radius of the second moment of the wing area, 1/31/2. Colored arrows indicate the fluid
velocity and the color indicates the magnitude from 0 (blue) to the speed three times larger than the mean flapping speed approximately (pink).
The view direction is (1, 0, 1). Black bold arrows indicate the old leading-edge vortex.

computation for the equilibrium equations (6) and (8), which
have the degrees of freedom of the structure and the fluid-
structure interface. Therefore, the structural computation time
relatively increases compared with the fluid computation time
as Nd increases.

III. RESULTS AND DISCUSSION

A. Change of wing tip path mode

Let us consider symmetric flapping as the case in which
tu
a = td

a = Tϕ/8, as shown in Figs. 3(a)–3(c). The natural fre-
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FIG. 17. Fluid velocity field around the wing from 9.25 to 9.35 cycles on a cylindrical plane, whose radius divided by the wing longitudinal
length is approximately equal to the nondimensional radius of the second moment of the wing area, 1/31/2. Colored arrows indicate the fluid
velocity and the color indicates the magnitude from 0 (blue) to the speed three times larger than the mean flapping speed, approximately (pink).
The view direction is (1, 0, 1). Black bold arrows indicate the old leading-edge vortex.

quency f n
χ of the elevation of the wing is changed by changing

Cχ . Figure 7 shows the wing motion during one cycle for the
case of f n

χ = 2.8fϕ . As shown in this figure, the present pitch
vibration caused by the fluid-structure interaction exhibits a
characteristic pitch motion similar to insect flapping flight;
i.e., the wing exhibits a high angle of attack in the middle of
each half stroke and rotates quickly upon stroke reversal.

Figure 8 shows the time histories of χ for various values of
f n

χ . χ as a function of time seems to be not entirely periodic
irrespective of the periodic flapping. This might come from
incommensurate natural frequencies and the lack of structural
damping. However, the specific modes appear in the wing tip
path as follows. Figure 9 shows the relationships between ϕ

and χ , i.e., the wing tip paths obtained from Fig. 8. Note that
the value of f n

χ is denoted by fϕ multiplied by a real number
in the upper right-hand side of each figure. As shown in these
figures, the mode of the two-loop with one crossing or the
figure-eight mode appears in the wing tip path for smaller
f n

χ . As f n
χ increases, small loops appear at the both ends of

the figure eight. Finally, the four-loop with three crossings
is fully developed in these figures. The mechanism of this
discontinuous mode shift for the continuous change of f n

χ can
be explained from the viewpoint of the vibration theory as
follows.

The pitch angle keeps a large angle during the middle of
each half stroke, where the flapping speed is constant. There-
fore, the elevation component of the dynamic pressure force
acting on the wing appears as shown in Fig. 10. It follows

that the elevation motion of the wing can be considered as
the forced vibration caused by the periodic exciting force,
of which time variation follows the square of the flapping
velocity.

In the symmetric flapping condition, the frequency of the
periodic exciting force is 2fϕ . Therefore, the vibration mode
with the frequency 2fϕ × nr (nr is a positive integer) closest
to f n

χ is most amplified and appears significantly in the
elevation motion of the wing. Let us consider a simple sinu-
soidal elevation motion with frequency 2fϕ × nr , as shown in
Figs. 11(a) and 11(c). This motion exhibits the 2nr-loop mode,
as shown in Figs. 11(d) and 11(f). Therefore, the two-loop
mode appears in the case of f n

χ /fϕ = 2.4, 2.6, and 2.8, as
shown in Figs. 9(a)–9(c), while the four-loop mode appears in
the case of f n

χ /fϕ = 3.4, 3.6, 3.8, 4.0, and 4.2, as shown in
Figs. 9(f)–9(j).

It is suggested that the three-loop mode can appear in
the wing tip path under the asymmetric flapping condition.
The aerodynamic force caused by the flapping motion has
the frequency fϕ in this case, and the nr-loop mode can
appear as shown in Figs. 11(b) and 11(e). Let us consider
asymmetric flapping as the case in which tu

a = Tϕ/9 and
td
a = Tϕ/5, as shown in Figs. 3(d)–3(f). In the case of nr =

2 (f n
χ /fϕ = 2.4), the two-loop mode appears in the wing

tip path, as shown in Fig. 12(a). In contrast, unlike in the
symmetric flapping condition, in the cases of nr = 3 (f n

χ /fϕ =
2.6, 2.8, 3.0, 3.2, and 3.4), the three-loop mode appears in
the wing tip path, as shown in Figs. 12(b)–12(f), respectively.
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FIG. 18. Fluid velocity field around the wing from 9.35 to 9.40 cycles on a cylindrical plane, whose radius divided by the wing longitudinal
length is approximately equal to the nondimensional radius of the second moment of the wing area, 1/31/2. Colored arrows indicate the fluid
velocity and the color indicates the magnitude from 0 (blue) to the speed three times larger than the mean flapping speed, approximately (pink).
The view direction is (1, 0, 1). Black bold arrows indicate the old leading-edge vortex.

