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Learning-based game theoretical framework for modeling pedestrian motion

Yalda Rahmati and Alireza Talebpour*

Zachry Department of Civil Engineering, Texas A&M University, College Station, Texas 77843, USA

(Received 10 May 2018; revised manuscript received 22 July 2018; published 28 September 2018)

Pedestrians are active agents that undergo a repeated decision-making process while walking. These
anisotropic, interactive, and feedback-oriented agents observe their surroundings, anticipate the future state of
the network, and decide on their next movements accordingly, while ensuring a collision-free path toward their
destination. Aiming at capturing these behavioral characteristics of human agents while walking, the present
study puts forward a learning-based game theoretical approach for modeling pedestrian motion in dynamic
environments. The proposed game structure provides a technical foundation to analyze optimal decision-making
by pedestrians where the outcome of the game for each player’s choice depends primarily on the strategies
played by other players. This, in turn, ensures the frequently observed collision avoidance behavior of pedestrians
while walking. The influence of nearby pedestrians on one’s decision-making process and the feedback-oriented
behavior of human agents are also captured via incorporating a learning structure. Optimum moving strategies
are selected based on Nash equilibria calculations, where everyone is playing optimally given what all other
players are playing. The validation results using real-world trajectories of pedestrians provide evidence of the
model’s capability in describing pedestrian motion and walking behaviors at microscopic as well as macroscopic
levels.
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I. INTRODUCTION

Despite numerous studies in vehicular traffic, research on
crowd dynamics is still young. Compared to vehicular traffic,
crowd dynamics is more complex in many regards, justifying
dedicated rationales and modeling approaches. Its complexity
pertains to multidirectional movements, interactions between
individuals, and effect of human psychology and cultural as-
pects on pedestrians’ decision-making and behavior. Various
analytical as well as experimental studies have been proposed
to describe the underlying decision-making and model vari-
ous crowd movement scenarios. Social force models [1–3],
cellular automata [4–6], and analogy to fluid dynamics [7–9]
are among the broadly used approaches in modeling pedestri-
ans’ behavior. The review papers [10–12] and books [13,14]
present a general introduction and comparison of the exist-
ing models on pedestrian motion. Despite the considerable
number of efforts on predicting and modeling crowd dynam-
ics, practical applications of pedestrian motion models (e.g.,
navigating autonomous robots in dynamic environments) still
show significant discrepancies with real-world pedestrian tra-
jectories [15,16]. One of the major challenges in this regard
is the lack of system perspective, i.e. focusing on predicting
individual pedestrian’s movement and making decisions ac-
cordingly afterward; therefore, ignoring the interactive nature
of pedestrian behavior [17]. Indeed, many of these models are
based on pure mechanics without a detailed incorporation of
behavioral interactions of human agents [18]. Pedestrians in
such frameworks are usually considered as merely reactive
agents and their walking strategies are modeled as a response
to the observed conditions in the environment [19]. Several
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research works, however, indicated that pedestrians anticipate
the future motion of other pedestrians and dynamic objects
[20–23]. In other words, rather than being passively subjected
to external forces and solely reacting to them, they take into
account these predictions/beliefs and decide on their own
walking strategies accordingly [17,24]. This is indeed a cru-
cial behavioral component of pedestrian motion that ensures
successful human navigations without major collisions.

Generally, pedestrians are active agents that undergo a
repeated decision-making process while walking. Beyond
simply being automata, they are anisotropic, interactive, and
feedback-oriented agents who: (1) observe their surroundings,
predict the future state of the network, and decide on their fu-
ture movements taking into account the potential movements
of other pedestrians; and (2) expect the same behavior from
other agents [18]. Neglecting these behavioral factors and par-
ticularly the interactive nature of human agents, models will
fail to capture some crucial elements of pedestrian motion,
such as the commonly observed behavior of pedestrians when
they predict the future movement of nearby pedestrians and
decide to give way to each other in order to avoid potential
collisions [15,16]. It is thus important to put forward models
that can represent the logical joint decision-making behavior
of human agents, as well as the associated mutual effects and
collision avoidance behavior in modeling pedestrian motion
in dynamic environments.

