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Steric interactions between mobile ligands facilitate complete wrapping in passive endocytosis
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Receptor-mediated endocytosis is an ubiquitous process through which cells internalize biological or synthetic
nanoscale objects, including viruses, unicellular parasites, and nanomedical vectors for drug or gene delivery.
In passive endocytosis the cell plasma membrane wraps around the “invader” particle driven by ligand-receptor
complexation. By means of theory and numerical simulations, here we demonstrate how particles decorated by
freely diffusing and nonmutually interacting (ideal) ligands are significantly more difficult to wrap than those
where ligands are either immobile or interact sterically with each other. Our model rationalizes the relationship
between uptake mechanism and structural details of the invader, such as ligand size, mobility, and ligand-receptor
affinity, providing a comprehensive picture of pathogen endocytosis and helping the rational design of efficient
drug delivery vectors.
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I. INTRODUCTION

The cell plasma membrane is a complex interface, opti-
mized to regulate cargo transport. Internalization of particles
up to a few tens of nanometers, including viruses and drug-
delivery vectors, typically occurs via endocytosis. In this
process, a particle (invader) is first wrapped by the membrane
and then internalized within an endosome [1]. Endocytosis is
mediated by the binding of ligands, decorating the particle,
to membrane receptors. The process is “active” if aided by
dedicated signaling pathways, as in clathrin-dependent [2]
and caveolin-dependent endocytosis [3], or “passive,” if solely
mediated by multivalent ligand-receptor interactions, without
energy consumption. Viruses are sometimes able to hijack
active endocytosis pathways, but in other cases are passively
uptaken [4,5]. Artificial vectors, including solid nanoparti-
cles [6], liposomes [7–9], and polymerosomes [10], are often
uptaken by passive endocytosis. A deep understanding on
how the structure of the invader and the molecular details
of ligand-receptor interactions influence passive endocytosis
is thus required to aid the design of synthetic vectors and
to clarify the still poorly understood uptake mechanisms of
pathogens [4,11,12].

The modeling of passive endocytosis has traditionally
relied on phenomenological approaches, where the mul-
tivalent nature of the interactions has been neglected
[13–15], or considered only in the limit of irreversible
ligand-receptor binding [16–19]. Thermodynamic models for
multivalent interactions have instead been developed in the
context of cell-cell adhesion [20–22], membrane targeting
[23–27], synapse formation [21,28–30], and the self-assembly
of synthetic ligand-functionalized particles [31–33]. These
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studies have highlighted how multivalent interactions give
rise to complex phenomena, which can only be captured
with a bottom-up modeling approach, or molecular dynamics
simulations [34,35]. Particularly rich is the phenomenology
observed in the presence of mobile linkers, which can freely
diffuse on the substrates, and thus accumulate within the ad-
hesion regions [36–38]. Receptors on cell-membranes and lig-
ands on functionalized liposomes fall within this category [9],
while ligands on solid nanoparticles or viruses are often
anchored to fixed points [6,39]. However, steric interactions
between mobile linkers limit their local concentration [40,41],
affecting adhesion in ways still unaccountable by state-of-the-
art models.

In this paper, we present an analytical and numerical de-
scription of passive endocytosis that correctly accounts for the
multivalent nature of the interactions in the relevant scenarios
of fixed and mobile ideal ligands and, for the latter, considers
the effects of excluded volume interactions. We demonstrate
how particles functionalized by fixed ligands are more easily
wrapped by the membranes, while those functionalized by
mobile ligands are the most prone to incomplete wrapping,
due to the recruitment of the linkers within the adhesion
regions. Excluded volume interactions limit mobile-ligand
accumulation, facilitating complete wrapping. Accumulation
of ligands is hindered by nonideal entropic contributions that
we estimate for the first time using perturbation theories and
Monte Carlo simulations.

The remainder of this paper is structured as follows. In
Sec. II we introduce the model and the simulation strategy. In
Sec. III A we present the numerical framework employed to
calculate adhesion free energies. In Sec. III B we use the re-
sults of Sec. III A to study passive endocytosis of spherical and
cylindrical invaders. In Sec. III C we study specific systems
that have been considered by recent literature and corroborate
the key role played by ligand mobility and steric interactions.
Finally, in Sec. IV we summarize our results.
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FIG. 1. (a) Schematic of the invader-host interaction. The invader
is decorated with either fixed (left) or mobile (right) ligands, inter-
acting with mobile receptors on the host surface. (b) Schematic of
the Monte Carlo system used to compute adhesion free energy with
nonideal mobile ligands. Ligands, receptors, and dimers are modeled
as hard disks of diameter α. The contact and outer regions are
simulated as squares with periodic boundary conditions. Ligands are
exchanged between the two regions via semi-grand canonical moves,
while receptors are exchanged with an ideal reservoir through grand
canonical moves. Dimerization is controlled by a reaction move [42].
See Appendix B 1 for the acceptance rules of all moves.

