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We present and analyze a growth model of an avascular tumor that considers the basic biological principles of
proliferation, motility, death, and genetic mutations of the cell. From an analysis of genomic data and considering
the results of a regulatory network analysis we identify two sets of genes—a set of sixteen and six genes—that
are believed to play an important role in the evolution of breast cancer. Considering that cancer cells shape the
tissue microenvironment and niches to their competitive advantage, the model assumes that cancer and normal
cells compete for essential nutrients and that the rate of mutations is affected by nutrients availability. To this
end, we propose a coupling between the transport of nutrients and gene mutations dynamics. Gene mutation
dynamics are modeled as a Yule-Furry Markovian process, while transport of nutrients is described with a
system of reaction-diffusion equations. For each representative tumor we calculate its diversity, represented by
the Shannon index, and its spatial heterogeneity, measured by its fractal dimension. These quantities are important
in the clinical diagnosis of tumor malignancy. A tumor malignancy diagram, obtained by plotting diversity versus
fractal dimension, is calculated for different values of a parameter β, that modulate proliferation rate. It is found
that, when β < 1, tumors show greater diversity and more spatial heterogeneity as compared with β > 1. More
importantly, it is found that the results and conclusions are similar when we use the six-gene set versus the
sixteen-gene set.
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I. INTRODUCTION

To date there is no consensus over how cancer is initiated;
however, it is known that tumor growth occurs in several
stages. The accepted general view is that a cell must undergo
several gene mutations before it becomes cancerous. There are
two kinds of mutations: “passenger” and “driver.” The former
are gene changes that do not affect cell fitness or contribute
to cancer development, and they may appear and eventually
vanish during any stage of tissue development. The latter are
gene changes that are causally involved in cancer development,
typically conferring a functional change as well as a somatic
evolutionary advantage and play a crucial role in cancer
progression [1,2]. Thus cancer development is the result of
the gradual accumulation of driver mutations that enhance cell
proliferation rate and inhibit cell death rate [3–5]. The detailed
knowledge behind these mutations is unknown. Nonetheless,
there is a general agreement that environment and heredity
play important roles in cancer initiation. Tumor progression
mainly involves oncogenes and tumor suppressor genes [6–9].
Oncogenes encode proteins that control cell proliferation and
apoptosis [10], and can be activated by structural alterations
resulting from mutation or gene fusion [11], by juxtaposition
to enhancer elements [12], or by amplification. Translocations
and mutations can occur as initiating events [13] or during
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tumor progression, while amplification usually occurs dur-
ing progression. Activation of oncogenes by chromosomal
rearrangements, mutations, and gene amplification confers a
growth advantage or increased survival to cells carrying such
alterations. All three mechanisms cause an alteration in the
oncogene structure either by an increase or a deregulation
of its expression [14]. On the other hand, tumor suppressor
genes normally prevent unrestrained cellular growth, promote
DNA repair, participate in the cell cycle checkpoint activation,
and maintain the activity of every cell. In most cancers the
“bad mutations” of tumor suppressor genes reduce functions
and make cells grow without control [6,8]. In normal cells,
however, hundreds of genes intricately control the processes
of division and death, so that growth is the result of a balance
between the activity of those genes that promote cell prolifer-
ation and those that suppress it. Cancer cells originate within
tissues and no longer respond to many of the signals that control
cellular growth and death. Over time, these cells become
increasingly resistant to the molecular controls that maintain
normal cells and, as a result, they divide more rapidly than their
progenitors and become less dependent on signals from other
cells. Cancer cells even evade programed cell death, despite the
fact that their multiple abnormalities would normally make
them prime targets for apoptosis. Phenotypic and functional
heterogeneity usually arise among cancer cells within a tumor
as a consequence of genetic variations, environmental differ-
ences, and irreversible changes in cellular properties. Cancer
cell heterogeneity displays striking morphological, genetic,
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and proteomic variability and represents a great challenge to
diagnosis, treatment, and drug resistance. Any tumor shows
spatial heterogeneity that manifest as a nonuniform distribu-
tion of genetically distinct cancer-cell clusters. Analogously,
temporal heterogeneity refers to the temporal variations in the
genetic makeup of cancer cells [15]. We adopt this terminology
for the rest of the paper.

It is known that spatial variations in cell genetic profiles lead
to altered microenvironments which are observable through
analysis of tissue pathology images [16]. Recent studies have
demonstrated that heterogeneity is observed to varying extent
across a wide variety of cancers, with the identification of both
clonal and subclonal mutations [17–19]. Thus there are unlim-
ited numbers of genetic and epigenetic alternatives along with
environmental stress that contribute to tumor evolution. As a
matter of fact, tumors reprogram pathways of nutrient acquisi-
tion and metabolism to meet the bioenergetic, biosynthetic, and
redox demands of malignant cells. They also include symbiotic
nutrient sharing, nutrient competition, and the role of metabo-
lites as signaling molecules. These reprogrammed activities
improve cellular fitness to provide a selective advantage during
tumorigenesis, which leads to changes in signal transduction,
the epigenome, and gene expression [20–22]. Therefore, a
complex interplay of gene expression, DNA alterations, gene
mutations, and environmental conditions are believed to be
the main factors that drive tumor heterogeneity [23]. Hence the
identification of a universal molecular mechanism at the center
of cancer initiation and development is extremely difficult.

In particular, it has been shown that exposure of cultured
cells to hypoxic conditions produces an elevated mutation
frequency and a mutation pattern similar to those observed
tumor-grown cells [24]. These findings suggest that the type
of genetic instability found in malignant tumors may in part
be the consequence of specific mutagenic properties of the hy-
poxic microenvironment. In addition, cancer cells also exhibit
elevated glucose metabolism with increased glycolytic activity,
so that fast growing tumors with poor or no vascularization are
subjected to glucose starvation stress [25]. Thus the avascular
tumor microenvironment can be considered hostile since it
is characterized by areas of chronic or transient hypoxia,
low pH, nutrient deprivation, and energy depletion [26–28].
Taking into account all these observations one simple way of
incorporating some aspects of the tumor microenvironment
is by considering the role of nutrients spatial gradients on
cancer cell metabolism that influences the acquisition of new
mutations. To this end, here we analyze a model based on the
assumption that the probability of acquiring new mutations is
related to the gradients of nutrients concentration.