A review of the previous studies on modeling interde-
pendencies in various disciplines (e.g., economics, political
science, biology, computers science, etc.) reveals the possi-
bility of describing such interactive behaviors via the well-
established game theoretical methodologies. In fact, game the-
ory is one of the most notably used mathematical foundations
to study a wide range of real-life situations where multiple
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rational players interact and take into account their knowl-
edge, experience, or predictions of other players’ behavior.
Therefore, capturing the mutual anticipation of other players’
potential moves and incorporating it into one’s decision-
making is one of the main contributions of game-theory-based
frameworks over the merely reactive models in describing
pedestrian motions [17]. Moreover, game theory can reflect
individual preferences and decision-making by defining in-
dividual payoffs for each of the utility-oriented players in
the game [17]. The methodology is also generalizable and
can be extended to cover a variety of behavioral concepts,
particularly the learning-based payoff functions.

Based on these considerations, the present study puts for-
ward a game-theory-based framework to model pedestrians’
motion in bidirectional flow scenarios. The game theory struc-
ture proposed here ensures the aforementioned anticipation
behavior of pedestrians while walking. The influence of all
other pedestrians into one’s decision-making process and the
feedback-oriented behavior of human agents are also cap-
tured via incorporating a learning structure into the model.
Moving strategies are then selected based on Nash equilibria
calculations. The proposed framework is validated using the
real-world trajectories of pedestrians to ensure realistic human
behaviors while walking. Results are presented based on
microscopic level behavior of individual pedestrians as well
as macroscopic characteristics of crowd dynamics.

The remainder of this paper is organized as follows: Sec. II
presents a review of the game-theory-based studies on mod-
eling pedestrian motions. Model formulation, including the
game structure, the learning process, and the payoff formu-
lations are discussed in Sec. III. Section IV introduces the
Nash-based solution of the proposed model and the calibration
results, followed by a discussion on the model validation at
both microscopic and macroscopic levels in Sec. V. A com-
parison of the proposed game theoretical model and discrete
choice-based models is also presented in this section. The
paper is concluded with summary remarks and future research
directions in Sec. VI.

II. LITERATURE REVIEW

Many research studies in various scientific disciplines have
shown the capability of game theory in modeling the cooper-
ative behavior of rational decision-makers in different scenar-
ios. Economics, psychology, computer science, and biology
are among the major disciplines that benefit most from game
theory. Testifying its increasing importance in transportation
engineering, there is also a growing body of literature that
use game-theory-based approaches to analyze, describe, and
model various behavioral scenarios [25–29]. Most of these
studies have focused on the macroscopic level analysis of
road/parking tolls policy [28,30–32], vehicle routing prob-
lems [33,34], transportation network reliability [35], urban
traffic demand [27], and transport modes competition [36].

However, despite its proven capability to model the in-
teractions and different aspects of human behavior, efforts
toward building game theoretical frameworks for describing
and modeling pedestrian motion are quite limited. One of
the first game-theory based studies on developing a generic
and consistent theoretical foundation for modeling pedestrian

behavior is the study by Hoogendoorn and Bovy [37]. Incor-
porating optimal control and differential games, each indi-
vidual pedestrian in their work is defined as an autonomous
predictive controller who tries to minimize the subjective
predicted cost of walking. The framework they introduced is
a finite deterministic model with a focus on simulating crowd
dynamics where the interactive behavior of pedestrians is
modeled using the distance between them. The proposed game
is also solved as an optimal control problem, rather than using
common game theory solutions (e.g., Nash equilibria). In
another study, Turnwald et al. [16] showed the potential capa-
bility of game theory in modeling humans’ walking behavior
at a microscopic level. Later, they extended their model by
examining additional cost functions, including the length of
the path, execution time, the distance between current location
and destination, and the associated cost to maintain a desired
speed [17]. Roy et al. [38] also proposed a Fokker-Plank
Nash game for pedestrian motion assuming that individuals
try to minimize the associated collision costs while walking.
They proved the existence of Nash equilibria by transforming
the game structure into an optimal control problem. All of
these studies, however, restrict the existing field interactions
among all pedestrians to the interactive behaviors between
only two players and model the mutual interdependencies
between two pedestrians that want to pass each other. Thereby,
the existence and potential influence of other players on the
game outcomes are mostly neglected.

