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The circadian oscillator exhibits remarkably high temporal precision, despite its exposure to several fluc-
tuations. The central mechanism that protects the oscillator from fluctuations is a collective enhancement of
precision where a population of coupled oscillators displays higher temporal precision than that achieved without
coupling. Since coupling is essentially information exchange between oscillators, we herein investigate the
relation between the temporal precision and the information flow between oscillators in the linearized Kuramoto
model by using stochastic thermodynamics. For general coupling, we find that the temporal precision is bounded
from below by the information flow. We generalize the model to incorporate a time-delayed coupling and
demonstrate that the same relation also holds for the time-delayed case. Furthermore, the temporal precision
is demonstrated to be improved in the presence of the time delay, and we show that the increased information
flow is responsible for the time-delay-induced precision improvement.
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I. INTRODUCTION

The circadian oscillator is a biological clock that is preva-
lent in biological organisms ranging from bacteria to humans
[1,2]. Since the circadian oscillator is induced by biochemical
reactions on a cellular level, it is subject to several fluctu-
ations. Despite such stochasticity, the circadian oscillator is
known to exhibit incredibly high temporal precision [3] where
the temporal standard deviation is approximately 3–5 min in
24 h [4]. In a single oscillator level, a phase response curve,
which quantifies the dynamics of the oscillator, is optimized
so as to achieve high temporal precision [5,6]. Still, this single
oscillator level improvement does not seem to fully explain
the above mentioned temporal precision. Another significant
precision improvement arises at the population level [7]. A
previous study [8] experimentally showed that when oscilla-
tors are coupled, each oscillator exhibits higher precision than
that realizable without coupling. This phenomenon is referred
to as collective enhancement of precision (CEP) [7,9,10].
Since mammalian circadian oscillation occurs primarily in
the suprachiasmatic nucleus (SCN), which is a collection of
104 cells, CEP is considered to be responsible for the high
temporal precision in the circadian oscillator [7].

CEP is induced by coupling, which is essentially the
exchange of information. Information enables the violation
of the second law of thermodynamics through the Maxwell
demon. High precision is achieved at the cost of energy con-
sumption, which is known as the thermodynamic uncertainty
relation [11–15]. When we ignore the coupling between oscil-
lators, CEP appears to achieve thermodynamically impossible
precision, motivating us to analyze CEP from the viewpoint of
information analogous to the Maxwell demon (Fig. 1). Using
stochastic thermodynamics [16–18], we find that the temporal
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variance of coupled oscillators is bounded from below by
the information flow conferred by coupling. Furthermore, we
generalize the obtained relation to incorporate time-delayed
coupling and show that the same relation also holds for the
time-delayed case. Intriguingly, the temporal precision in the
time-delayed case is improved as compared to the nondelayed
case, and we can ascribe this time-delay-induced improve-
ment to the increase in the information flow.

II. MODEL

We consider N coupled identical oscillators, which are
entrained by an external periodic signal with the angular
frequency � and are subject to noise [Fig. 2(a)]. Let φi be the
phase of the ith oscillator, and let ω be the angular frequency
of oscillators. Then, the phase dynamics of each oscillator
can be described by the following forced Kuramoto model
[9,19,20]:

φ̇i = ω + L sin(�t − φi ) + fi (t ) + ξi (t ), (1)

fi (t ) =
∑

j∈V,j �=i

Kij sin(φj − φi ), (2)

where V = {1, 2, . . . , N} and we aggregate all coupling ef-
fects, which act on φi , into a single coupling variable fi (t ).
The sinusoidal term in Eq. (1) represents the periodic signal,
and L > 0 denotes its strength. A sinusoidal function in
Eq. (2) is a coupling function that represents the interaction
between oscillators, where Kij is the coupling strength be-
tween the ith and the j th oscillators. Note that we allow
both symmetric (Kij = Kji) and asymmetric (Kij �= Kji)
couplings. The phase reduction with which the phase equation
of Eq. (1) is derived assumes Langevin equations to be inter-
preted in the Stratonovich sense. Moreover, ξi (t ) is zero-mean
white Gaussian noise with the correlation 〈ξi (t )ξi ′ (t ′)〉 =
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FIG. 1. Analogy between (a) the Maxwell demon and (b) the
CEP. (a) When a system X is coupled to another system Y, X ’s
medium entropy �Sm

X , which is the heat from X to the medium
(divided by the temperature), can be negative. (b) When an oscillator
X is coupled to another oscillator Y, VX (the temporal variance with
coupling) can be smaller than Vw/o

X (the temporal variance without
coupling).