There is a huge amount of models aimed at explaining
different aspects of the complex growth of a tumor [29–33].
Most of them consider the spatiotemporal evolution of the
tumor without incorporating the genetic information that drives
the dynamics of growth [34–38]. This is an important aspect
to be considered since most cancers are highly heterogeneous
as a result of the mutations acquired during cell division. A
three-dimensional model that combines the aspects of spatial
dispersal and genetic evolution has been proposed. It describes
the growth of primary tumors and metastases, as well as
the development of resistance to therapeutic agents [39]. The
model not only yields insight into spatial and temporal aspects

of tumor growth, but also suggests that targeting short-range
cellular migratory activity can have marked effects on tumor
growth rates. It also shows how short-range dispersal and
cell turnover can account for rapid cell mixing inside the
tumor. Gene dynamics demonstrates that even a small selective
advantage of a single cell within a tumor allows the descendants
of that cell to replace the precursor mass in a clinically relevant
time frame.

In the present paper we analyze a quantitative model of
growth of an avascular tumor that considers cell proliferation,
motility, death, and genetic mutations and the microenvi-
ronment through the quantification of the nutrient spatial
gradients that are believed to affect the acquisition of new
mutations [20–22,26–28]. We start from a reaction-difussion
set of equations that describes the transport of essential
and nonessential nutrients. These equations are coupled to a
stochastic gene mutation dynamics of each cell modeled as
a Markovian process. From genomic data, we identify two
sets of six and sixteen genes, respectively, that are believed
to play an important role in breast cancer tumor growth.
Considering that quantitative measurements of diversity and
spatial heterogeneity are important clues for clinical diagnosis
of tumor malignancy, we estimate these properties by means
of the Shannon diversity index and the fractal dimension.
With these quantities we establish a tumor malignant-benign
diagram for different values of a certain parameter β. It is found
that for β < 1 the tumors display high genetic diversity and are
spatially heterogeneous, whereas for β > 1 tumors develop
less genetic diversity and are spatially less heterogeneous. The
paper’s layout is as follows: in Sec. II we present the model
with the set of reaction diffusion equations for the transport
of nutrients as well as the equations for stochastic mutation
dynamics. In Sec. III we briefly explain the algorithms used
to simulate the genes stochastic dynamics and the integration
of the reaction-diffusion equations. In Sec. IV the results of
the numerical simulations of tumors and the analysis of the
diversity and spatial heterogeneity is presented. Finally, in
Sec. V we discuss the results of the structure, diversity, and
heterogeneity of tumors as well as the possible applications
of the present quantitative modeling that may help in cancer
diagnosis.

II. MODEL

Let us start with the reaction-diffusion model for the growth
of an avascular tumor proposed by Ferreira et al. [40]. Tissue
is made of three types of cells, namely normal, cancer, and
necrotic cells, that live on a square lattice. Processes of
proliferation, death, and competition for nutrients of normal
and cancer cells are considered. It is assumed that essential and
nonessential nutrients diffuse from the capillary vessel towards
each cell throughout the tissue. Essential nutrients are glucose,
aminoacids, vitamins, and minerals, and nonessential nutrients
are oxygen, cholesterol, and vitamins that are made naturally in
the body. These nutrients are critical for DNA synthesis and for
cell proliferation; therefore, they are considered important for
the development of gene diversity [41–43]. Accordingly, it is
reasonable to assume that in active proliferating cells, mainly
glucose is consumed and a significant portion of carbon is
converted to lactic acid that is transported out of cells [44,45].
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We assume that nutrient gradients increase mutation rate, while
absence of or negligible nutrient gradients lead to a cell latent
state decreasing the mutation rate. This hypothesis, introduced
as a stochastic term coupled to the reaction-diffusion Eqs. (1)
and (2), led us to show that the occurrence of mutations during
tumor growth eventually yields high genetic diversity and
tumor spatial heterogeneity, the hallmarks of most cancers.

The reaction-diffusion equations that describe the transport
of essential and nonessential nutrients for cell proliferation
are [40]

∂N

∂t
= ∇2N − α2N{σn + (1 + βPdm)λNσc}, (1)

∂M

∂t
= ∇2M − α2M{σn + (1 + βPdm)λMσc}, (2)

where N (�r, t ) and M (�r, t ) are the concentrations of essential
and nonessential nutrients, respectively. The parameter α2

represents the nutrient consumption rate for normal cells.
Normal and cancer cells are represented by the field variables,
σn = 0, 1 and σc = 1, 2, 3, . . ., respectively. The ability of
cancer cells to outcompete normal cells for essential and
nonessential nutrients is denoted by λN and λM ; usually they
are greater than one so that cancer cells consume nutrients at
a higher rate than normal cells [40]. The transport of nutrients
on the right side of Eqs. (1) and (2) includes a term that
is the product of the parameter β related to the cancer cell
proliferation rate and the probability Pdm(�r, t ) related to the
occurrence of mutations at position �r at time t . Hence the
product βPdm quantifies the accumulation of mutations in
each cancer cell in the proliferation. This product may not
always increase, but could also remain constant or decrease
during tumor progression. This stochastic term modifies the
reaction term that accounts for the ability of cancer cells to
compete for nutrients. Note that when β = 0, Eqs. (1) and (2)
reduce to the nutrient transport equations in [40]. In order to
obtain tumor structures that present a compact morphology
with a few branches we chose the parameter values λM = 10,
λN = {50, 100}, and α = {4 × 10−3, 6 × 10−3} [40]. We have
set λN > λM , so that the consumption of essential nutrients
is greater than that of nonessential nutrients. These transport
equations are complemented with the probability of death. This
probability can be expressed as [40]

Pdeath(�r, t ) = exp
[

−
( M (�r, t )

θdeathσc(�r, t )

)2]
, (3)

which represents the probability of death of a cancer cell
located at point �r at time t , described by the field variable
σc(�r, t ) = 1, which means that there is one cancer cell in
the tissue. The concentration of nonessential nutrients—for
cell proliferation—at point �r at time t is denoted by M (�r, t ),
while θdeath controls the width of the curve. Considering the
case of avascular tumors with small necrotic cores [31,46,47],
we chose θdeath = 0.01. This value reflects the fact that the
probability of death increases when the availability of oxygen
is about 2%. As the value of θdeath increases the size of the
necrotic core increases too [40].