II. MODELING STRATEGY

We model the invader particle as a sphere or a prolate
ellipsoid with axis of rotation orthogonal to the cell surface,
penetrating to a depth h (see Fig. 1). The invader has total sur-
face area STot = SCR(h) + SOR(h), where SCR(h) and SOR(h)
indicate the region in contact with the host cell and the nonad-
hering (outer) region, respectively. The overall interaction free
energy between host and invader can be written as [11,43]

F (h) = Fbend(h) + Fstretch(h) + Flt (h) + Fadh(h). (1)

In Eq. (1), Fbend(h) = 2κ
∫
SCR (h) dSH 2 is the membrane-

bending contribution, where κ is the bending modulus of
the bilayer and H is the mean curvature of the invader;
Fstretch(h) = σSCR(h) is the membrane-stretching contribu-
tion, with σ indicating the stretching modulus; Flt = γ �(h)
accounts for all the line-tension effects, with �(h) indicating
the length of the triple line and γ the line tension. The
expressions of Fbend, Fstretch, and Flt are shown in Appendix A.

In Eq. (1) and Appendix A, we neglect nonlocal elastic de-
formations of the host [44], as such terms are system specific
(as proven by the large number of studies that neglected them)
and do not influence the outcomes of our study. We prove this
claim in Sec. III C where we combine our results of Fadh [see
Eq. (1)] with the elastic contributions calculated in Ref. [45],
the latter also accounting for the deformation of the membrane
not in direct contact with the invader.

The term Fadh(h) describes the ligand-receptor mediated
adhesion. Previous studies have relied on the phenomenolog-
ical assumption Fadh(h) ∝ SCR(h), while here we propose a

representation that fully accounts for the multivalent nature of
the interactions. Since the invader is typically much smaller
than the host, we can model the contact region as a finite
surface of area SCR in contact with an infinite reservoir of
ideal receptors. We indicate with ρR the average receptor
density on the host. If no ligand-receptor complexes (dimers)
are formed, and assuming that receptors can freely diffuse,
the contact region should have receptor density ρR. In our
model ρR is controlled by the density of the ideal reservoir
ρ

(0)
R , and by the extent of steric interactions between receptors.

The assumption of ideal receptors produces ρR = ρ
(0)
R , while

increasing steric repulsion causes ρR to decrease below ρ
(0)
R .

A number NL of either fixed or mobile ligands is present on
the invader.

The equilibrium constant K
(eq)
3D = exp(−β�G0)/ρ�,

where �G0 is the ligand-receptor interaction free-energy
and ρ� = 1M, controls dimerization in 3D diluted solutions.
For linkers confined to a surface, a 2D equilibrium constant
can be written as K

(eq)
2D = exp(−β�G0)/(ρ�δ), where the

δ is a length comparable with the size of the linkers, which
accounts for entropic costs hindering dimerization [32,36,37],
and membrane roughness [46,47] and deformability [33]. For
instance, when considering flexible rodlike linkers of length
L it can be shown that δ = L [32,36,37]. For polymeric
linkers, K

(eq)
2D can be calculated using dedicated Monte Carlo

algorithms [48–50]. The specific form of δ does not affect the
results of this study, so we describe dimerization propensity
in terms of K

(eq)
2D .

Ligands, receptors and dimers are modeled as hard disks of
diameter α, which thus determines the extent of steric interac-
tions [see Fig. 1 (b)]. The same α is assumed for ligand-ligand,
receptor-receptor, dimer-dimer, ligand-dimer, and receptor-
dimer interactions. Unbound ligands and receptors are mod-
eled as non-interacting. The system of Fig. 1 is then fully
determined by the parameters {NL, ρ

(0)
R , SCR, STot,K

(eq)
2D , α}.

III. RESULTS

A. Adhesion free energy

For α = 0, the adhesive free energy Fadh(h) can be derived for
both fixed and mobile ligands, analogously to what previously
done in the context of linker-mediated particle interactions
[32,36,37]

βF
fix,α=0
adh (h) = −NL

SCR(h)

STot
log

[
1 + K

(eq)
2D ρ

(0)
R

]
, (2)

βF
mob,α=0
adh (h) = −NL log

[
1 + SCR(h)

STot
K

(eq)
2D ρ

(0)
R

]
, (3)

where in the ideal case ρ
(0)
R = ρR . For completeness, in Ap-

pendix B 2 and Appendix C we report the explicit derivation,
respectively, of Eq. (3) and Eq. (2) using exact evaluations
of the partition function of the system. Equations (2) and
(3) correctly account for all entropic contributions specific to
multivalent interactions. For ideal fixed ligands, Eq. (2) re-
covers the phenomenological assumption Fadh(h) ∝ SCR(h),
with the advantage that our expression allows linking the
proportionality constant to the microscopic details of the
system. The trend determined in Eq. (3) for the case of mobile
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FIG. 2. The influence of ligand mobility and steric interactions
on the adhesion free energy. (a) Adhesion free energy as a function of
the contact-area fraction calculated for fixed and mobile ideal ligands
[solid lines, Eqs. (2) and (3)] and nonideal mobile ligands [dotted
lines with empty symbols, Eq. (4)]. Symbols connected by thin lines
show the results of MC simulations. For the ideal cases we use
K

(eq)
2D ρ

(0)
R = 5.5066 × 103. In the presence of steric interactions (φ >

0) we increase the reservoir receptor density ρ
(0)
R to maintain a con-

stant ρR = NL/STot. For φ = 0.01, 0.02, 0.05, 0.1, 0.2, 0.4 we scale
ρ

(0)
R [and thus K

(eq)
2D ρ

(0)
R ] by a factor 1.04, 1.09, 1.24, 1.57, 2.84, 20.5,

as calculated by dedicated MC simulations. In all cases we use
NL = 500. (b) Deviation of the nonideal adhesion free energy from
the ideal case.

ligands is instead strikingly different, as shown in Fig. 2(a).
The logarithmic dependence on SCR translates into a sharp
onset of adhesion, with the free energy flattening out as more
of the invader gets wrapped, as intuitively expected from the
recruitment of ligands in the contact region.