One of the main issues with incorporating field interactions
between all individual pedestrians in a crowd is indeed the
extreme complexity in the game structure and the resulting
computational costs. To overcome these challenges, several
studies have proposed models which incorporate the concept
of mean field games (MFGs) in modeling general crowd
dynamics. The idea was introduced by Lasry and Lions [39].
They assumed that in large enough systems, individual agents
are not influenced by the individual actions of other players,
but only by the average properties. Accordingly, each agent
makes his/her decisions relying on some statistics regarding
the overall community of agents [39]. Motivated by this, a
few studies have focused on the concept of MFGs to restate
the game theory approach in modeling crowd dynamics as
an interaction of one individual with the mass of others
[24,40–44]. Many of these studies have dealt with numerical
methods to solve the MFG and evaluate the existence and
uniqueness of the solutions. Nevertheless, the real-world be-
havior of the pedestrians indicates that humans are more in-
fluenced by those in their visibility zone [45]. In other words,
pedestrians are anisotropic agents with different reactions at
different walking directions and would rarely react to the
pedestrians/objects behind or far from them (except maybe for
routing related decisions). Thus, incorporating the distribution
of the characteristics of the overall community to reflect the
individual interactions in pedestrian motion (as in MFG-based
approaches) may lead to unrealistic outcomes.

In addition to the above approaches, there are also several
studies that have used discrete choice models to explicitly
incorporate humans’ decision-making process into pedestrian
motion modeling. More promising in this regard is the study
by Antonini et al. [46] who have proposed a discrete choice
framework for pedestrians’ short-term behavior. A choice set
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consisting of a combination of different moving directions
and speeds is defined for each individual, and movement of
each agent is then determined by maximizing the utilities
associated with each choice alternative. Robin et al. [47]
also adopted a similar discrete choice framework taking into
account two different types of pedestrian behavior, referred to
as constrained and unconstrained behaviors. Discrete choice
models can be categorized as merely reactive frameworks in
which each pedestrian’s movement is modeled as a response
to the presence of other pedestrians. As alluded to in the
previous section, this assumption neglects pedestrians’ mutual
anticipation behavior and thus, may lead to failure in captur-
ing the commonly observed collision-avoidance behavior of
human agents (e.g., when they predict the potential move-
ments of surrounding pedestrians and decide to give way in
order to avoid possible collisions). Note that a more detailed
discussion will be presented in Sec. V D to compare the
performance of the proposed game-theory-based model and
the corresponding discrete choice framework in describing
pedestrians’ motion in dynamic environments.

Motivated by the aforementioned challenges in modeling
pedestrian behavior, the present study puts forward a learning-
based game theoretical approach for modeling pedestrian mo-
tion in dynamic environments. The main contributions of the
introduced framework can be summarized as follows: (1) The
proposed game-theory-based model ensures the interactive
decision-making mechanism of pedestrians by formulating
a joint payoff function for the players in the game struc-
ture, which also incorporates the anisotropic characteristics of
human agents while walking. The payoff functions are also
defined in a way that ensures the stochastic nature of human
behavior; (2) Rather than being merely reactive, the model
provides pedestrians with the ability to anticipate the future
behavior of surrounding pedestrians and decide accordingly.
This, in turn, can capture the frequently observed collision
avoidance behavior of the pedestrians in real-world walking
scenarios; and (3) Adopting a learning structure, the proposed
game-theory-based model incorporates the influence of pre-
vious experience and observations into pedestrians’ decision-
making process and thereby, addresses the feedback-oriented
behavior of human agents. Through extensive validation ef-
forts, this study shows that the proposed game theoretical
model can describe pedestrians’ motion and walking behav-
iors at microscopic, as well as, macroscopic levels.

III. METHODOLOGY

Game theory is a mathematical framework to model
the interactions and decision-making processes of two or
more players in strategic settings (games). It provides a
technical foundation to analyze optimal decision-making by
the rational players where the outcome of the game for each
player’s choice depends primarily on strategies played by
other players. It has been shown that the approach can provide
a unique tool to capture the underlying interactions among
various players with different preferences. This study presents
a game theoretical approach to model pedestrian motions in
dynamic environments. In the proposed game structure,
players are rational pedestrians who try to find the fastest
route to their desired destination. The strategy set for each

player is then defined as the possible choices of movement
at each time step. As discussed, the key advantage of this
framework is its ability to capture individual pedestrian’s
preferences in dealing with various situations and choices by
other pedestrians in the crowd.