During cancer cell proliferation (A) there occur two inde-
pendent processes or events: (i) random mutations (Au) and
(ii) nutrients consumption (Av). Then, the probability of cancer

cell division at point �r at time t can be written as

Pdiv(A) = P (A|Au)P (Au) + P (A|Av )P (Av ), (4)

where P (A|Au) is the probability of division given that random
mutations occur and P (A|Av ) is the probability of division
given nutrient consumption. In Eq. (4),P (Au) is the probability
that a random mutation occurs, while P (Av ) is the nutrient
consumption probability by cancer cell. We do not need the
explicit expressions for these probabilities as will be seen
below. To establish a correlation between the occurrence of
random mutations given that a cell division happened, we use
Bayes’ property to rewrite the first term on the right-hand side
(RHS) of Eq. (4). That is, P (A|Au)P (Au) = P (Au|A)Pdiv(A),
so that Eq. (4) can be recast as

Pdiv(A) = P (Au|A)Pdiv(A) + P (A|Av )P (Av ). (5)

Solving for Pdiv(A) we obtain the probability of cancer cell
division:

Pdiv(A) = P (A|Av )P (Av )

1 − P (Au|A)
. (6)

We now assume that the numerator of this equation favors
mutations through nutrients concentration as [40]

P (A|Av )P (Av ) =
(

1 − exp

[
−

(
N (�r, t )

θdivσc(�r, t )

)2])
, (7)

where θdiv controls the shape of this probability. We chose
θdiv = 0.3 in order to obtain a compact tumor structure since
as θdiv increases the tumor becomes more branched [40]. On the
other hand, we assume that the probability of random mutations
given a division processes occurs is P (Au|A) ≡ βPdm; then the
probability of cancer cell division can be expressed as

Pdiv(�r, t ) =
1 − exp

[
− (

N (�r,t )
θdivσc (�r,t )

)2
]

1 − βPdm(�r, t )
. (8)

This equation represents the probability of division of a cell
located at point �r at time t . The concentration of essential
nutrients at point �r at time t is represented by N (�r, t ). Since
Pdiv � 1, then β � exp [ − ( N

θdivσc
)2]/Pdm; that is, proliferation

and mutation rates depend on nutrients concentration. In this
sense, nutrients play the role of a “catalyst” for mutations.
Note that when the nutrient concentration is large the right side
of this inequality is small whereas when nutrient concentration
is small the right side of this inequality is large. Therefore,
regions with high nutrient concentration favor cell survival
and increase mutation rate, and regions with low nutrient
concentration disfavor mutations.

A. Gene types

To determine the genes to be incorporated into the genetic
dynamics, we analyzed data from the Data Release 23 from
the European Union breast cancer project (BRCA-EU). We
found a set of sixteen genes that are believed to play a major
role in breast cancer development. The number of mutations
of each of these genes are shown in Fig. 1. In this set we can
identify the tumor suppressor genes: TP53, ATR, ATM, E2F1;
oncogenes: BRCA1, ERBB2, MDM2, NRAS, HRAF; and
kinase regulators: CHEK2, KRAS, CHECK1, AKT1, CDK2.
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FIG. 1. Histogram of the number of mutations of the sixteen-gene
set that are believed to play a major role in breast cancer development.
Genes have been ordered according to their number of mutations. Data
is taken from Breast Cancer ICGC Project (https://dcc.icgc.org/) for
the European Union. The inset shows the number of mutations of the
six-gene set that plays a crucial role in breast cancer as suggested
from a regulatory network analysis [48]. The red line with circles and
the blue line with squares represent the results of fitting a negative
binomial distribution to each histogram. See text for more details.

On the other hand, a recent regulatory network analysis in
breast cancer [48] inferred from gene expression data suggests
that there are six genes, namely, TP53, ATM, ERBB2, BRCA1,
MDM2, and CDK2, that play a major role in breast tumor
development. This finding appears to be consistent with the
general belief that driver mutations are produced mainly by
six genetic variations [5,6,8,9,42,48,49]. Based on this data
we focus our attention on two histograms that represent the
number of mutations of each gene. The histogram shown in
the main figure—Fig. 1—is related to the sixteen genes set,
while the one shown in the inset of Fig. 1 is related to the
six genes set [48]. We emphasize that gene dynamics depends
only on the statistical distribution of mutations, that is, the
number of mutations of each gene during cancer evolution.
Therefore, our model of the genetic dynamics is independent
of the detailed biological properties of the genes and there is
no need to identify the driver mutations in the data set [50].

Mutations can be modeled by a negative binomial dis-
tribution with parameters p and r [51–57]. Thus we fitted
these distributions to the data represented by the histograms
and the results are shown with solid lines in Fig. 1. The
sixteen-gene fitting shown in Fig. 1 with a red line and circles
yielded the results p = 0.2578 ± 0.0136 and r = 1.3591 ±
0.0877 with a goodness of fit Q = 0.9301 and correlation
coefficient R = 0.9779. Similarly, the result for the six-gene
fitting is plotted in the inset of Fig. 1 with a blue line and
squares. This fitting yielded the results p = 0.6560 ± 0.0481
and r = 3.1189 ± 0.6529 with a goodness of fit Q = 0.8713
and correlation coefficient R = 0.8699. The results of this
statistical analysis are used in the implementation of the
stochastic simulations of tumor growth in Sec. III A.

Since our analysis suggests that the results obtained with
both sets are consistent and robust, it is sufficient to consider
the six-gene set. In Sec. IV we elaborate more about these
findings.