For ideal linkers, the accumulation of ligands is limited
uniquely by entropic costs [�Scnf ∼ log(SCR/STot )], but for
α > 0 steric interactions further hinder ligand recruitment.
For nonideal linkers the adhesive free energy can be written
as βF

mob,α>0
adh (h) = βF

mob,α=0
adh (h) + βF

mob,ex
adh (h). The excess

free energy βF
mob,ex
adh (h) can be evaluated through a second-

order virial expansion ( see Appendix B 2):

βF
mob,ex
adh (h) = NLB2K

(eq)
2D

(
ρ

(0)
R

)2
SCR

× NLK
(eq)
2D SOR/STot + 2STot + 2SCRK

(eq)
2D ρ

(0)
R(

STot + SCRK
(eq)
2D ρ

(0)
R

)2 ,

(4)

where B2 = πα2/2 is the second virial coefficient of hard
disks of diameter α. In Fig. 2 we demonstrate the effect of
excluded volume, quantified by the ligand packing fraction
φ = πα2NL/STot. As φ increases, the sharp adhesion onset as
a function of SCR becomes less evident. The analytical expan-
sion in Eq. (4) is only accurate in the limit of small packing
fraction. To access F

mob,α>0
adh at higher φ, we adopt a Monte

Carlo approach based on the model sketched in Fig. 1(b).
The adhesion free energy is determined by thermodynamic
integration [51],

βF
mob,α>0
adh =

∫ K
(eq)
2D

0
dK

(eq)
2D

〈nD〉
K

(eq)
2D

, (5)

where 〈nD〉 is the average number of dimers estimated by MC
at a given K

(eq)
2D .

The simulated adhesion free energy is shown in Fig. 2.
For ideal linkers (φ = 0), we recover the result of Eq. (3),
while for small φ the numerical and theoretical predictions
match. Deviations from the theory are observed at φ � 0.05.
When φ is further increased the adhesive free energy changes
drastically, developing a linear region at low SCR analogous
to the trend observed for fixed ligands. This behavior is a
consequence of the excluded volume interactions frustrating
the accumulation of ligands. Indeed, even at large K

(eq)
2D , the

number of ligands to get recruited in the contact region is
limited by the diverging chemical potential of packed hard
disks. Consequently, adhesion free energies become linear at
low SCR. Surprisingly, at high φ (e.g., φ = 0.4) and large
SCR we observe that F

mob,α>0
adh becomes more attractive than

F
mob,α=0
adh . This effect is caused by a reduction in the overall

steric hindrance following dimerization: The area excluded to
each dimer by an unbound ligand-receptor pair is larger than
the area excluded by a single dimer.

B. Endocytosis phase diagrams

To study the effect of ligand mobility and excluded
volume interactions on endocytosis, we combine Eq. (1)
with the analytical expressions for Fadh in the regimes
of fixed and mobile ideal ligands [Eqs. (2) and (3)],
and with numerical estimates of F

mob,α>0
adh for sterically

interacting mobile ligands [Eq. (5)]. We focus on invader
of spherical shape, mimicking artificial nanoparticles,
liposomes, and many enveloped viruses, including HIV
and influenza [39,52]. The overall free energy is minimized
as a function of the penetration depth h ∈ [0, 2a], where a

is the radius of the invader, and the equilibrium values of
h are shown in Fig. 3 as a function of K

(eq)
2D ρR [cf. Eqs. (2)

and (3)] and all the other relevant system parameters: NL,
σ , κ , and γ . For generality, membrane tension, bending
modulus, and line tension are expressed in reduced units
σ̃ = σ/[kBT a−2], γ̃ = γ /[kBT a−1] and κ̃ = κ/[kBT ]. For
temperature T = 37◦C, and considering invader similar in
size to a typical virus, i.e. a = 50 nm, the range of parameters
covered in Fig. 3 spans biologically relevant intervals κ ∈
[0, 30] × kBT [54–56], σ ∈ [0, 34] × 10−6 J m−2 [54,55,57],
γ ∈ [0, 12] × 10−13 J m−1 [11,58], and NL ∈ [10, 1000]
[52,53].
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FIG. 3. Mobile, thin ligands suppress complete wrapping of invader particles. The colormaps show the penetration depth h ∈ [0, 2a]
for spherical invaders of radius a as a function of the dimerization constant K

(eq)
2D (in units of ρ−1

R ), and the system parameters NL, κ̃ =
κ/[kBT ], γ̃ = γ /[kBT a−1], σ̃ = σ/[kBT a−2]. Regions corresponding to fully wrapped and unwrapped particles are marked by a circle and
a square, respectively. When not varied, the system parameters are fixed to the values marked by the dotted lines. As for Fig. 2, we keep
a constant ρR = NL/STot in all calculations. For a typical invader size a = 50 nm and T = 37 ◦C, these correspond to κ = 8.6 × 10−20 J,
σ = 8.5 × 10−6 J m−2, γ = 3.4 × 10−13 J m−1, NL = 500. Green dashed lines and white dot-dash lines indicate, respectively, the number of
ligands on typical influenza A (375) and HIV (73) virions [52,53].