While walking, players continuously make decisions on
their moving directions and walking speed to optimize their
walking utility [48]. These decisions are based on two main
information sets: (1) the observations in the current time step
and anticipating the future movements of other players in
the visibility zone, and (2) estimating the general walking
behavior of all surrounding pedestrians. Therefore, it is as-
sumed that each pedestrian plays two games simultaneously:
one with the pedestrian that has potentially the most influ-
ence on his/her behavior (usually the nearest neighbor in
his/her visibility zone), and another learning-based game with
all nearby pedestrians to construct an estimate about their
general walking behavior. Maximizing the subjective joint
payoff function according to the Nash equilibrium solution
for the game theory results in the optimum strategy for
the target pedestrian. This strategy, in turn, determines the
optimum speed and direction to move at each time step. In
the following, the logic and structure of the aforementioned
games played by each pedestrian at each time step, and the
mathematical formulation of the subjective payoff functions
will be discussed in more details.

A. First game

In a congested environment (e.g., a narrow corridor),
pedestrians interact with each other, while considering the
obstacles on their way. One of the most determinant factors
in modeling crowd dynamics is the anisotropic pedestrians’
interactive behavior with those walking in their visibility zone.
It is assumed that each individual plays a game with the
closest pedestrian in his/her visibility zone. This assumption is
based on the real-world observations where it can be seen that
pedestrians’ behaviors are not affected equally by the nearby
pedestrians. In other words, although each individual interacts
with nearby pedestrians, his/her decisions are mostly affected
by those who have the shortest distance from him/her, and
also located in his/her visibility zone. Accordingly, the first
game in the proposed framework is defined to capture the
effect of the nearest pedestrian in the visibility zone. Note that
the effect of other nearby pedestrians will be captured in the
second game introduced in the next section.

Before deciding on the appropriate form for the first game,
let us first introduce two main categories of games in general:

(1) Cooperative or noncooperative games: Cooperative
games involve those strategic settings where players form a
kind of negotiation/coalition in order to play joint strategies.
In noncooperative games, however, each player acts individu-
ally and tries to optimize his/her own payoff.

(2) Zero-sum and non-zero-sum games: In zero-sum
games, the gain for one player will necessarily result in a loss
for other players. Thereby, the sum of all gains and losses
for all players is equal to zero. Other games, for which this
condition is not enforced, are referred to as non-zero-sum
games.

Back to pedestrians’ motions and walking decisions, it
can be concluded that pedestrians usually act independently
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FIG. 1. Extensive form of the first game (only one subgame in PB ’s information set is illustrated).

and try to maximize their own walking utilities in a self-
interested manner. Thereby, the game played between players
can be defined as a noncooperative game where each player
is modeled individually [16]. A Nash-equilibrium solution for
such games tries to predict the strategies that each individual
will choose considering the potential moves by other players.
On the other hand, the game played between pedestrians is not
necessarily competitive; rather, it can be beneficial for both
players. Hence, a non-zero-sum game is selected to describe
a situation in which players have both complimentary, as
well as conflicting interests. Finally, the first game in the
proposed framework is defined as a two-person non-zero-sum
noncooperative game between two pedestrians: (1) player A
(PA), which is the target player whose behavior is modeled
individually under the noncooperative game structure; and (2)
player B (PB), which is the nearest pedestrian to PA in his/her
visibility zone. Note that there is no need for PA to be located
within PB’s visibility zone. Indeed, each individual may play
this game with a pedestrian who is walking in his/her visibility
but not necessarily at the same heading direction. A general
m-player form of the first game can be given by

(1) A set of m players: P = {P1, . . . , Pi, . . . , Pm}.
(2) A finite set of possible strategies for player i, denoted

by Si . Note that si ∈ Si indicates a possible strategy for player
i. Let S = {s1, . . . , sm} denote a possible strategy profile for
the game, i.e., a strategy for each player.

(3) A set of payoff functions illustrated by �, where
πi (si, s−i ) ∈ � denotes the payoff of player i if he/she plays
si ∈ Si , while all other players play s−i . Note that s−i =
{s1, . . . , si−1, si+1, . . . , sm} represents a strategy for every
player except i.

The strategies in the corresponding pedestrian motion sce-
nario are defined as the possible moving directions for each
player at each time step.