2Dδii ′δ(t − t ′) (D is the noise strength). The derivation of
Eq. (1) can be found in Refs. [21,22]. We hereinafter assume
that all of the oscillators are synchronized to the periodic
signal. Although CEP is often studied for L = 0, we assume
L > 0, which enables an approximation of the synchronized
behavior as a nonequilibrium steady state.

Since there are efferent projections from the SCN to other
neurons, the output of the SCN has been suggested to be
generated by the average of a subset of oscillators and not
by the average of all oscillators [10]. Therefore, we observe
the average phase �(t ) = (1/NO )

∑
i∈VO

φi (t ), where VO is a
set of observable oscillators and NO is its element number
[Fig. 2(b)] [10]. We also define VL and NL to be a set of
latent variables (the output of which is not observed) and
its element number, respectively. Every oscillator belongs to
the whole set V = VO ∪ VL, and VO and VL are disjoint,
i.e., VO ∩ VL = ∅. See Fig. 2(b). Defining a relative phase
xi observed from a rotating frame as xi = φi − �t, the syn-
chronizing assumption is that xi is well concentrated around
0. This condition can usually be satisfied when |ω − �|/L
is sufficiently small and D is sufficiently weak. Let μA =
〈A〉, VA = 〈A2〉 − 〈A〉2, and CAB = 〈AB〉 − 〈A〉〈B〉, where
A and B are arbitrary random variables, and let X(t ) =
�(t ) − �t = (1/NO )

∑
i∈VO

xi (t ), which is the average phase

(a) (b)Periodic signal

Oscillator

Noise

FIG. 2. Coupled oscillators model. (a) Adopted coupled oscil-
lator model for N = 7 (V = {1, 2, . . . , 7}). Each oscillator is en-
trained by a periodic signal with the angular frequency � and is
subject to noise ξi (t ). (b) Observable set VO and latent set VL, where
VO = {1, 2, 5} and VL = {3, 4, 6, 7} in this example.

seen from a rotating frame. The temporal variance of the
average phase �(t ) is given by the variance VX. Since each
phase xi is well concentrated around 0 (we assumed that all of
the oscillators are synchronized with the periodic signal), we
apply a Taylor series expansion to Eqs. (1) and (2) to obtain

Ẋ = −L(X − c) + F (t ) + �O (t ), (3)

ẋi = −L(xi − c) +
∑

j∈V, j �=i

Kij (xj−xi ) + ξi (t )(i ∈ V ), (4)

where F (t ) is defined by

F (t ) = 1

NO

∑
i∈VO

fi (t ) = 1

NO

∑
i∈VO

∑
j∈V, j �=i

Kij (xj − xi ), (5)

and c = (ω − �)/L and �O (t ) = (1/NO )
∑

i∈VO
ξi (t )

[〈�O (t )�O (t ′)〉 = (2D/NO )δ(t − t ′), 〈�O (t )ξi (t ′)〉 =
(2D/NO )δ(t − t ′) for i ∈ VO , and 〈�O (t )ξi (t ′)〉 = 0 for
i ∈ VL]. Here, F (t ) includes all of the coupling effects that
act on xi for i ∈ VO . Therefore, the information flow between
X and F is of interest. We calculate the information flow
between X and F based on Refs. [23,24], which is defined as

İX(X; F ) = −
∫

JX(X,F )
∂

∂X
ln P (F |X)dX dF

= − 1

dt

〈
ln

(
P [F (t )|X(t + dt )]

P [F (t )|X(t )]

)〉
, (6)

where the sign is reversed compared to the original definition.
This quantity is equivalent to the learning rate [25–27]. In
order to calculate the information flow, we introduce a hy-
pothetical time delay h > 0 in Eq. (5), which yields F (t ) =
(1/NO )

∑
i∈VO

∑
j∈V, j �=i Kij [xj (t − h) − xi (t − h)]. The in-

troduction of time-delay h is a mathematical trick, and, when
calculating several quantities, we set h → 0 afterwards. Using
a Taylor expansion for a sufficiently small h, we obtain

Ḟ = h−1

⎛⎝−F + 1

NO

∑
i∈VO

∑
j∈V, j �=i

Kij (xj − xi )

⎞⎠. (7)

Then, we can treat Eqs. (3), (4), and (7) as coupled Langevin
equations. Let P (X, x, F ) be a time-dependent probability
density function of X, x = [x1, . . . , xN ], and F [for nota-
tional convenience, we dropped time t in the argument in
P (X, x, F )]. Due to the linearity of Eqs. (3), (4), and (7),
the steady-state distribution is a Gaussian distribution with
mean [μX,μx1 , . . . , μxN

, μF ] = [c, c, . . . , c, 0]. The corre-
sponding Fokker-Planck equation (FPE) with respect to
P (X, x, F ) can be represented as