Spherical invaders featuring fixed ligands always display
a first-order transition between fully unwrapped (h = 0) and
fully wrapped (h = 2a) configurations. Partially wrapped
states do not occur, as previously observed when neglecting
long-range elastic deformations of the host membrane [44].
As intuitively expected, the wrapping transition occurs at
lower K

(eq)
2D for “softer” membranes (lower σ̃ and κ̃) and

higher number of ligands on the invader. No γ -dependence
is observed, since � = 0 in both fully wrapped and fully
unwrapped states.

The scenario changes drastically for the case of mobile
ligands with φ = 0, were we observe the emergence of several
partially wrapped configurations. The phase boundary mark-
ing the onset of wrapping differs only marginally from the
case of fixed ligands, but the range of conditions where full
wrapping is achieved is significantly reduced. For instance,
while with fixed ligands and K

(eq)
2D ρ

(0)
R = 102 full wrapping

is reached at NL 	 140, for mobile ligands NL needs to
be as large as 540. Likewise, for the same ligand-receptor
affinity, fixed ligands induce full wrapping at all tested values
of κ̃ and σ̃ , while for mobile ligands κ̃ < 22 and σ̃ < 9
are required, values that can easily be exceeded in typical
biological cells [55,57]. The reduced tendency to complete
wrapping is a direct consequence of the rearrangement of

the mobile ligands, whose accumulation within small contact
regions suppresses the enthalpic drive for further wrapping.
As expected from the trends shown in Fig. 2 for the adhesion
free energy in the presence of steric interactions, increasing
ligand packing fraction in the mobile regime favours complete
wrapping, recovering a behavior not dissimilar from that of
fixed ligands for φ = 0.4.

In Fig. 4 we assess the wrapping behavior of an invader
shaped like a prolate ellipsoid, resembling the malaria plas-
modium [11]. The ellipsoid is arranged with the major axis
perpendicular to the surface of the host, mimicking the inva-
sion geometry of the malaria plasmodium [11]. In this case,
partially wrapped states are present also for the case of fixed
ligands. However, mobile ligands cause the regions of stable
fully wrapped configurations to shrink significantly, and in
some cases disappear altogether from the tested parameter
range. Moreover, the partially wrapped states found with fixed
ligands tend to be close to full wrapping, while mobile ligands
tend to stabilize marginally wrapped configurations. As for
spherical invaders (Fig. 3), steric interactions between ligands
facilitate wrapping.

Calculations of Figs. 3 and 4 neglect the energetic terms
related to the deformation of the non-adhering part of the host
membrane. Therefore, in the next section we calculate the
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FIG. 4. Penetration depth for prolate invaders as a function of K
(eq)
2D and the system parameters (see the caption of Fig. 3 for definitions).

The invader is taken with the semi-major axis a perpendicular to the host surface and semi-minor axis equal to b = a/2. When not varied, the
system parameters are fixed to the values marked by the dotted lines and, if a = 50 nm and T = 37◦C, correspond to the values reported in the
caption of Fig. 3. Regions corresponding to fully wrapped and unwrapped particles are marked by a circle and a square, respectively.

degree of wrapping using previously published numerical esti-
mates of the membrane-deformation energy, fully accounting
for non-local deformations [45].

C. Effect of nonadhering membrane
and nanoparticle orientation

In this section we study the wrapping behavior using a
free energy functional F in which the membrane-deformation
energy terms are replaced by the numerical estimate Felast,
extracted from Ref. [45],

F (SCR/STot ) = Felast (SCR/STot ) + Fadh(SCR/STot ). (6)

In Eq. (6), Felast accounts for the membrane bending, stretch-
ing, and the tension of the host-invader contact line [respec-
tively, Fbend, Fstretch, and Flt in Eq. (1)] but also for the
nonlocal elastic contribution of the deformed portion of the
membrane surrounding the invader. For detailed information
on the calculation of Felast and the chosen boundary conditions
we refer to Ref. [45]. Note that in Eq. (6), the free energy
is expressed as a function of the fraction of the invader area
in contact with the host SCR/STot, rather that the penetration
depth h. Felast has been extracted by fitting digitalized data
of Ref. [45] (see Fig. S1 in the Supplemental Material of
Ref. [45]) using polynomials of degree ten, while Fadh is given
by Eqs. (2) and (3), for fixed and mobile ligands, respectively.
The equilibrium wrapping state is determined by numerically
minimizing F as function of SCR/STot. In Figs. 5 and 6 we
show the equilibrium fraction of contact area for invaders

shaped like prolate/oblate ellipsoids and rods, oriented with
their symmetry axis parallel or perpendicular to the host
surface. The degree of wrapping is mapped as a function of
K

eq
2Dρ

(0)
R and either NL or κ̃ . In all cases, we observe the

same qualitative trends shown in Figs. 3 and 4, and calculated
using the analytical expression for the interaction free energy
[Eq. (1)]. This demonstrates how the effect of ligand mobility
on the wrapping behavior is largely insensitive on the details
of membrane mechanics. In particular, the range of param-
eters for which fully wrapped configurations are stabilized
is strongly suppressed for the case of mobile ligands, which
tend to induce partial wrapping due to the accumulation of
linkers in the contact region. For fixed linkers, in turn, we
observe a greater tendency towards complete or near-complete
wrapping, caused by the uniform adhesion force and the
resulting enthalpic drive for maximizing the contact area.
Different invader shapes and orientations display different
wrapping behaviors, as thoroughly discussed by Dasgupta
et al. [45]. Note also the semiquantitative agreement between
the patterns calculated with the two methods for prolate-
ellipsoidal invaders oriented perpendicular to the host surface
(bottom right in Fig. 5 and right-hand side of Fig. 3).