Furthermore, similar to the previous section, in the case of
nr = 4 (f n

χ /fϕ = 3.6, 3.8, 4.0, and 4.2), the four-loop mode
appears in the wing tip path, as shown in Figs. 12(g)–12(j),
respectively. These results indicate that, in general, the nr-loop

mode can appear in the wing tip path for the case in which
f n

χ /fϕ is approximated by nr .
The insects can control the characteristic mode of the wing

tip path [5]. One explanation is that the elevation motion of
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the wing is directly given by the insect’s own muscles at the
base of the wing such that it appears [2]. The other possible
explanation based on these results is that the elevation motion
of the wing is given by the FSI passively, and the insect
changes the flexibility at the base such that the characteristic
mode appears in the wing tip path.

B. Lift change due to mode shift

The setup of the symmetric flapping described in the
previous section is used in this section. Figure 13 shows the
relationship between the frequency ratio f n

χ /fϕ and the ratio
of the mean speed of the wing tip and the mean flapping
speed. Figure 14 shows the relationship between f n

χ /fϕ and
the mean nondimensional lift FL. As shown in Fig. 13, the
mean speed of the wing tip increases as f n

χ becomes larger
than 3.2fϕ . As shown in Fig. 14, irrespective of this increase,
the mean lift decreases significantly. This phenomenon can
be explained as follows.

Let us consider f n
χ = 2.8fϕ and 4.0fϕ as typical cases of

the two-loop and four-loop modes, respectively. Figure 15
shows the time histories of the stroke angular displacement
ϕ, the elevation angle χ , the pitch angular displacement θ ,
and the nondimensional lift FL. Figures 16–18 show the flow
fields around the wing on a cylindrical plane for the period
from 9.15 cycles to 9.58 cycles.

As shown in Fig. 16, the LEV can be clearly observed in
the cases of f n

χ = 2.8fϕ and 4.0fϕ until approximately 9.2
cycles. As shown in Fig. 16(a), in the case of f n

χ = 2.8fϕ , the
LEV maintains sufficient momentum until 9.25 cycles, which
is the time instant of the stroke reversal. In contrast, as shown
in Fig. 16(b), in the case of f n

χ = 4.0fϕ , the momentum of the
LEV decreases quickly after approximately 9.2 cycles.

The reason why the momentum of the LEV is sufficiently
maintained in the case of f n

χ = 2.8fϕ , irrespective of the
flapping speed reduction of the wing due to stroke reversal,
as shown in Fig. 15(a), is that the velocity of the elevation
motion of the wing remains positive until 9.25 cycles, as

shown in Fig. 15(b). In contrast, in the case of f n
χ = 4.0fϕ ,

because of the change from positive to negative of the velocity
of the elevation motion of the wing during the period from
9.2 to 9.25 cycles, as shown in Fig. 15(b), the LEV does
not sufficiently maintain its momentum until 9.25 cycles
following the reduction in the flapping speed of the wing due
to stroke reversal. Therefore, as shown in Fig. 17(a), in the
case of f n

χ = 2.8fϕ , the LEV from the previous half stroke
can obviously remain in the wake of the wing after stroke
reversal, whereas in the case of f n

χ = 4.0fϕ , such a vortex
does not appear, as evidenced by Fig. 17(b).

A new LEV develops at the beginning of the next half
stroke. As shown in Fig. 18, during this period, the new LEV
in the case of f n

χ = 2.8fϕ develops quickly, as compared
to that in the case of f n

χ = 4.0fϕ . This is because the new
LEV will be enhanced by the old LEV from the previous
half stroke, as shown in Fig. 18(a). As shown in this figure,
the old LEV with counterclockwise rotation induces the flow
above the leading edge to form the new LEV with clockwise
rotation. In contrast, in the case of f n

χ = 4.0fϕ , such an effect
cannot be observed in Fig. 18(b) because of the lack of the old
LEV. Therefore, the lift in the case of f n

χ = 2.8fϕ is larger
than that in the case of f n

χ = 4.0fϕ at the first half of each
half stroke.