B. Mutation dynamics

By assuming that cell mutations depend only on the previ-
ous genetic state, one can model the mutations dynamics by
means of a Yule-Furry process [58]. The corresponding master
equation is

dPx (�r, t )

dt
= −γ (�r, t )xPx (�r, t ) + γ (�r, t )(x − 1)Px−1(�r, t ),

(9)

where Px (�r, t ) represents the probability that the cell at
position �r at time t in the tissue undergoes x (x = 0, 1, 2, . . .)
mutations and γ (�r, t ) > 0 is the jump probability that one
new mutation, x → x + 1, will happen in the time interval
[t, t + dt ). The solution of Eq. (9) is the geometric dis-
tribution, Px (�r, t ) = (1 − p(�r, t ))x−1

p(�r, t ), with p(�r, t ) =
exp(

∫ t

0 γ (�r, τ )dτ ) [58]. In what follows we relate this jump
probability to the microenvironment. As argued in the In-
troduction, nutrients spatial gradients modify the mutation
rate [24–26]. One simple way of incorporating this hypothesis
into the mutation dynamics is to assume that the jump prob-
ability of new mutations depends on these spatial gradients.
That is, we make the anzatz, p(�r, t ) = exp(

∫ t

0 γ (�r, τ )dτ ) =
exp [ − ( N (�r,t )

θdiv
)2], where N (�r, t ) represents the concentration

of essential nutrients at position �r at time t in the tissue.
This approach is consistent with recent findings in cancer
development that suggest that interactions between cancer cells
and their tissue habitat are reciprocal, that is, cancer cells shape
the tissue microenvironment and niche to their competitive
advantage [18,59].

It is known that driver mutations can be randomly activated
by structural alterations resulting from mutation or gene fusion,
by juxtaposition to enhancer elements, or by amplification
of random mutations acquisition, that can be modeled by a
Poisson process [6,41,60–62]. Then, one can write the total
probability distribution of having mutations at a cell located
at position �r in the tissue at time t as the product of two
independent probabilities:

Pdm,j(�r, t ) = G(p(�r, t ), zj )Nλ(λ, kj ), (10)

where G(p(�r, t ), zj ) is a geometric probability distribution
with mean (1 − p(�r, t ))/p(�r, t ). Here p(�r, t ) is given by the
anzatz indicated above and zj is the number of viable mutations
of gene j . The function Nλ is a Poisson probability distribution
with mean λ and represents the probability of occurrence
of kj mutations of gene j per cell. This factorization will
play an important role in the implementation of the stochastic
simulations for the tumor gene dynamics.

Now let us estimate the upper bound for the parameter β in
Eqs. (1) and (2). Recall that β < p/Pdm; since the mean value
of Eq. (10) is (1 − p)λ/p, one can obtain the following upper
bound for β:

β <
p2

λ(1 − p)
. (11)

Since the jump probability of new mutations is a Gaussian
function of N (�r, t ) and because there occur few random muta-
tions we can assume λ ∼ O(101) [26]. Then one finds that, for
N (�r, t ) ∼ 1, the jump probability is p ∼ O(10−1) and, on the
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contrary, when N (�r, t ) ∼ 0 one gets p < O(10−5). Therefore,
the jump probability satisfies the inequality O(10−5) � p �
O(10−1). From these inequalities we conclude that 0<β<10.
These bounds for β help us to explore two limiting regimes
for mutations during proliferation: (i) low mutation rate, when
the cell is in a “latent state” due to low nutrients availability,
and (ii) high mutation rate when there are plenty of nutrients.
Our model postulates that there is an intrinsic nonlinear
coupling between the master equation for mutation dynamics
and the reaction-diffusion system that describes the nutrient
concentration at each cell in the tissue. To fully describe the
dynamics of this complex system we need to perform stochastic
simulations as described in the forthcoming section.

III. NUMERICAL SIMULATIONS

A complete flow diagram for the model simulations of the
tumor evolution is shown in Fig. 2. This diagram shows in
a synthetic form the spatiotemporal evolution of the tumor
including the gene mutations dynamics. Let us begin with a
brief explanation of the algorithm that was used to simulate
the genes stochastic dynamics.

A. Stochastic simulations

To simulate the stochastic mutation dynamics we used
the Tau-Leaping Gillespie algorithm [63], which has demon-
strated its usefulness in the simulations of different processes
in molecular biology. Let us assume that, at a given time
t , the state of the system is defined by the vector x(t ) =
(x1(t ), . . . , xn(t )), in which each coordinate represents the
number of mutations in each of the n genes. Then, the change
of this state vector in the time interval [t, t + τ ) is given as

x(t + τ ) → x(t ) +
∑

j

kj νj , (12)

where kj is a vector of random numbers generated from a
Poisson distribution with mean aj (x)τ and νj is the vector that
changes the mutations of gene j , by zero, or 1. The selection
of gene j is made by choosing a random number from a
set of numbers distributed according to the negative binomial
distribution obtained from the fits to the histograms in Fig. 1.

Let aj(x) be the propensity functions that represent the
probability of having one mutation at time t of gene j in the
set. Since mutations occur with equal probability regardless of
the gene chosen the values of aj(x) can be set equal to one for
every gene. Therefore, the time τ required for the number of
mutations to increase by one unit is

τ = 1

a0(x)
ln

(
1

rj

)
, (13)

where a0(x) = ∑n
j=1 aj(x) and rj is a random number uni-

formly distributed in the interval [0,1] corresponding to gene
j . Since the dynamics of the tumor evolution is the result
of the coupling of gene mutations and nutrient dynamics,
an extended version of the tau-leaping method was applied
to obtain an effective sampling of the biophysical relevant
quantities [64–67]. Thus the change of the system’s state
x(t) during a time τ occurs in accordance with the following

Begin

End

Division/
Mutation

Single gene
selection

Mutations

Global nutrient
consumption

Initial conditions Parameters

Death

Local nutrient
consumption

t < T

N( ,0), M( ,0), Gene set λΝ, λΜ, α, θdiv, θdeath, β 

Eqs. 1-2

Eq. 8

Fig. 1

Eq. 14Eq. 7 Eq. 10

Eqs. 1-2

t = t + 1

Eq. 3

Cancer
Cells

r r

FIG. 2. Flow diagram for tumor evolution. The equations that are
required at each simulation step are indicated by their number in the
text. The relation with the genomic data (histograms shown in Fig. 1)
is also indicated in between the division mutation and single gene
selection steps. The letters T and t denote the cell generation time
and the cell cycle, respectively. Cancer cells are chosen at random
(indicated by the shuffle symbol) until a complete sweep over all
cells is completed. The recycle symbol indicates that the cancer cells
feed from local nutrient gradients.

equation:

x(t + τ ) → x(t) +
∑

j

kjzjνj, (14)

where zj is a vector formed with random numbers, which are
distributed according to a geometric distribution, and kj is
the random vector generated from a Poisson distribution. We
chose these random number distributions because mutations
dynamics is described by the product of these two probability
distributions. See Eq. (10).