IV. CONCLUSIONS

In summary, we apply state of art modeling of ligand-
mediated-interactions to the problem of passive endocytosis,
and demonstrate how membrane wrapping of invader par-
ticles is drastically affected by ligand mobility and steric
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FIG. 5. Equilibrium wrapping degree of ellipsoidal particles at
varying number of ligands NL and bending rigidity κ̃ . The shape of
the invader is described by (x2 + y2)/a2 + (|z|/b)2 = 1 with b/a =
0.8 (a) and b/a = 1.75 (b). Please refer to the caption of Fig. 3
for the definition of the adimensional system parameters. When not
varied, the bending rigidity has been taken equal to κ̃ = 20, and the
number of ligands to NL = 500 (dotted lines). The membrane tension
is set to σ̃ = 16 by Dasgupta et al. [45]. Regions corresponding to
fully wrapped and unwrapped particles are marked by a circle and a
square, respectively.

interactions. If ligands are diffusive and have negligible steric
interactions, complete membrane wrapping is hindered, and
the invading particle is often found in a partially engulfed
state. In turn, complete membrane wrapping is facilitated if
ligands are immobile or their accumulation is substantially
limited by steric interactions.

These effects may have important implications in under-
standing the relationship between the structure of biological
invaders and their ability to induce passive endocytosis, which
would be particularly relevant in the context of viral invasion,
where several competing uptake pathways have been observed
or hypothesized [4,5]. Regardless of the capsid shape, many
viruses are enveloped by a (near) spherical lipid bilayer,
decorated with glycoprotein complexes (spikes), whose role
is targeting cell receptors and driving endocytosis [52]. De-
spite being embedded in a lipid membrane, these ligands are
anchored to a protein matrix present underneath the bilayer,
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FIG. 6. Equilibrium wrapping degree of rod-like particles at
varying number of ligands NL and bending rigidity κ̃ . The shape
of the invader is described by the equation [(x2 + y2)/a2](n/2) +
(|z|/b)n = 1 with n = 4 and b/a = 1.5. Please refer to the caption
of Fig. 3 for the definition of the adimensional system parameters.
When not varied, the bending rigidity has been taken equal to
κ̃ = 20, and the number of ligands to NL = 500 (dotted lines); the
membrane tension is set to σ̃ = 16 by Dasgupta et al. [45]. Regions
corresponding to fully wrapped and unwrapped particles are marked
by a circle and a square, respectively.

which makes them immobile [52,53]. Our results suggest that
ligand anchoring may be crucial to allow or at least facilitate
membrane wrapping in enveloped viruses. Indeed, influenza
A has ∼ 375 spikes on its surface [52,53], which according to
our model may not be sufficient to induce complete wrapping
if the ligands were mobile (Fig. 3). In turn we predict that,
with only ∼ 73 ligands on its surface, HIV virions would
struggle to achieve passive engulfment even in the regime
of fixed ligands, suggesting that active endocytosis pathways
may be a strict requirement [12].

Our findings apply as well to artificial delivery vectors
relying on passive endocytosis. For instance, we predict that
passive endocytosis of functionalized liposomes can be en-
hanced by choosing high-viscosity lipid formulations that
hinder ligand mobility or choosing high-molecular weight
ligands to boost their packing fraction. Future designs of
delivery systems will likely need to refine the molecular prop-
erties of the ligands (see, e.g., Ref. [59]). In this respect, our
manuscript provides a valuable design platform allowing to
study the impact of molecular details of the ligands on the de-
gree of wrapping. For instance, changes in the ligand-receptor
affinities close to the triple line, as due to larger host-guest
distances, could be easily investigated using heterogeneous
association constants (K (eq)

2D ).
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APPENDIX A: ELASTIC DEFORMATION
OF THE MEMBRANE

To analytically estimate the energy cost associated to the
deformation of the membrane, used to calculate the wrapping
phase diagrams in Figs. 3 and 4 [Eq. (1)], we model the
invader as a prolate ellipsoid with axis (z) orthogonal to cell
surface, defined by the equation

x2

a2
+ y2

a2
+ z2

b2
= 1, (A1)

with b > a and eccentricity defined by

e2 = 1 − a2

b2
. (A2)

The case of spherical invader is simply recovered in the limit
a = b and e = 0. In polar coordinates θ and ϕ, the surface of
the invader is parametrized as

x = a cos θ cos ϕ, y = a cos θ sin ϕ, z = b sin θ. (A3)

As detailed in Eq. (1), the free energy of the system, in which
the innermost point of the invader penetrates to a depth h,
comprises a membrane stretching term (Fstretch), membrane
bending term (Fbend), a line tension term (Flt), and an adhesion
term (Fadh). Below we calculate the energy terms associated
with the mechanical deformation of the membrane [60].