To apply the game structure, the 360-degree zone around
each individual is divided into n identical zones with the
angle of θ degrees each, where θ = 360/n. A pedestrian’s
movement decision at each time step falls into one of
these n zones. Therefore, each zone represents a possible
strategy for the player at each time step, defined based on
the deviation from pedestrian’s desired direction. The area
consisting of the strategies (zones) located in a human’s
peripheral vision zone is referred to as pedestrians’ visibility
zone. Note that for a large enough n, this system can
capture all the potential directions that a pedestrian can
choose.

Figure 1 shows the extensive form of the first game played
between PA and PB . Nodes and branches denote players and
their strategies in the first game, respectively. Each individual
has a set of pure strategies (possible moving directions) to
choose at his/her first game with the nearest pedestrian in
his/her visibility zone (Si). These strategies can be defined
based on the deviation from pedestrian’s desired direction.
Notice that PB does not know which of his/her nodes is actu-
ally reached since he does not observe PA’s choice before his
decision. In other words, the game is played simultaneously,
rather than sequentially, and hence PB’s nodes are in the same
information set, represented via a dotted line in Fig. 1.

As illustrated, each game results in some payoffs, or utili-
ties, for the players. For simplicity, only one of the n possible
subgames that can be played by PB is illustrated in Fig. 1. The
same subgame structure will be repeated for all other nodes
in PB’s information set. Payoffs, however, can be different
for each subgame as the outcome of the game for each player
depends on the strategies chosen by both players. Therefore,
playing the same strategy by one player may lead to different
payoffs, depending on the strategy selected by other players.
This, in turn, reflects the ability of the proposed game-based
model to capture pedestrians’ anticipation behavior, which is
one of the main contributions of this approach over others.
Indeed, rather than being a merely reactive agent, game theory
allows pedestrians to anticipate the potential strategies that
can be played by other pedestrians, estimate the associated
payoffs, and decide on the best strategy to choose accordingly.

It should be noted that the proposed structure for pedes-
trians’ first game can also capture the effects of obstacles on
choosing the movement direction. When necessary, the game
will substitute the role of PB with the nearest obstacle. Indeed,
if there exists an obstacle in PA’s visibility zone that is closer
than any other pedestrian, PA can coordinate a game with
it and decide on his/her best strategy to move taking into
account the location of the obstacle. The formulation of the
payoff functions associated with each strategy profile and the
Nash-based solution of the proposed game will be discussed
in more detail in Secs. III and IV.

B. Second game (learning)

1. A note on "learning" in games

In addition to the game played with the nearest pedestrian
in the visibility zone, each pedestrian considers another factor
in deciding on which strategy to choose. Consider a normal
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case where a pedestrian is moving toward his/her desired
direction along with another pedestrian who is walking at the
right-hand side (no pedestrian on the left-hand side). Now
assume that a blockage has happened in the target pedestrian’s
desired direction and therefore, he/she should choose another
route to the destination by changing his/her direction at the
current time step. Recalling that the right-hand side was
occupied in the past time steps, the probability of choosing
the right direction will be much lower for the target pedes-
trian without even looking. Overall, by repeatedly observing
the environment while walking, pedestrians make inferences
about the general walking behavior of nearby pedestrians with
which they gradually adjust their expectations of the future
surrounding environment. These expectations, in turn, affect
their choice of walking strategies at each time step. This
behavior stems from the feedback-oriented characteristics of
human agents, which also justifies several self-organizing
pedestrian motion phenomena, namely the lane formation in
high densities [49], where individuals tend to segregate and
follow each other in specific lanes. This phenomenon can be
described considering the collision avoidance behavior and
the feedback-oriented feature of human agents. From their ex-
periences in the previous time steps, pedestrians learn that the
immediate place in front of them becomes vacant at each time
step, while other locations are usually occupied increasing the
probability of potential conflicts. This feedback, in turn, leads
the crowd to form lanes in order to minimize the need for
direction and/or speed change to prevent potential collisions
[49].