∂tP (X, x, F ) = L(X, x, F )P (X, x, F ), (8)

where L(X, x, F ) is a FPE operator, which is defined by

L(X, x, F ) = − ∂

∂X
[−L(X − c) + F ] + D

NO

∂2

∂X2

− ∂

∂F

1

h

⎧⎨⎩−F + 1

NO

∑
i∈VO

∑
j∈V, j �=i

Kij (xj −xi )

⎫⎬⎭
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−
∑
i∈V

∂

∂xi

⎧⎨⎩−L(xi −c)+
∑

j∈V, j �=i

Kij (xj −xi )

⎫⎬⎭
+D

∑
i∈V

∂2

∂x2
i

+ 2D

NO

∑
i∈VO

∂2

∂xi∂X
. (9)

We integrate out x in Eqs. (8) and (9) to obtain

∂tP (X,F ) = −∂XJX(X,F ) − ∂F JF (X,F ), (10)

where JX(X,F ) and JF (X,F ) are probability currents, which
are defined as

JX(X,F ) = {−L(X − c) + F }P − D

NO

∂P

∂X
, (11)

JF (X,F ) = h−1{−F + H(X,F )}P. (12)

in which P = P (X,F ) and H(X,F ) =∫
(1/NO )

∑
i∈VO

∑
j∈V,j �=i Kij (xj − xi )P (x|X,F )dx.

Although the FPE operator L(X, x, F ) of Eq. (9) contains
cross terms, such as ∂X∂xi

, due to nonvanishing correlation
〈�O (t )ξi (t )〉 �= 0 for i ∈ VO , they disappear when integrating
out x. From Eq. (10), we can obtain the generalized second
law following the conventional procedure in stochastic
thermodynamics [17,18,23,24]. We first consider the Shannon
entropy S(X,F ) = − ∫

P (X,F ) ln P (X,F )dX dF . The
time derivative is Ṡ(X,F ) = ṠX(X,F ) + ṠF (X,F ),
where ṠX(X,F ) = − ∫

JX(X,F )∂X ln P (X,F )dX dF ,
and ṠF (X,F ) = − ∫

JF (X,F )∂F ln P (X,F )dX dF . We
can divide JX(X,F ) of Eq. (11) into two contributions
JR

X (X,F ) and J I
X(X,F ), which are defined as J I

X(X,F ) =
−L(X − c)P − (D/NO )∂XP and JR

X = FP , respectively.
In feedback cooling of Brownian particles, J I

X and JR
X

correspond to the irreversible and reversible portions of the
probability current [23,28]. Then, ṠX(X,F ) is calculated as

ṠX(X,F ) =
∫ (

NO

(
J I

X

)2

DP
+ NOJ I

XL(X − c)

D

)
dX dF,

(13)

where J I
X = J I

X(X,F ) and P = P (X,F ). In Eq. (13),
the first term is non-negative, and the second term is
calculated as (1/D)

∫
NOJ I

X(X,F )L(X − c)dX dF =
−(NOL2/D)〈(X − c)2〉 + L. According to Ref. [24],
we have İX(X; F ) = −Ṡ(X) + ṠX(X,F ), where
S(X) = − ∫

P (X) ln P (X)dX. Under the synchronization
assumption, X is in a steady state, and thus Ṡ(X) = 0.
Combining these representations, the variance VX =
〈(X − c)2〉 satisfies

VX � VLB
X = D

L2NO

[L − İX(X; F )], (14)

where VLB
X is the lower bound of the variance VX. Equa-

tion (14) is our main result. When there is no coupling,
VX = D/(LNO ). Therefore, without information flow, the
variance does not improve beyond D/(LNO ), and Eq. (14)
shows that the CEP is induced by the information flow due
to coupling between oscillators. Equation (14) indicates that
the CEP has the same mathematical property as the feedback
cooling by the Maxwell demon [29,30] where the feedback

100

1
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0

1

(a) (b)

FIG. 3. Variance VX and its lower bound VLB
X as a function

of R = NL/NO for (a) D = 0.001 and (b) D = 0.1. The solid,
long-dashed, and dashed lines denote VLB

X , VX with K = 1, and
VX with K = ∞, respectively, obtained analytically. The squares,
crosses, circles, and triangles denote VLB

X with K = 1, VLB
X with

K = 10, VX with K = 1, and VX with K = 10, respectively, ob-
tained by Monte Carlo simulation. The other parameters are NO =
10, L = 1, ω = 1, and � = 1.

reduces the variance. The angular frequency � affects the
inequality of Eq. (14) through c = (ω − �)/L, showing that
the inequality does not have � dependence when ω = �. Note
that we cannot reach the desired inequality of Eq. (14) by
using the positivity of

∫
JX(X,F )2/P (X,F )dX dF in the

conventional total entropy production rate [31]. The transfer
entropy rate [32] is a similar quantity to the information flow.
It has been shown that the transfer entropy rate from X to F

is greater than or equal to the information flow [24,33,34].
Therefore, the same inequality as Eq. (14) holds for the
transfer entropy rate but the bound becomes weaker than the
information flow case.