1. Membrane stretching

The stretching energy is calculated as Fstretch = σSCR(h),
where SCR(h) is the contact area between invader and cell
and σ is the cell-membrane stretching modulus. Defining
y(h) = (h − b)/b, in the general case we find

F
ellips
stretch(h) = 2πabσ

∫ y(h)

−1
dy

√
1 − e2y2

= 2πabσ

[
y(h)

2

√
1 − e2y(h)2 + arcsin(ey(h))

2e

+ 1

2

√
1 − e2 + arcsin e

2e

]
,

dF
ellips
stretch(h)

dh
= 2πaσ

√
1 − e2y(h)2, (A4)

while for spherical invaders we obtain

F
sph
stretch(h) = 2πahσ

dF
sph
stretch(h)

dh
= 2πaσ. (A5)

2. Membrane bending

The bending energy of the membrane calculated as the
integral over the contact area of 2κH 2 where κ is the bending

modulus and H is the average curvature H = 1/(2c1) +
1/(2c2), where c1 and c2 are the principal radii of curvature at
a given point r = (x, y, z). These radii are equal to α2/p and
β2/p where α and β are the semi-axes of the ellipse obtained
intersecting the ellipsoid with the central plane parallel to the
plane tangent to r, while p is the distance between the center
of the ellipsoid and the tangent plane [61]. We find

α2 = a2 β2 = a2 sin2 θ + b2 cos2 θ

p = ab√
a2 sin2 θ + b2 cos2 θ

, (A6)

resulting in

H = ab√
a2 sin2 θ + b2 cos2 θ

×
[

1

2a2
+ 1

2(a2 sin2 θ + b2 cos2 θ )

]
. (A7)

The bending contribution to the energy is then written as

F
ellips
bend (h) = πka3

b3

∫ y(h)

−1

dy√
1 − e2y2

[
1

1 − e2y2
+ b2

a2

]2

= πk

[
2ay(h)

b
√

1 − e2y(h)2
+ a3

b3

3y(h) − 2e2y(h)3

3(1 − e2y(h)2)3/2

+ b

ae
(arcsin(ey(h)) + arcsin e) + 2a

b
√

1 − e2

+ a3

b3

3 − 2e2

3(1 − e2)3/2

]
,

dF
ellips
bend (h)

dh
= πka3/b4√

1 − e2y(h)2

[
1

1 − e2y(h)2
+ b2

a2

]2

. (A8)

For spherical invaders the equations reduce to

F
sph
bend(h) = 4π

hκ

a

dF
sph
bend(h)

dh
= 4π

κ

a
(A9)

3. Line tension

This contribution describes the energy associated to the
deformation of the membrane at the junction (triple line)
between the contact region and the nonadhering surface of the
host cell. As such,

F
ellips
lt (h) = F

sph
lt (h) = 2πγ�(h) = 2πγ a

√
1 − y(h)2,

dF
ellips
lt (h)

dh
= −2πγ a

b

y(h)√
1 − y(h)2

, (A10)

where γ is the line tension and �(h) is the length of the triple
line.

APPENDIX B: CALCULATION OF THE ADHESION FREE
ENERGY FOR MOBILE LIGANDS

We consider an invader of area STot carrying NL ligands,
interacting with a cell surface functionalized by receptors.
SCR denotes the area of the contact region (CR) between the
cell and the invader, while SOR is the area of the invader
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outer region (OR) (see Fig. 1). The density of receptors in
the CR is controlled by the areal density ρ

(0)
R of an ideal

receptor reservoir in contact with the CR, related to a receptor
chemical potential μR by the relation μR ∼ log ρ

(0)
R . Ligands

and receptors are modeled as freely diffusing hard disks.
Ligands can reversibly bind receptors forming connections
between the the invader and the cell membrane (see Fig. 1).

Reaction dynamics is controlled by the equilibrium constant
K

(eq)
2D (see main text).
The partition function of the system (Z) is derived sum-

ming over all the possible configurations of the system, speci-
fied by the number of dimers (nD), receptors (nR , nR − nD of
which unbound), and ligands (nL, nL − nD of which unbound)
present in the CR:

Z =
NL∑

nL=0

∑
nR�0

min[nR,nL]∑
nD=0

Z (nL, nR, nD) =
NL∑

nL=0

∑
nR�0

min[nR,nL]∑
nD=0

exp[−βF (nL, nR, nD)],

Z (nL, nR, nD) =
(

NL

nL

)
(SOR)NL−nL (SCR)nR+nL−nDZ

(excl)
OR (NL − nL)

×
(
ρ

(0)
R

)nR

nR!

nR!nL!

nD!(nR − nD)!(nL − nD)!