The LEVs in both cases are sufficiently developed and are
stable in the middle of each half stroke. During this period,
pitch angle is one of the dominant parameters of lift [79].
Therefore, the increase and decrease in lift in the case of
f n

χ = 4.0fϕ clearly follow the increase and decrease of the
pitch angle, respectively, as shown in Figs. 15(c) and 15(d).
Furthermore, the increase and decrease of the pitch angle
will be caused by the elevation motion of the wing, because
the increase of χ and the decrease of θ from approximately
9.35 cycles are clearly interrelated and the decrease of χ and
the increase of θ from approximately 9.45 cycles are clearly
interrelated.

In summary, the upward elevation motion of the wing in the
two-loop mode acts on the LEV so as to keep its momentum
upon stroke reversal, and this LEV can remain in the wake
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FIG. 19. Closeup view of the time histories of the pitch angle θ .
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FIG. 20. Influence of the chordwise length of the plate spring on the results. In each trajectory of the wing tip in the (ϕ, χ ) plane, the black
line indicates the case using the original chordwise length of the plate spring, while the red line indicates the case using the 40% increase of the
original chordwise length of the plate spring. Each trajectory is averaged for the nth cycle (n = 5, . . . , 10). fϕ multiplied by the real number
in the upper right-hand side of each figure denotes the value of f n

χ .

of the wing after stroke reversal and enhance the next LEV.
Because of this effect, the lift increases significantly as the

mode of the wing tip path shifts to the two-loop mode in
Fig. 14.
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IV. CONCLUDING REMARKS

It was first reported that the characteristic wing tip path,
such as a figure eight, can be created by the FSI in the present
study. A flapping model wing with two lumped flexibilities
describing the elevation motion and pitching motion of the
wing interacting with the surrounding air was analyzed by
direct numerical simulation using the three-dimensional FEM
for the FSI. This simulation was guided by the dynamic
similarity law for the FSI in order to accurately incorporate
the data for an actual insect. A parallel computation algorithm
was used to perform the systematic parametric study.

In the elevation motion of the simulated wing, the path of
the wing tip exhibited characteristic modes such as the figure-
eight mode. This motion can be considered as the forced
vibration caused by the periodic exciting force, of which
time variation follows the square of the flapping velocity.
Therefore, this motion was modulated using the parameters
of the flapping motion and the elevation flexibility.

In the case of the frequency ratio fχ/fϕ approximately
equal to nr, the elevation motion of the wing presents a wing
tip path with an nr-loop mode, since the vibration mode with
the frequency nr × fϕ is most amplified. For example, in the
case of fχ/fϕ approximately equal to 2, the two-loop mode,
i.e., the figure-eight mode, appeared in the wing tip path.

In the case of the figure-eight mode, the upward elevation
motion of the wing acted on the LEV so as to maintain its
momentum during stroke reversal. Therefore, the old LEV
from the previous half stroke remained in the wake of the
wing after stroke reversal and enhanced the development of
the new LEV in the beginning of the next half stroke. Because
of this effect, the lift increased significantly as the wing tip
path mode shifted to the figure-eight mode.

The controllability of the lift force in insects found in the
present study is summarized as follows: The interaction of the
flapping wing of the insect and the surrounding fluid causes
the wing tip path. The insect can shift its characteristic modes
using the flexibility at the base of the wing in order to control

the lift force. Compared to previous approaches that prescribe
entire wing motions in MAVs, this finding will reduce the
electromechanical complexity of the flapping device.
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APPENDIX

If the plate spring has the chordwise length shorter enough
than the spanwise length, the bending will be almost uniform
along the spanwise direction. In this case, the plate spring
works such that it is consistent with the lumped torsional
flexibility, since the pitch angle of the stiff wing plate is almost
uniform along the spanwise direction. In the present results,
the time histories of the pitch angles at the wing’s tip, middle,
and root positions are indistinguishable from each other as
shown in Fig. 19. It follows that the chordwise length of the
plate spring in Fig. 5 is adequately selected.

If the position of the rotational axis is sufficiently close to
the leading edge, or the spanwise length of the plate spring
is sufficiently short, this selection will not affect the lift and
the drag significantly [22]. An approximately 40% increase
of the chordwise length of the plate spring in Fig. 5 slightly
perturbs the time histories of the pitch and elevation angles,
but it has little effect on the mode of the wing tip path as shown
in Fig. 20. In this validation, the Young’s modulus E of the
plate spring is changed such that the torsional spring constant
G, which is the inverse of Cθ , keeps the value constant using
the following equation [25] as G = EI/lc, where the second
moment of the section I = lwt3/12; lw and t are the spanwise
length and the thickness of the plate spring, respectively, and lc
is the chordwise length of the plate spring. It follows that the
chordwise length of the plate spring in Fig. 5 is adequately
selected such that it does not change the conclusion of this
study.
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