III. EXAMPLES

A. Globally coupled model

We calculate VX and VLB
X analytically for a global uniform

coupling case Kij = K . Defining Y = (1/NL)
∑

i∈VL
xi , we

have

Ẏ = −L(Y − c) − F/R + �L(t ), (15)

Ḟ = h−1{−F + KNL(Y − X)}, (16)

where R = NL/NO and �L(t ) = (1/NL)
∑

i∈VL
ξi (t )

[〈�L(t )�L(t ′)〉 = (2D/NL)δ(t − t ′) and 〈�L(t )�O (t ′)〉 =
0]. Then, Eqs. (3), (15), and (16) constitute coupled Langevin
equations of the global uniform coupling model. Taking
a limit h → 0 for which the hypothetical time delay in F

vanishes, we can calculate VX, VF , and CXF analytically
due to the linearity of the coupled equations. Then, the
information flow İX(X; F ) can be calculated as follows
(Appendix A):

İX(X; F ) = LR. (17)

We plot VLB
X and VX of the global uniform coupling case for

D = 0.001 [Fig. 3(a)] and D = 0.1 [Fig. 3(b)]. The other
parameters are shown in the caption of Fig. 3. In Fig. 3,
the solid line denotes VLB

X , and the long-dashed and dashed
lines show VX for K = 1 and K = ∞, respectively. We also
carried out a Monte Carlo simulation (for details, please see
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Appendix D), where VX’s are denoted by circles (K = 1)
and triangles (K = 10, which is intended to simulate K =
∞), and VLB

X ’s are denoted by squares (K = 1) and crosses
(K = 10). Note that the Monte Carlo simulation is carried
out for equations that do not use the Taylor approxima-
tion. Apparently, VX � VLB

X for R � 0, which verifies the
inequality relation. For R > 1, VLB

X becomes negative, and
the lower bound does not have a practical meaning. The
difference is VX − VLB

X = L−2
∫

J I
X(X,F )2/P (X,F )dX dF ,

and the probability current |J I
X| becomes larger for larger R,

which is responsible for the gap between VLB
X and VX. The

inequality saturates when F → 0, i.e., there is no coupling.
Figure 3 shows that the Monte Carlo results agree with
the analytical calculations, even for a relatively large noise
intensity of D = 0.1 [Fig. 3(b)], and this demonstrates the
validity of the synchronization assumption and the Taylor
approximation. When R is sufficiently small, the variance
VX is close to VLB

X , which shows that oscillators maximally
exploit the information flow to improve the variance. As
shown in the next model, higher temporal precision can be
achieved if the information flow İX(X; F ) can be increased.

B. Time-delayed model

Next, we generalize the model to include time delay in the
coupling, which exists in reality and has been reported to be
able to cause different dynamics in the Kuramoto model [35].
In the context of feedback cooling, a time-delayed case was
investigated in Refs. [36,37]. Let τ � 0 be the time delay of
the coupling. Following Ref. [35], we incorporate the time
delay into Eq. (1) using the following fi (t ) instead of Eq. (2):

fi (t ) =
∑

j∈V, j �=i

Kij sin(φτ
j − φi ), (18)

where superscript τ hereinafter denotes a time-delayed
variable, i.e., φτ

j (t ) = φj (t − τ ). Similar to the nondelayed
case, we introduce a relative phase xi = φi − �t . For the
nondelayed case, μX = 0 when ω = �. However, for the
time-delayed case, μX deviates from 0, even when ω = �.
Therefore, in order for the Taylor approximation to yield
reliable results (i.e., xi should be well concentrated around 0),
�τ should be sufficiently small. In such cases, we can use the
Taylor approximation to obtain F = (1/NO )

∑
i∈VO

fi =
(1/NO )

∑
i∈VO

∑
j∈V,j �=i Kij (xτ

j − xi − �τ ), and the
introduction of the hypothetical delay h leads us to Ḟ =
(1/h){−F + (1/NO )

∑
i∈VO

∑
j∈V,j �=i Kij (xτ

j − xi − �τ )}.
Following Ref. [38], an effective FPE, which does not include
time-delayed variables, can be derived for the time-delayed
case. Let xτ = [xτ

1 , . . . , xτ
N ] and P (X, x, F ; xτ ) be the

probability density of X, x, and F at time t , and xτ at
time t − τ . Calculating the marginal distribution P (X,F ) =∫

P (X, x, F ; xτ )dx dxτ , the FPE for P (X,F ) is similar to
that given by Eqs. (10)–(12). Therefore, the inequality as in
Eq. (14) holds for the time-delayed case (Appendix B).