The described feedback-oriented characteristic of pedestri-
ans can be captured through the concept of ”learning” in the
field of game theory. "Learning" allows pedestrians to adapt
their walking behavior in response to surrounding pedes-
trians’ walking strategies in an interactive decision-making
setting [50]. Note that a similar concept is applied in cellular
automata models for crowd dynamics. These models define
probabilities to reflect pedestrians’ tendency to move to each
of the adjacent cells. Predefining higher probabilities for the
immediate front cell can then result in lane formation phenom-
ena in crowd dynamics simulations. Such predefined rules,
however, do not reflect the decision-making processes of
individual pedestrians nor the dynamic interactions between
them. Game theory, on the other hand, can potentially model
the underlying decision-making processes while accurately
capturing pedestrians’ walking behavior, including the self-
organized lane formation phenomenon. In a nutshell, pedes-
trians usually try to find the fastest route to their destination
(not the shortest path necessarily), which may lead them to
select strategies with higher probabilities of being available.
These probabilities are constructed based on a belief about the
nearby pedestrians’ choices and get updated at each time step
according to the previous observations. In order to capture
this essential feature of pedestrian motion, the present study
incorporates a learning game to model the feedback-oriented
behavior of pedestrians while walking.

2. Mathematical representation of the proposed learning game

In a general learning structure, each player is assumed
to construct an empirical estimate of other players’ actions.

Applying this structure to the proposed learning game for
modeling pedestrians’ motions, it is assumed that pedestrians
keep in mind the number of times that each of their strategies
was available in the past. Let N (si )t−1 denote the number
of times that strategy si was available to pedestrian i until
time t − 1, where N (si )0 represents player i’s initial belief
about opponents’ play before starting the game. Therefore,
Pedestrian i believes that his/her strategy si will be available
at time step t with probability of P (si )t :

P (si )
t = N (si )t−1

t − 1
. (1)

After observing the new condition of the network at each time
step, players update their estimates based on the observed
actions taken by other pedestrians. Assume that the game
has been played by all of the pedestrians at time step t ,
and only the strategy j for player i has gotten occupied by
nearby pedestrians (while all other possible zones for him/her
remained available). Observing the game outcomes at time
step t , player i updates his/her beliefs for time step t + 1 as
follows [51]:

P (si )
t+1 = N (si )t−1 + 1

t
if si �= j

P (si )
t+1 = N (si )t−1

t
if si = j. (2)

Note that the above formulation is the standard structure of
the fictitious play in game theory, introduced by Brown [52].

Considering the feedback-oriented walking behavior of
humans, these estimates will affect pedestrians’ choices at
each time step and therefore, should be considered when
modeling pedestrians’ motions in dynamic environments.

C. Payoff functions

As alluded to in the previous sections, each pedestrian
plays two simultaneous games at each time step: one with
the nearest pedestrian in his/her visibility zone and another
learning game with all of the nearby pedestrians to construct
an estimate about the availability of the strategies in next time
step. The final payoffs for each individual will then be a joint
function which incorporates the effects of both games. In the
following section, first, the payoff functions of each game will
be defined and discussed. Then, a joint payoff formulation will
be introduced for each of the possible strategy profiles of the
game.

1. Payoffs of the first game

In the proposed game structure, each player has n pure
strategies to choose in the first game with the nearest pedes-
trian in his/her visibility zone. Payoffs for the first game are
defined as a function of certain factors that characterize the
walking behavior of the pedestrians. The approach in this
study is based on the assumption that underlying decision-
making logic of humans is based on the "rational" theory
[53,54]. According to this theory, humans have a "value"
associated with each alternative (each strategy in the context
of game theory), and they are trying to maximize such value.
In modeling pedestrian’ motion, the alternatives can be the
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direction of the movement and the walking speed. Therefore,
the decision-making process of the pedestrians consists of two
major components, which must be reflected in the payoff func-
tions: the directional component and the movement (speed)
component.

Starting with the directional component of the payoff func-
tions, pedestrians should choose their direction of movement
at each time step. It is assumed that pedestrians prefer to fol-
low their desired direction, and deviate (if necessary) as late as
possible [55]. Therefore, the directions with smaller deviation
from pedestrian’s desired direction must offer higher values.