B. Numerical integration

The solutions of the reaction-diffusion system, Eqs. (1)
and (2), together with the probabilities for division and death,
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Eq. (8) and Eq. (3), respectively, are calculated numerically.
At the beginning of the simulations all cells are normal except
for one that has developed cancer and is located near the lattice
center. We assume that normal, cancer, and necrotic cells are
on the sites of a square lattice of size L × L = 500 × 500 [40].
Essential and nonessential nutrients for cell proliferation are
continuously supplied through a capillary located at the top of
the lattice simulating the bloodstream. To avoid steep gradients
in the nutrients concentrations, Eqs. (1) and (2) are integrated
using a sublattice of size 10 × 10 units around each site
populated with cancer cells. To this end we applied zero flow
boundary conditions in all sides until the steady state was
reached. After passing by all the sites populated with cancer
cells the reaction-diffusion equations are solved globally with
zero flow boundary conditions in all sides except on the top,
where the bloodstream is located. This procedure completes
one simulation cycle (see Fig. 2). From now on one simulation
cycle will be denoted as a generation time T .

We assume that the initial cancer cell suffers mutations in
the tumor suppressor gene TP53, which is the one that plays
a crucial role in tumor growth. After a cell division occurs the
daughter cell position is chosen randomly as one of the four
nearest neighbors of the mother cell position. This descendant
undergoes mutations according to the probability distribution
given in Eq. (7). To decide the occurrence of mutations during
the cell division process we choose a random number q

distributed uniformly in the interval [0,1] and compare it with
the probability given in Eq. (7). A mutation process occurs if
q > P (A|Av )P (Av ); otherwise, it is rejected. A new cycle
is initiated by choosing randomly a cancer cell with equal
probability. The simulation cycle is completed by passing by
all the lattice sites.

The time length of the simulations is estimated by tuning
the number of mutations of each gene with that of the genomic
data. See Fig. 1. This estimation led us to conclude that, on
average, a simulation of 800 cycles is sufficient for each gene
to reach the number of mutations of the genomic data. A typical
simulation of this length yielded tumors with size smaller than
450 × 450 lattice sites for most combinations of values of the
model parameters considered here. To understand the statistical
meaning of the results we performed averages over 5, 10, and
20 simulations. It was found that the results were consistent
within one standard deviation with those corresponding to
just one simulation. Therefore, the results we report here
correspond to one simulation of the system. We carried out
simulations for β = 0.0, 0.25, 0.5, 0.75, 1.0, 2.0, and 4.0.
These values were chosen in order to explore the two mutation
rate limits described at the end of Sec. II B.

IV. RESULTS

This section presents and discusses the results obtained from
the numerical simulations of the model explained in Sec. II.
Let us begin by considering the set of six genes obtained
from the regulatory network analysis. Figure 3 presents the
tumor spatial distribution of mutations for each one of the
six genes after one simulation cycle. The results have been
arranged in a clockwise direction according to a decreasing
number of mutations starting from the TP53 gene, which
accumulates the most mutations. The central figure represents

FIG. 3. Starting from the top cluster and going in the clockwise
direction are shown the spatial distribution of mutations of the six
genes set. They are ordered in a decreasing way according to the
number of mutation of the genes (TP53, ATM, BRCA1, ERRB2,
MDM2, and CDK2) indicated in the inset of Fig. 1. At the center
lies the tumor showing the spatial distribution of mutations of the
six genes altogether. The results correspond to the parameter values:
α = 4 × 10−3, λN = 100, and β = 1, after T = 800 cycles. The scale
of colors is related to the number of mutations for each gene.

the superposition of the spatial distribution of mutations in
the six genes under consideration. Note the accumulation
of mutations at the upper tumor periphery. This is expected
since the nutrient capillary supply is located at the top of the
tissue domain and the nutrient concentration gradient drives
both cell division and mutation. The results suggest that the
tumor structure is defined by the major accumulation and
spreading of mutations of the tumor suppressor genes TP53
and ATM. In addition, the central part populated with cancer
cells (white region) represents the spreading of genes BRCA1,
ERBB2, MDM2, and CDK2 that accumulate fewer mutations,
suggesting that their contribution to the early stages of tumor
progression is not relevant. However, genes CDK2 and MDM2
accumulate mutations in cells located in a smaller region close
to the periphery. The observed spatial distribution of mutations
in these figures suggests that tumor structure develops a spatial
heterogeneity and certain degree of gene mutation diversity. It
looks similar to what is observed in the clinical analysis of
biopsies [68–71].

Tumor heterogeneity and diversity are quantified by the
k-means clustering algorithm [72] and Shannon entropy in-
dex [73], respectively. The k-means clustering algorithm yields
a graphical distribution of cell clusters according to the number
of mutations and is referred to the initial position of the
tumor center of mass [74]. The Shannon entropy is defined as
H = −∑

i Pi lnPi , where Pi is the probability that i mutations
occurred in the whole cancer tissue. To compute Pi we counted
the number of cells that underwent one mutation, two muta-
tions, three mutations, etc., and then we divided this quantity
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FIG. 4. Clusters obtained for the same model parameters and time
as in Fig. 3. (a) For the six genes set we obtained a diversityH = 5.15.
(b) For the sixteen genes set we obtained a diversity H = 4.93. These
values correspond to a high diversity tumor. Note that cells with a high
number of mutations are located in the tumor periphery, far from the
tumor center of mass indicated with the symbol ×. The scale of colors
is related to the number of mutations for each gene and L = 500 is
the horizontal lattice size.

by the total number of cancer cells. Therefore, the Shannon
index in our case is a measure of the diversity of cell types
characterized by the number of mutations. In ecology, Shannon
index values lying in the range 1.5 < H < 3.5 are considered
as a normal diversity of species [73]. However,H > 4 indicates
a very rich community. In the present case an increase in H
is directly related to an increase of gene mutations due either
to the existence of a large number of cells with a relatively
small amount of mutations or a few cells with a large amount
of mutations. The Shannon index can be measured clinically
through immunohistochemistry staining to evaluate cell-level
heterogeneity as well as patients’ therapeutic response [75].
Recent clinical studies in breast cancer have found that genetic
diversity fluctuates in the range 1 < H < 4 [76,77]. This range
of fluctuations agrees reasonably well with the interval of
H that is considered as normal diversity in ecology. Hence,
from now on, we will consider the upper bound H = 3.5 as
transition point for diversity. That is, H < 3.5 will indicate
normal diversity, while H > 3.5 will be referred to as high
diversity.