C. Globally coupled time-delayed model

Next, we calculate VX and VLB
X for a globally coupled

time-delayed case. For this case, we obtained the following

10-3 10-2 10-10

1

100

1

(a) (b)

(Simulation)

(Simulation)
(Analytic)

(Analytic)

FIG. 4. Variance VX and its lower bound VLB
X for a time-delayed

case. (a) VX and VLB
X as a function of R = NL/NO for the time-

delayed case (τ = 0.02) and K = 1. The dotted and dot-dashed lines
denote VX and VLB

X for τ = 0.02, respectively, obtained analytically.
The solid and long-dashed lines denote VLB

X and VX , respectively, for
the nondelayed case (τ = 0) and are identical to those in Fig. 3(a).
The circles and triangles denote VX and VLB

X , respectively, for τ =
0.02 obtained by Monte Carlo simulations. (b) Variance VX and
its lower bound VLB

X as a function of the time-delay τ for K = 1
and N = NO = 10. The solid and dashed lines denote VX and VLB

X ,
respectively, obtained analytically. The circles and triangles denote
VX and VLB

X , respectively, obtained by Monte Carlo simulations. In
(a) and (b), the other unspecified parameters are the same as those in
Fig. 3(a).

equations:

Ẋ = −LX + F + �O (t ), (19)

Ẏ = K{(NL − 1)Y τ − (N − 1)Y + NOXτ } − LY + �L(t ),

(20)

F = K{(NO − 1)Xτ − (N − 1)X + NLY τ }, (21)

where we have applied a parallel translation so that μX =
μY = μF = 0 holds for the steady state. Since the system is
the steady state under the synchronization assumption, we can
use the Fourier transform to calculate the covariance matrix
[38,39]. Let F[· · · ] be the Fourier transform operator, and let
ν be the Fourier variable. We define SF (ν) = F[〈F (t )F (0)〉],
SX(ν) = F[〈X(t )X(0)〉], and SXF (ν) = F[〈X(t )F (0)〉]. By
virtue of the Wiener-Khinchin theorem, VX, VF , and CXF

can be obtained by VX = (2π )−1
∫∞
−∞ SX(ν)dν, VF =

(2π )−1
∫∞
−∞ SF (ν)dν, and CXF = (2π )−1

∫∞
−∞ SXF (ν)dν

(Appendix C). Since the integration is complicated, we
evaluate these integrals numerically.

Figure 4(a) shows VX and VLB
X as a function of R for time

delay τ = 0.02 and K = 1. The other parameters are the same
as in Fig. 3(a). In Fig. 4(a), the dotted and dot-dashed lines
denote VX and VLB

X for τ = 0.02, respectively. The solid and
long-dashed lines represent VLB

X and VX for the nondelayed
case and are identical to those in Fig. 3(a) (shown for compar-
ison). We also carried out Monte Carlo simulations for τ =
0.02, and these data are shown by circles and triangles, which
correspond to VX and VLB

X , respectively. We again confirm
that the inequality of Eq. (14) also holds for the delayed case.
Figure 4(a) shows that VX for τ = 0.02 is lower than that of
the nondelayed case. Furthermore, VLB

X is also lower for the
delayed case. In order to clarify the effect of the time delay,
we plot VX and VLB

X as a function of τ for N = NO = 10 and
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K = 1 in Fig. 4(b). The solid and dashed lines denote VX

and VLB
X , respectively, obtained analytically, and the circles

and triangles denote VX and VLB
X , respectively, obtained by

Monte Carlo simulations. For τ < 0.03, the analytical and
Monte Carlo results agree, whereas they do not agree for
τ > 0.03. This is because φτ

j − φi in the coupling deviates
from 0 when τ increases, which degrades the reliability of the
Taylor approximation. Intriguingly, Fig. 4(b) shows that when
τ increases to τ ∼ 0.04, both VX and VLB

X decrease. Since the
lower bound VLB

X is smaller in the presence of a time delay,
the precision improvement can be ascribed to the increase
in the information flow İX(X; F ). Although the time delay
in the Kuramoto model is often studied from the viewpoint of
coherence and incoherence [35], we show that the time delay
is beneficial to temporal precision of oscillators.