The movement component of crowd dynamics has its roots
in desired walking speed. Observations on crowd dynamics
show that pedestrians tend to walk at the desired speed, which
corresponds to the most convenient or least energy-consuming
walking speed [55]. This preference usually leads to choosing
the fastest rather than the shortest route to their destination.
Thus, it is expected that the speeds closer to the desired walk-
ing speed can provide higher payoff values for pedestrians.
Combining the above components into a single term in the
payoff functions of the first game, the following equation can
be formulated:

πA(j, q )DM = cos (θj )
V(j,q )/Vd

(1 + V(j,q )/Vd )
βj − 1

2

, (3)

where πA(j, q )DM is the directional-movement component
of PA’s payoff function where PA and PB play sA = j and
sB = q, respectively [i.e., strategy profile S = (j, q )]; θj is
the associated average deviation from the desired direction
for strategy j ; V(j,q ) denotes the maximum achievable speed
of PA if strategy profile S = (j, q ) is played by the players
(further explanation is provided in the following paragraph);
Vd is the desired walking speed; and βj is a parameter to be
estimated.

It is assumed that pedestrians can keep walking at their
current speed if: (1) they choose to move toward their desired
direction, and (2) there is no potential for collision considering
the future movement of the nearest pedestrian. On the other
hand, walking speed towards the destination would be de-
creased by deviation from the desired walking direction. Also,
the real-world observations of pedestrians’ behavior indicate
that movement of nearby pedestrians can affect the walking
speed of each individual as they may reduce their speed to
avoid colliding with a pedestrian walking toward them. Thus,
lower payoffs are expected for those strategies that can lead
to potential collisions and speed reductions. Accordingly, the
maximum achievable speed for PA under strategy profile S =
(j, q ) can be defined by

V(j,q ) = VA cos(mθj )en(−RAB ),

RAB = dAB − W, (4)

where VA is PA’s speed at current time step; m is equal
to 0 if strategy j is toward PA’s desired direction, and 1
otherwise. n is equal to 0 if there is no potential for collision
under strategy profile S = (j, q ), and 1 otherwise; RAB is the
effective distance between PA and PB , dAB is the Euclidean
distance between the center points of PA and PB ; W is the
average shoulder width of a human, set to 0.4 meter in the
present study.

FIG. 2. The directional-movement component of crowd dynam-
ics for different values of θ and V/Vd .

Figure 2 illustrates πA(j, q )DM for different values of walk-
ing direction and speed. The proposed structure ensures that
pedestrians are at their maximum directional-movement util-
ity when traveling toward their destination at desired speed.

Beside the directional-movement component in players’
payoff function for the first game, another component should
be considered to represent the motivation of each player
in choosing a walking strategy. The real-world observations
show that pedestrians usually prefer not to walk too close
to each other [55]. They might even deviate slightly from
their desired direction in order to increase their distance with
another pedestrian walking in front of them. Moreover, in case
of observing an obstacle on the way to the destination, the
relative location of the obstacle to the pedestrian also turns to
be a determinant factor in his/her choice of walking strategy.
Figure 3 illustrates the schematic of the first game played
between PA and PB . In this figure, θj is the average deviation
from the desired direction for strategy j in PA ’s strategy set,
and θAB is the angle between the line connecting PA and PB ,
and the desired direction of PA. The shaded area in the figure
illustrates the relative location of PA to PB .

FIG. 3. The relative location of PA to PB . θAB is the an-
gle between the line connecting PA and PB and the desired
direction of PA.
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Apparently, the strategies associated with smaller shaded
areas are expected to have lower payoffs for each player. This
preference is reflected in the proposed payoff functions to
represent a more realistic behavior in modeling pedestrians’
motions. Notice that since pedestrians adjust their walking
based on what they observe, the cost caused by the presence of
other pedestrians or obstacles in the walking area only appears
in the payoffs associated with those strategies that cover
pedestrian’s visibility zone. Accordingly, the corresponding
term in the payoff functions of the first game can be formu-
lated as follows:

πA(j, q )int = ∣∣θAB − θj

∣∣,
If strategy sA = j is in PA

′s visibility zone;

πA(j, q )int = 0, Otherwise, (5)

where πA(j, q )int is the interaction term in PA’s payoff
function for the first game if PA and PB play their sA = j and
sB = q strategies, respectively. This term captures players’
tendency to stay away from other pedestrians. θAB is the
angle between the line connecting PA and PB and the desired
direction of PA; |θAB − θj | is the relative location of PA to
PB , if PA decides to choose strategy j .