In what follows we use the k-means clustering algorithm
to obtain the graphical distribution of cells according to the
number of mutations. We use the notation “horizontal position”
to denote the abscissas in the clusters shown in Figs. 4–8.
Figure 4 shows cell clusters formation of a tumor where the
number of mutations of each cell is plotted against its position
in each row of the 2D lattice. These results were obtained for the
parameter values α = 4 × 10−3, λN = 100, and β = 1, after
completing 800 cycles of simulation. We choose this value of
β because it represents a transition point in the accumulation
of mutations during proliferation as will be seen below. In
Fig. 4(a) are shown the cell clusters and the corresponding

FIG. 5. Clusters indicate that large number of mutations (for
genes TP53, ATM, BRCA1, ERRB2, MDM2, and CDK2) are located
far from the tumor center of mass (×) in the six-gene set. The
inset in each figure represents the tumor spatial distribution of
the corresponding gene. Observe that the diversity H decreases
as the cluster size decreases. These results were obtained for the
same parameter values as in Fig. 3. The color bar at the middle of
the centered column measures the number of mutations and L = 500
is the horizontal lattice size.

tumor obtained with the six-gene set. The tumor hasH = 5.15.
Figure 4(b) shows the cell clusters and tumor obtained with
the sixteen-gene set. It is clear that it has a lower diversity,
H = 4.93, as compared to the tumor in Fig. 4(a). This is
expected since as the number of genes increases the probability
that each gene undergoes a number of mutations decreases
because there are more genes available in which mutations may
happen. Observe that cell clusters that underwent the larger
number of mutations are located at the tumor periphery, far
from the tumor center of mass denoted by the symbol ×. The
spatially heterogeneous structure and high genetic diversity
of the tumor is due to the occurrence of mutations in different
genes at different tumor positions. Since the values of diversity
indices in both the sixteen and the six-gene sets are similar, we
are confident that our results are robust.

In Fig. 5 are shown the clusters for the six-gene set after
T = 800 simulation cycles. The corresponding diversity is
also indicated. Observe that the cluster structure varies across
the tumor because the number of mutations of each gene is
different. Besides, diversity becomes greater as the number of
mutations increases. Reciprocally, as the number of mutations
decreases, so does the diversity. These results suggest that both
the tumor suppressor gene TP53 and the oncogene BRCA1 are
important in the structure of tumor growth since both have high
diversity: H = 3.97 and 3.64, respectively. This suggests that
genes with diversity greater than 3.5 are important in breast
cancer development which is consistent with the attractors
found in the gene regulatory network analysis of [48]. Thus
tumor genetic structure and diversity obtained from the present
model are consistent with the gene regulatory network analysis.
In addition, the ATM gene is considered to play a central role
in the signal transduction of early stages of tumor progression
and has H = 3.5 as the transition point for diversity.
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FIG. 6. Cluster evolution of gene TP53 at three stages of
the tumor growth: (a) T = 200 cycles, (b) T = 400 cycles, and
(c) T = 600 cycles. On the upper left side of each frame are shown
the corresponding spatial distributions in the full tumor. The color
bar indicates the number of mutations and L = 500 is the horizontal
lattice size. In this case the diversity increases from 2.92 to 3.91. These
results were obtained for model parameters as in Fig. 3.

The other two genes, ERBB2 and MDM2, known as
oncogenes have a diversity that can be considered normal;
however, the gene CDK2 has the lowest diversity, H = 1.50.

Figure 6 presents the cluster evolution of the distribution
of mutations of gene TP53 as well as at three stages of tumor
growth. Cells that underwent the largest number of mutations
are always related to clusters that are on the tumor periphery,
while cells that suffered few mutations are related to clusters
located around the tumor center of mass. The diversity of the
first and second cluster configurations indicates a tumor with
normal diversity, while the third configuration has a diversity
greater than 3.5 indicating a high diversity. The same analysis
was performed for the other five genes and the conclusions
were similar.

Figure 7 illustrates the cluster structure, left and right
columns, for the sixteen gene set after a simulation time of
T = 800 cycles. The model parameter values used for these
results are α = 4 × 10−3, and λN = 100 for the four values of
β: (a) β = 0.25, (b) β = 0.75, (c) β = 2.0, and (d) β = 4.0.
We chose these values of β to understand the cluster and
tumor structure. The corresponding tumors together with the
color bar as a reference are plotted at the middle of the
figure. This indicates that as β increases the tumor diversity
decreases. These results point to a close relationship between
the cluster aggregation and the branched structure of the tumor.
Figure 7(a) shows the cluster structure for β = 0.25 with
H = 4.99, as an indication of high diversity. Observe that the
largest number of mutations occurs right above the cluster’s
center of mass, indicated by ×. However, a large number of
mutations is observed at both sides of the tumor center of mass.
As a consequence, the tumor becomes branched, with the top
region (yellow part) being the one with the highest number
of mutations. The cluster shown in Fig. 7(b) corresponds to
β = 0.75 with a diversity H = 5.0. In this case the region
with the largest number of mutations is positioned at the upper
right side, again in the tumor periphery. The cluster shown in
Fig. 7(c) corresponds to β = 2.0 and has a diversityH = 4.39.
There one sees that the number of mutations decreases by
about half compared to the number of mutations accumulated
in the clusters in Figs. 7(a) and 7(b). Notice that right above the
cluster’s center of mass there is a bifurcation of two clusters that
represent two regions of the tumor that suffered a large number
of mutations. In this case the tumor developed fewer branches

FIG. 7. Tumor (at the middle column) and cluster structure (left
and right columns) after a simulation time T = 800 cycles for values
of β: (a) β = 0.25, (b) β = 0.75, (c) β = 2.0, and (d) β = 4.0. As
the parameter β increases the diversity H decreases. These results
are obtained for α = 4 × 10−3 and λN = 100. In this case the tumor
shows a branched structure at the top of the periphery indicating the
cells located there underwent a large number of mutations. The color
bar represents the number of mutations and L = 500 is the horizontal
lattice size.

and became more compact at the middle. Figure 7(d) shows the
cluster obtained for β = 4.0, which has a diversity H = 3.42.
For this value of β the cluster is less branched, more compact,
and homogenous, indicating that most of the tumor cells
suffered about the same low number of mutations. Since tumor
diversity is the smallest of the four, this suggests that most of the
cells conserved their genetic lineage during proliferation. This
conserved lineage can be observed in the tumor structure shown
at the center of Fig. 7(d) where there are two main distributions
of mutations—dark and light regions—that spread from the
center up to the periphery.