IV. CONCLUSION

We obtained the inequality relating the temporal variance
in the Kuramoto model with the information flow conferred
by coupling between oscillators. The CEP is a universal
phenomenon and is not limited to coupled oscillators. For
instance, the precision of cellular concentration inference is
substantially improved when the concentration is measured by
a population of cells [40]. A similar calculation can be applied
in such cases, which will be left for future studies.
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APPENDIX A: GLOBALLY COUPLED MODEL

We calculate VLB
X and VX for a uniformly globally coupled model, where Kij = K . The Langevin equations for X and Y are

given by Eqs. (3) and (15), respectively. The coupling variable F is

F = KNL(Y − X). (A1)

Introducing the hypothetical delay h in Eq. (A1), we have

F (t ) = KNL[Y (t − h) − X(t − h)]. (A2)

Assuming that h is sufficiently small, the coupling variable obeys Eq. (16). Equations (3), (15), and (16) constitute coupled
Langevin equations. The corresponding FPE is

∂

∂t
P (X, Y, F ) = − ∂

∂X
{−L(X − c) + F }P (X, Y, F ) + D

NO

∂2

∂X2
P (X, Y, F ) − ∂

∂Y

{
−L(Y − c) − F

R

}
P (X, Y, F )

+ D

NL

∂2

∂Y 2
P (X, Y, F ) − ∂

∂F

1

h
{−F + KNL(Y − X)}P (X, Y, F ). (A3)

The steady-state distribution of Eq. (A3) is a Gaussian distribution,

P (X, Y, F ) = N (X, Y, F |μXYF ,�XYF ),

where N (·) denotes a multivariate Gaussian distribution and μXYF and �XYF are its mean vector and covariance matrix,
respectively. We can obtain the mean and covariance in the steady state. For h → 0, the hypothetical delay vanishes, and F

reduces to Eq. (A1). The mean vector is μXYF = [c, c, 0], and the covariance matrix �XYF is

�XYF =

⎡⎢⎢⎣
(KNO+L)D

NOL[K (R+1)NO+L]
DK

L[K (R+1)NO+L] − KRD
K (R+1)NO+L

DK
L[K (R+1)NO+L]

(KNOR+L)D
RNOL[K (R+1)NO+L]

DK
K (R+1)NO+L

− KRD
K (R+1)NO+L

DK
K (R+1)NO+L

NO (R+1)RK2D

K (R+1)NO+L

⎤⎥⎥⎦. (A4)

With Eq. (6), the information flow is obtained as follows:

İX(X; F ) = −CXF {CXF (D + NOCXF ) − NOVFVX}
NOVX

(
C2

XF − VFVX

) . (A5)

From Eqs. (A4) and (A5), we obtain Eq. (17).

APPENDIX B: TIME-DELAYED MODEL

In the main text, we consider the time-delayed case. Assuming that �τ is sufficiently small, we can apply the Taylor
approximation to obtain

dX

dt
= ω − � − LX + F + �O (t ), (B1)
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dxi

dt
= ω − � − Lxi +

∑
j∈V, j �=i

Kij

(
xτ

j − xi − �τ
) + ξi (t ) (i ∈ V ), (B2)

dF

dt
= 1

h

⎧⎨⎩−F + 1

NO

∑
i∈VO

∑
j∈V, j �=i

Kij

(
xτ

j − xi − �τ
)⎫⎬⎭. (B3)

When deriving Eq. (B3), we again introduced the hypothetical time-delay h as in Eq. (A2). Suppose that the mean of x in the
steady state is [μx1 , μx2 , . . . , μxN

] = [cx1 , cx2 , . . . , cxN
], where [cx1 , cx2 , . . . , cxN

] satisfies the following relation:

ω − � − Lcxi
+

∑
j∈V, j �=i

Kij

(
cxj

− cxi
− �τ

) = 0 (i ∈ V ).

Equations (B1)–(B3) can be written as

dX

dt
= −L(X − cX ) + F − cF + �O (t ), (B4)

dxi

dt
= −L

(
xi − cxi

) +
∑

j∈V, j �=i

Kij

(
xτ

j − xi − �τ
) − cfi

+ ξi (t ) (i ∈ V ), (B5)

dF

dt
= 1

h

⎧⎨⎩−F + 1

NO

∑
i∈VO

∑
j∈V, j �=i

Kij

(
xτ

j − xi − �τ
)⎫⎬⎭, (B6)

where

cfi
=

∑
j∈V, j �=i

Kij

(
cxj

− cxi
− �τ

)
, cX = 1

NO

∑
i∈VO

cxi
, cF = 1

NO

∑
i∈VO

cfi
.