(
K

(eq)
2D

)nD
Z

(excl)
CR (nR − nD, nL − nD, nD). (B1)

In Eq. (B1), (ρ (0)
R )nR/nR! is the grand-canonical weight of

having nR receptors in the CR while the following combina-
torial term accounts for the number of ways nD dimers can
be formed starting from nL ligands and nR receptors in the
contact region [26,37]. F is the free energy at fixed number
of complexes in the CR, and Z

(excl)
OR is the nonideal part of the

partition function of NL-nL ligands confined in an area equal
to SOR, and can be written as

Z
(excl)
OR = 1

(SOR)NL−nL

∫
d2r1 · · · d2rNL−nL

× exp

[
− β

∑
i<j

VLL(|ri − rj |)
]
, (B2)

where ri are ligand coordinates spanning the outer region of
the invader, and VLL models excluded volume interactions
between ligands. We neglect curvature effects and calculate
Z

(excl)
OR using flat surfaces with periodic boundary conditions.

This approximation is valid in the limit of big invaders and
allows sampling the non-ideal properties of the system using
small simulation boxes at given ligand and receptor densities.
Z

(excl)
CR is the nonideal part of the partition function in the

contact region and is defined similarly to Eq. (B2). However
Z

(excl)
CR also includes excluded volume interactions between

dimers and ligands and receptors as specified by the potentials
VLL, VLD, and VRD. Without loss of generality in this study we
have neglected ligand-receptor steric interactions. If one chose
VLR �= 0, however, the thermodynamic integration procedure
defined in Eq. (5) of the main text should have included an
extra contribution due to the fact that ligands and receptors
interact also in absence of dimerization. In this work we sam-
pled microstates distributed as in Eq. (B2) using Monte Carlo
simulations [Sec. (B 1)] and a virial expansion as detailed in
Sec. (B 2).

1. Monte Carlo algorithm

The Monte Carlo moves we implemented are sketched in
Fig. 1 of the main text. The acceptance rules presented below
satisfy detailed balance conditions calculated using Eq. (B1).

Ligands are moved between the CR and the OR by means
of a semigrand canonical move that conserves the total
number of ligands. The flow chart of the algorithm is the
following:

(1) With equal probability we decide whether to attempt a
displacement from the CR to the OR or vice versa.

(2) A ligand is randomly chosen from the CR (OR).
(3) A new position for the ligand is randomly selected in

the OR (CR).
(4) We check whether the new position satisfies excluded

volume constraints (i.e., the ligand does not overlap with
another ligand or a dimer).

(5) If excluded volume constraints are satisfied the move
is accepted with probability

accdisp = min

[
1,

noSn

(NL − no + 1)So

]
, (B3)

where no is the number of ligands in the region from which
we attempt to remove a binder, and So/Sn (o/n=CR or OR) is
the area of the old/new region.

Receptors are exchanged between the CR and an ideal
reservoir with areal density ρ

(0)
R by means of a grand-

canonical move, implemented as follows:
(1) With equal probability we decide whether to attempt

an insertion or removal of a receptor from the CR.
(2) If an insertion move is chosen we randomly select a

position for the new receptor in the CR.
(3) We check excluded volume constraints in the CR.
(4) If excluded volume constraints are satisfied, then we

accept the insertion move with probability

accins = min

[
1,

ρ
(0)
R SCR

m + 1

]
, (B4)

where m is the number of receptors in the CR prior the move.
(2) For removal moves we chose a random receptor to

remove from the CR
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(3) Removal moves are accepted with probability

accrem = min

[
1,

m

ρ
(0)
R SCR

]
. (B5)

Reaction moves in which dimers are formed from a disso-
ciated ligand-receptor pair in the CR, or an existing dimer is
split into a ligand and a receptor, are implemented as follows:

(1) With equal probability we decide whether to form or
break a dimer.

(2) If a dimer formation is attempted, we randomly chose
a ligand and a receptor from the CR.

(3) A position for the newly formed dimer is chosen
randomly in the CR.

(4) Excluded volume constraints are checked.
(5) If excluded volume constraints are satisfied, the

dimerisation is accepted with probability

accbind = min

[
1,

nm

d + 1

K
(eq)
2D

SCR

]
, (B6)

where n, m, and d are, respectively, the number of ligands,
receptors, and dimers in the contact area prior the move.

(2) If a dimer breakup is attempted, we randomly chose a
dimer in the CR.

(3) New positions for the freed ligand and receptor are
chosen randomly in the CR.

(4) Excluded volume constraints are checked for the lig-
and and the receptor.

(5) If excluded volume constrains are satisfied, then the
breakup move is accepted with probability

accunbind = min

[
1,

d

(n + 1)(m + 1)

SCR

K
(eq)
2D

]
. (B7)

2. Virial expansion of the adhesion free energy

We estimate the partition function of the system [Eq. (B1)]
by using a second virial approximation of the excluded
volume part of the OR (Z(excl)

OR ) and the CR (Z(excl)
CR ) parti-

tion functions [62]. In terms of Mayer factors (fLL(rij ) =
exp[VLL(|ri − rj |)] − 1) Z

(excl)
OR [Eq. (B2)] can be written as

Z
(excl)
OR (NL − nL) =

∫
dr1 · · · drNL−nL

(SCR)NL−nL

∏
i<j

(fij (rij ) + 1)

= 1 + 1

S2
CR

∑
i<j

∫
dridrj fij (rij ) + · · · ,

(B8)

from which we obtain

Z
(excl)
OR (m) = 1 − B2

m(m − 1)