Considering altogether the clusters shown in Figs. 4 and 7,
one sees that the cluster that shows the highest diversity
corresponds to β = 1. More importantly, from the analysis
of Fig. 7, one finds that the larger the value of β, the lower
the number of mutations, while the tumor structure becomes
less branched and more compact. At this point it is important
to bear in mind that in the present model the role of the
nutrients in the tumor microenvironment is accounted for by
considering the competition for essential nutrients during cell
proliferation between cancer and normal cells. In fact, the
nutrients transport equations, Eqs. (1) and (2), contain the
parameters α and λN that measure, respectively, the nutrient
consumption rate of normal cells and an additional factor,
βPdm, by which nutrient consumption by cancer cells differs
from their normal counterparts. Therefore, in our model we
assumed that mutations leading to cancer confer higher fitness
and thus a competitive advantage. Usually λN is chosen to be
greater than 1 so that cancer cells consume essential nutrients
at a higher rate than normal cells [40].

Figures 8(a)–8(d) show the cell clusters as well as the full
tumor spatial distribution of mutations for four combinations
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FIG. 8. Cluster structure and spatial distribution of mutations in
the tumor for representative combinations of parameter values, α and
λN , for β = 1, and simulation times T = 800 cycles. (a) α = 4 ×
10−3 and λN = 50, (b) α = 4 × 10−3 and λN = 100, (c) α = 6 ×
10−3 and λN = 50, and (d) α = 6 × 10−3 and λN = 100. The index of
diversity values are also indicated for each case. These values decrease
as the tumor becomes more compact and smaller in size. The color
bar represents the number of mutations and L = 500 is the horizontal
lattice size.

of values of the parameters α and λN . The clusters and tumors
have been referred to a coordinate system whose vertical axis
represents the values of α, while the horizontal axis represents
the values of λN . The parameter β has been assigned the value
β = 1. It is found that, for α = 4 × 10−3 and λN = 50, the
tumor is compact and cells located at the tumor periphery
undergo up to 500 mutations, as indicated by the cluster
analysis in Fig. 8(a). However, in Fig. 8(b) the tumor develops
fingerlike structures with a smaller main core than in Fig. 8(a).
In addition, the cluster structure indicates that at the periphery
(top right) there is a small cluster which is related to the tumor
top branch, suggesting that between 200 and 400 mutations
occurred. These results indicate that accumulation of mutations
is directly related to cell fitness and diversity. In Figs. 8(c)
and 8(d), α = 6 × 10−3 and λN = 50, 100, respectively. The
cluster and tumor structures become compact and decrease
in size. In these cases the number of mutations that occur is a
fraction (between 0.2 and 0.3) of the accumulation of mutations
of the clusters in Figs. 8(a) and 8(b) and the diversity value
becomes smaller than four, which indicates normal diversity.
These results suggest that, for a given value of λN as α

increases, the overall nutrients consumption rate—by normal
and cancer cells—is higher and cancer cell fitness and diversity
decreases.

Another quantity that characterizes the tumor structure is
the fractal dimension (FD). This quantity can be measured in
histopathology slides of tissue samples and is an important step
in the diagnosis of it [78–80]. In addition, the change in texture
or appearance of distortions in breast cancer tumors can be
detected from mammograms by estimating the FD [81]. With

FIG. 9. FD time evolution for the spatial distribution of each gene
for the six-gene set. The spatial distribution of mutations of gene TP53
shows a FD time evolution that is quantitatively similar to that of the
whole tumor (solid black line). The results represent a tumor with
parameters: α = 4 × 10−3, λN = 100, and β = 1. The inset shows
the time evolution of the whole tumor FD for different values of β

and same values of α and λN . These results indicate that as the number
of mutations increases FD approaches one universal curve.

the aim of relating these clinical measurements with the tumor
structure and the spatial distribution of mutations of the in
silico tumors—for instance those presented in Fig. 3—the time
evolution of the FD was calculated by means of the standard
box-counting algorithm (Fig. 9). FD increases monotonically
as a function of time for each of the six genes and also
becomes systematically greater for those genes that underwent
more mutations, as expected. That is, when one or more
genes suffer many mutations tumors become more diverse and
heterogeneous. To express the FD time evolution in terms of a
biological time scale one can relate one simulation cycle T with
a biological cell division cycle that lasts about 35 h [82]. Since a
full simulation of the in silico tumors lasts about 800 cycles, the
typical simulations reported here correspond to approximately
28 000 hours, about 38.9 months of real time.

The results shown in Fig. 9 indicate that for times longer
than 12 months (T > 300 generations) the FD of the spatial
distribution of the genes TP53, ATM, and BRCA1 become
asymptotically closer to each other. In fact, the trend shown
in the figure suggests that the FD behavior of the genes
TP53, ATM, BRCA1, ERBB2, and MDM2 will asymptotically
collapse onto one single curve for times T > 800 cycles, or
longer 38.9 months of real time. Hence the time evolution of
the FDs of the whole tumor and the spatial distribution of gene
TP53 show similar quantitative behaviors. This result strongly
indicates that the fractal structure of the whole tumor is fully
determined by the spatial distribution of the tumor suppressor
gene TP53 that plays a crucial role in cancer progression. On
the other hand, the inset of Fig. 9 shows the time evolution
of the whole tumor FD for five representative values of β.
For β � 1, the FD follows approximately one single curve;
however, for β > 1, the FD becomes systematically larger.
This is not surprising since the larger the values of β, the
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FIG. 10. Diversity H versus FD for the six genes set and several
values of β. The results correspond to a tumor with parameters: α =
4 × 10−3; λN = 100. The curves intersect at about (1.3,3.5). Points
in the upper-right quadrant correspond to a malignant tumor, while
those in the lower-left quadrant correspond to a benign tumor. The
results shown in the inset correspond to the sixteen gene set and are
consistent with those obtained with the set of six genes.

number of mutations decrease and, on the contrary, the smaller
the values of β, the number of mutations increases. These
results suggest that as proliferation increases (small values of
β), the FD time evolution approaches a single universal curve.