Following Ref. [38], we can obtain the time evolution of P (X, x, F ) = ∫
P (X, x, F ; xτ )dxτ where P (X, x, F ; xτ ) is the

probability density of X, x, and F at time t and of xτ at time t − τ . Let A(X, x, F ) be an arbitrary function of X, x, and
F . The derivation in Ref. [38] is constructed on the Ito interpretation. If Langevin equations of interest obey the Stratonovich
interpretation, they have to be converted to equivalent Ito equations [38]. Since Eqs. (B4)–(B6) include only additive noise terms,
the calculations afterwards do not depend on the stochastic integral. Taking the expectation for dA(X, x, F )/dt , we apply the
Ito calculus to obtain〈

dA
dt

〉
=
〈
∂A
∂X

[−L(X − cX ) + F − cF ] + 1

h

∂A
∂F

⎡⎣−F + 1

NO

∑
i∈VO

∑
j∈V, j �=i

Kij

(
xτ

j − xi − �τ
)⎤⎦

+
∑
i∈V

∂A
∂xi

⎡⎣−L(xi − cxi
) +

∑
j∈V, j �=i

Kij

(
xτ

j − xi − �τ
) − cfi

⎤⎦
+ D

NO

∂2A
∂X2

+
∑
i∈V

D
∂2A
∂x2

i

+
∑
i∈VO

2D

NO

∂2A
∂X ∂xi

〉
P (X,x,F ;xτ )

=
〈
∂A
∂X

[−L(X − cX ) + F − cF ] + 1

h

∂A
∂F

⎡⎣−F +
〈

1

NO

∑
i∈VO

∑
j∈V, j �=i

Kij

(
xτ

j − xi − �τ
)〉

P (xτ |X,x,F )

⎤⎦
+

∑
i∈V

∂A
∂xi

⎡⎣−L(xi − cxi
) +

〈 ∑
j∈V, j �=i

Kij

(
xτ

j − xi − �τ
)〉

P (xτ |X,x,F )

− cfi

⎤⎦
+ D

NO

∂2A
∂X2

+
∑
i∈V

D
∂2A
∂x2

i

+
∑
i∈VO

2D

NO

∂2A
∂X ∂xi

〉
P (X,x,F )

.

Here, we explicitly write the probability density with which the expectation is calculated. Letting P (B ) be a probability density
function of arbitrary random variable(s) B [

∫
P (B )dB = 1], we define 〈· · · 〉P (B ) = ∫ · · · P (B )dB [e.g., 〈· · · 〉P (xτ |X,F,x) =∫ · · · P (xτ |X, x, F )dxτ ]. Since A(X, x, F ) is an arbitrary function, using the integration by parts, we obtain

∂

∂t
P (X, x, F ) = Lτ (X, x, F )P (X, x, F ), (B7)
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where Lτ (X, x, F ) is the following FPE operator:

Lτ (X, x, F ) = − ∂

∂X
[−L(X − cX ) + F − cF ] −

∑
i∈V

∂

∂xi

⎡⎣−L(xi − cxi
) +

〈 ∑
j∈V, j �=i

Kij

(
xτ

j − xi − �τ
)〉

P (xτ |X,x,F )

− cfi

⎤⎦
− ∂

∂F

1

h

⎡⎣−F +
〈

1

NO

∑
i∈VO

∑
j∈V, j �=i

Kij

(
xτ

j − xi − �τ
)〉

P (xτ |X,x,F )

⎤⎦+ D

NO

∂2

∂X2
+
∑
i∈V

D
∂2

∂x2
i

+
∑
i∈VO

2D

NO

∂2

∂X ∂xi

.

(B8)

For details of the derivations, please see Ref. [38]. Integrating Eqs. (B7) and (B8) with respect to x, we obtain

∂P (X,F )

∂t
= − ∂

∂X
[−L(X − cX ) + F − cF ]P (X,F ) + D

NO

∂2

∂X2
P (X,F ) − ∂

∂F

1

h
{−F + Hτ (X,F )}P (X,F ), (B9)

where

Hτ (X,F ) =
〈

1

NO

∑
i∈VO

∑
j∈V, j �=i

Kij

(
xτ

j − xi − �τ
)〉

P (x,xτ |X,F )

.

Since Eq. (B9) is identical to Eqs. (10)–(12) when replacing H(X,F ) with Hτ (X,F ) and F → F − cF in a drift term, we obtain

〈(X − cX )2〉 � D

NOL2
[L − İX(X; F )],

which is the same inequality as the nondelayed model [Eq. (14)].