SOR
+ · · ·, (B9)

where B2 = πα2/2 is the second virial coefficient of disks
with diameter α. Note that corrections to the previous expres-

sions are of the order of φ2. Similarly,

Z
(excl)
CR

(
n0

R, n0
L, nD

) = 1 − B2
n0

L

(
n0

L − 1
)

SCR
− B2

n0
R

(
n0

R − 1
)

SCR

−B2
nD(nD − 1)

SCR
− 2B2

n0
LnD

SCR

− 2B2
n0

RnD

SCR
, (B10)

where n0
L and n0

R are the numbers of free ligands and receptors
in the CR (n0

L = nL − nD and n0
R = nR − nD). By inserting

Eqs. (B9) and (B10) into Eq. (B1) we can explicitly estimate
the free energy F as function of nL, nD, nR, and B2. In the
saddle-point approximation we identify most probable values
for the average numbers of ligands, receptors and dimers by
setting

dF
dnL

= 0,
dF
dnR

= 0,
dF
dnD

= 0, (B11)

obtaining, respectively,

log

[
NL − nL

SOR

SCR

nL − nD

]
= 2B2

[
nL

SCR
− NL − nL

SOR

]
, (B12)

log

[
ρ

(0)
R SCR

nR − nD

]
= 2B2

nR

SCR
, (B13)

log

[
(nR − nD)(nL − nD)

nD

K
(eq)
2D

SCR

]
= −2B2

nD

SCR
. (B14)

By setting B2 = 0 in Eqs. (B12), (B13), and (B14), we obtain
the number of ligands, receptors, and dimers (nL,0, nD,0, and
nR,0) in the limit of ideal linkers (α = 0) [37]:

nL,0 = NL
SCR

(
1 + K

(eq)
2D ρ

(0)
R

)
SOR + SCR

(
1 + K

(eq)
2D ρ

(0)
R

) , (B15)

nD,0 = NL
SCRK

(eq)
2D ρ

(0)
R

SOR + SCR
(
1 + K

(eq)
2D ρ

(0)
R

) , (B16)

nR,0 = ρ
(0)
R SCR + nD,0. (B17)

Using Eqs. (B15), (B16), and (B17) with Eqs. (B12), (B13),
and (B14) we can calculate the leading-order corrections to
the ideal terms (nL,1, nD,1, and nR,1). These satisfy

nD,1 − nL,1

[
SCR

SOR
+ 1

]
= 2B2nD,0

SCR
(nL,0 − nD,0), (B18)

nD,1 − nR,1 = 2ρ
(0)
R B2nR,0, (B19)

nR,1 − nD,1

ρ
(0)
R SCR

+ nL,1 − nD,1

nL,0 − nD,0
− nD,1

nD,0
= −2B2

nD,0

SCR
. (B20)

The free energy of the system can then be calculated using
the equilibrium concentrations of the complexes [Eqs. (B15)–
(B20)] in the perturbative expansion of F [Eqs. (B1), (B9),
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and (B10)]:

βF = βF (nL,0 + nL,1, nR,0 + nR,1, nD,0 + nD,1)

≈ βF (nL,0, nR,0, nD,0)

= K + NL log
NL − nL,0

SOR

+ B2

SCR

[
(nL,0 − nD,0)(NL + nD,0) + n2

R,0

]
,

F
mob,α
adh = F

(
K

(eq)
2D

) − F0, (B21)

where K = −NL log NL − ρ
(0)
R SCR, F0 is the reference value

of the free-energy that is calculated using K
(eq)
2D = 0, and

STot is the total area of the invader (STot = SOR + SCR). Note
that because of the saddle-point Eqs. (B11), at the leading
order in φ, only the ideal number densities contribute to the
free energy. Also, F0 should be subtracted from F when
calculating adhesion free energies. Using Eqs. (B17), (B15),
(B16) in Eq. (B21) we can derive Eqs. (3) and (4).

APPENDIX C: CALCULATION OF THE ADHESION FREE
ENERGY FOR FIXED LIGANDS

Here we adapt calculations of the previous section to the
case of invaders decorated by fixed ligands binding ideal
mobile receptors. In this case the number of ligands in the
CR is fixed and equal to nL(h) = NLSCR(h)/STot. Similar to

Eq. (B1) the partition function is then given by

Z =
∑
nR�0

min[nR,nL]∑
nD=0

Z (nR, nD),

Z (nR, nD) = (SCRρ
(0)
R )nR

nR!

(
nR

nD

)(
nL(h)

nD

)
nD!

(
K

(eq)
2D

SCR

)nD

.

(C1)

Using the previous equations we can calculate the average
number of ideal receptors and dimers by solving the saddle-
point equations

dF (nR,0, nD,0)

dnR
= 0,

dF (nR,0, nD,0)

dnD
= 0, (C2)

obtaining

nR,0 − nD,0 = ρ
(0)
R SCR,

nD,0

(nR,0 − nD,0)(nL,0 − nD,0)
= K

(eq)
2D

SCR
. (C3)

Using Eqs. (C4) into Eq. (C1) we can calculate the free
energy and adhesion free energy as follows:

βF = βF (nR,0, nL,0)

= −nL(h) log
(
1 + K

(eq)
2D ρ

(0)
R

) + ρ
(0)
R SCR,

F
fix,α=0
adh = F

(
K

(eq)
2D

) − F (0). (C4)

Equation (C4) corresponds to Eq. (2).
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