In silico tumors have been generated for the model parame-
tersα = 4 × 10−3,λN = 100, different values of the parameter
β, and the six-gene mutation dynamics. For each of them, the
diversity, H, and the FD have been calculated. With the results
of these simulations, a “2D malignancy diagram,” H versus
FD, has been calculated. The results are shown in Fig. 10.
There one sees that H increases monotonically as a function
of FD for all values of β. Note that, with the exception of the
curve corresponding to β = 0.5, all the other curves intersect at
the crossing point of the dashed lines with coordinates FD =
1.3, H = 3.5. This behavior suggests that there is a transition
point in the tumor structure as a result of the spatial distribution
of mutations. These results are consistent with recent studies
that found that benign breast cancer tumors show a FD <1.3,
while malignant tumors show a FD >1.3 [81]. Considering that
H = 3.5 is a transition point for diversity one can divide the
plane H versus FD into four quadrants with the axis crossing
point located at FD = 1.3,H = 3.5 as indicated in Fig. 10. The
(FD,H) points located in the upper right quadrant FD > 1.3
andH > 3.5 correspond to a malignant tumor. However, points
located in the lower left quadrant (FD < 1.3 and H < 3.5)
correspond to a benign tumor. The inset of Fig. 10 shows the
malignancy diagram obtained with a sixteen-gene mutation
dynamics for three values of β. The diagram looks similar to
that obtained with a six-gene dynamics, as shown in Fig. 10.
All these results indicate that the predictions of our model are
robust regardless of the use of six- or sixteen-gene mutation
dynamics. In addition, a benign tumor is associated to a low
fitness that is related to a high nutrient consumption while
a malignant tumor is associated to a low fitness and a low
nutrients consumption rate. The transition to the malignant
state occurs as a consequence of a high nutrients consumption

leaving spaces with low or no concentrations so that cells that
are located there suffer starvation and eventually improve their
fitness. This process leads to the appearance of bad mutations
that leads to tumor growth. This diagram is consistent with
previous observations [24,25].

V. DISCUSSION AND CONCLUSIONS

The present 2D model and its predictions can be contrasted
with a 3D model that was proposed recently [39]. First, our
model describes the growth of an avascular tumor with a
cellular automata whose probabilities of division and death as
well as the genetic dynamics depend on nutrients concentration
gradients. By contrast, the 3D model combines spatial growth
and accumulation of multiple mutations, while tumor growth
is modeled by using an Eden lattice. Each cell in the tumor
is described by its position and a list of genetic alterations
that occur since the initial neoplastic cell. They focus on the
interplay of genetics, spatial expansion, and short-range disper-
sal of cells, without including metabolism, tissue mechanics,
spatial heterogeneity of tissues, different types of cells nor
angiogenesis. Secondly, the present model uses a geometric
probability distribution to enhance locally random mutations
that are generated with a Poisson probability distribution.
Notwithstanding that genetic alterations follow the same dy-
namics, the mutation accumulation per gene is described by a
negative binomial distribution. In the division process of the
3D model each of the daughter cells receives new genetic
alterations drawn from the Poisson probability distribution
with parameter γx . Here the index refers to three possibilities:
all mutations, driver mutations, or resistant mutations. These
mutation probabilities are not known but they were varied in
accordance to clinical data of different cancer types. In spite of
the differences in spatial dimension and genetic dynamics, both
models yield the hallmarks of cancer, spatial heterogeneity, and
diversity. As a matter of fact, both models are able to describe
some clinical aspects of tumor growth. More importantly, these
models incorporate both spatial growth and genetic dynamics
that previous models had considered separately.

In conclusion, we have presented and analyzed a quan-
titative growth model of an avascular tumor that considers
the basic biological principles of cell proliferation, motility,
death, transport of nutrients, and gene mutation dynamics.
We postulate that the gene mutation rate depends on both
randomness and microenvironmental factors, such as essential
and nonessential nutrient concentrations for cell proliferation.
It was found that higher concentrations of nutrients is an
advantage that favors cancer cell proliferation as well as a
high accumulation of mutations, which in turn leads to genetic
diversity and tumor heterogeneity. Gene mutation dynamics
considered two sets of genes, one with six genes from a
regulatory network analysis and the other with sixteen genes,
from an analysis of genomic data, which are believed to
play a crucial role in cancer progression. The coupling of
mutation dynamics to microenvironmental factors was done
by introducing the parameter, β, that modulates proliferation
rate together with a probability distribution that regulates
mutation dynamics. The mutations in turn define the diversity
and heterogeneity of the tumor. For β < 1, the mutation rate
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is high and leads to high tumor gene diversity, whereas for
β > 1, the mutation rate is low and the tumor diversity becomes
normal.

For a given tumor one can calculate the diversity,H, and the
FD for different values of the parameter β. Thus a “malignancy
diagram” based onH versus FD was calculated in Fig. 10. With
the exception of the curve corresponding to β = 0.5, all the
other curves intersect at the crossing point FD = 1.3, H =
3.5, suggesting that this point indicates a critical change in the
tumor behavior. More importantly, the results presented here
suggest that the predictions of our model are robust whether
we use six- or sixteen-gene sets for the mutation dynamics.
In addition, our findings suggest that tumor fractal structure
and diversity are fully determined by the heterogeneous spatial
distribution of mutations of gene TP53, which is thought to play
a crucial role in cancer progression. We would like to point out
that the predictions of our model can be quantitatively related
to clinical and experimental observations.

It is important to mention that the hallmarks of cancer,
spatial heterogeneity and diversity, are reproduced in [39].
In spite of the fact that the present model is 2D it also
yields the spatial heterogeneity and genetic diversity. These
findings appear to suggest that there might be a universal
mechanism independent of the tumor spatial dimension and
genetic dynamics in cancer development.
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