APPENDIX C: GLOBALLY COUPLED TIME-DELAY MODEL

We consider a globally coupled case Kij = K to calculate VLB
X and VX. The calculations can be classified into two cases:

NL � 1 and NL = 0.
For NL � 1, we obtain Eqs. (19)–(21) for X, Y , and F . We need to calculate the covariance matrix of X and F . These

quantities can be obtained via the Fourier transform [38]. The detailed procedures (known as the Rice method) are shown in
Ref. [39]. For an arbitrary random variable A(t ), we can define the Fourier transform and its inverse as follows:

Ã(ν) = F[A(t )] =
∫ ∞

−∞
e−iνtA(t )dt, A(t ) = F−1[Ã(ν)] = 1

2π

∫ ∞

−∞
eiνt Ã(ν)dν,

where i denotes the imaginary unit. Then, applying the Fourier transform, we obtain⎡⎢⎣X̃(ν)

Ỹ (ν)

F̃ (ν)

⎤⎥⎦ = M

⎡⎢⎣�̃O (ν)

�̃L(ν)

0

⎤⎥⎦, (C1)

where M is a regular matrix defined by

M =

⎡⎢⎣ L + iν 0 −1

−e−iντKNO L + K{−1 − e−iντ (NL − 1) + NL + NO} + iν 0

K{−1 + NL − e−iντ (NO − 1) + NO} −e−iντKNL 1

⎤⎥⎦
−1

.

We can consider the Fourier transform of the
correlation function: SX(ν) = F[〈X(t )X(0)〉], SF (ν) =
F[〈F (t )F (0)〉],SXF (ν) = F[〈X(t )F (0)〉],SO (ν) = F[〈�O

(t )�O (0)〉] = 2D/NO , and SL(ν) = F[〈�L(t )�L(0)〉] =
2D/NL. Let A and B be arbitrary random variables.
According to the Wiener-Khinchin theorem, the following
relation holds [39]:

〈Ã(ν)B̃∗(ν ′)〉 = 2πδ(ν − ν ′)SAB (ν), (C2)

SAB (ν) = F[〈A(t )B∗(0)〉], (C3)

where the superscript ∗ denotes the complex conjugate. From
Eqs. (C1)–(C3), we obtain

SX(ν) = |M11|2SO (ν) + |M12|2SL(ν), (C4)

SF (ν) = |M31|2SO (ν) + |M32|2SL(ν), (C5)

SXF (ν) = M11M∗
31SO (ν) + M12M∗

32SL(ν), (C6)

where Mij is the i, j th element of M. When we assume
a Gaussian distribution for P (X,F ), from Eq. (A5), it is
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sufficient to calculate VX, VF , and CXF for information flow
İX. From Eq. (C3), the inverse Fourier transform yields
variances VX and VF and covariance CXF ,

VX = 〈X(t )2〉 = 1

2π

∫ ∞

−∞
SX(ν)dν, (C7)

VF = 〈F (t )2〉 = 1

2π

∫ ∞

−∞
SF (ν)dν, (C8)

CXF = 〈X(t )F (t )〉 = 1

2π

∫ ∞

−∞
SXF (ν)dν. (C9)

Since it is unlikely that we can obtain the inverse Fourier
transforms of Eqs. (C7)–(C9) analytically, we calculated the
transforms numerically.

We next consider the case in which NL = 0. In a similar
way, we have the following coupled equations:

dX

dt
= −LX + F + �O (t ), F = K (N − 1)(Xτ − X).

The Fourier transform yields[
X̃(ν)

F̃ (ν)

]
= L

[
�̃O (ν)

0

]
, (C10)

where L is a regular matrix defined as

L =
[

L + iν −1
K (N − 1)(1 − e−iντ ) 1

]−1

.

Then, the Fourier transforms of the correlation functions are

SX(ν) = |L11|2SO (ν), (C11)

SF (ν) = |L21|2SO (ν), (C12)

SXF (ν) = L11L∗
21SO (ν). (C13)

Again, the variance and covariance can be obtained by the
inverse Fourier transform of Eqs. (C7)–(C9).

APPENDIX D: MONTE CARLO SIMULATION

In order to solve Langevin equations numerically, we use
the Euler method shown in Ref. [39] with time step ε = 0.001.
When calculating the information flow İX(X; F ), we use the
following approximation from Eq. (6):

İX(X; F )  −1

ε

〈
ln

(
P [F (t )|X(t + ε)]

P [F (t )|X(t )]

)〉
. (D1)

Here, we use F (t ) based on Eq. (2) [nondelayed case] or
Eq. (18) [time-delayed case]. In Eq. (D1), we need to calculate
the probability density P (X,F ). Assuming a multivariate
Gaussian distribution for P (X,F ), we empirically calculate
the mean vector and covariance matrix for P (X,F ). Then,
we can numerically calculate the information flow İX(X; F )
as the average of 2 × 106 samples. Regarding the number of
oscillators, we use NO = 10 and NL = 0–10 (0 � R � 1).
Note that when we employ an excessively large N , the sim-
ulation suffers from an artifact due to the time discretization
because discretized coupling terms fi (t )ε are on the order of
O(Nε).
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