The next component to consider when formulating pedes-
trians’ payoff functions for the first game, is the collision
avoidance feature of human agents while walking. As alluded
to in the previous sections, one of the key contributions of
game-theory-based frameworks over other pedestrian motion
models is their ability to capture human agents’ anticipation
behavior while walking. By introducing different payoffs for
different strategy profiles, game theory allows players to de-
cide on their best strategies considering the potential choices
by other opponents. In other words, πi (si, s−i ) can result in
different payoff values than πi (si, s ′

−i ), i.e., player i may not
get the same payoff by playing strategy si , if the strategies
selected by other players changes from s−i to s ′

−i .
In the Nash-equilibrium solution for games, players com-

pute payoffs for each of their strategies under different strat-
egy profiles and choose their optimum strategies accordingly.
This behavior is in line with the real-world behavior of
pedestrians, where each individual predicts the future motions
of nearby pedestrians and considers them in his/her own
motion planning process. This feature in pedestrian motion, in
turn, leads to a mutual collision avoidance behavior between
pedestrians that prevents potential conflicts while walking
[16]. In the proposed game structure, a collision avoidance
term is therefore added to players’ payoff function whenever
there is a potential collision situation:

πA(j, q )collision = e(−RAB ) (6)

where πA(j, q )collision is a component in PA ’s payoff function,
added if there is a potential collision when PA and PB play
their sA = j and sB = q strategies, respectively; and RAB

is the effective distance between PA and PB , indicating that
the collision avoidance behavior can be more influential when
players are walking close to each other.

2. Payoffs of the second game (learning)

By playing the learning game introduced in Sec. III B 2,
each pedestrian will construct an estimate/belief about the
availability of each of his/her strategies for the next time
step. Strategies with higher probabilities of being available
(directions not occupied with other pedestrians) will lead to
greater payoffs for the player. For example, if PA recognizes
that direction j was usually occupied and hence sA = j was
unavailable during previous time steps, he/she will probably
consider a lower weight for the payoffs provided by this strat-
egy in the first game. In other words, the proposed learning
structure enables PA to calculate P (si )t−1, the probability of
strategy sA = j being available for PA at time step t . Refer to
Sec. III B 2 for more details.

3. Formulating a joint payoff function

Considering the effects of both games in players’ final
payoffs, a joint formulation for the payoff functions is defined
by

πA(j, q ) = P (sA)t
[
α0

j + αDM
j πA(j, q )DM

+ 1(V Z)αint
j πA(j, q )int

+ 1(col) αcollision
j πA(j, q )collision

] + εj (7)

where πA(j, q ) represents the payoff that PA will get under
the strategy profile of S = (j, q ); 1(V Z) is equal to 1 if
the strategy sA = j falls into PA’s visibility zone, and 0
otherwise; 1(col) is equal to 1 if the strategy profile of S =
(j, q ) leads to a potential collision, and 0 otherwise; εj is the
error term to capture the stochastic behavior of human agents.
α0

j , αDM
j , αint

j , and αcollision
j are parameters to be estimated. It

should be noted that the walking behavior of human agents
is not a deterministic process, meaning that pedestrians may
choose different strategies under similar situations. Thus, to
capture the stochastic behavior of the pedestrians and reflect
the effect of unobserved factors in their decision-making
process, an error term is considered in the payoff formulations
of the proposed game structure.

IV. NASH EQUILIBRIA AND GAME CALIBRATION
RESULTS

A. Nash equilibrium solution of the game

The main goal of game theory is to predict the strategy
profile that is most likely to be played by players. This solu-
tion needs to be stable, i.e., a strategy profile where everyone
is playing optimally given what all other players are playing.
The general mathematical description of such a profile for a
general m-player game can be given by S∗ = {s∗

1 , . . . , s∗
m},

where for all players si ∈ Si

πi (s
∗
i , s∗

−i ) � πi (si, s∗
−i ). (8)

In this equation, πi (s∗
i , s∗

−i ) denotes the payoff for player
i if he/she chooses to play s∗

i , while all other players play
s∗
−i . Equation (8) ensures that player i cannot make any

profitable deviation from strategy s∗
i if all other players choose

to s∗
−i . Since each player selects his/her best response to what

everyone else is doing, the strategy profile S∗ is called a Nash
equilibrium.
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FIG. 4. Pedestrians’ choices to move and visibility zone.

The present study adopts a Nash-based solution for the
proposed game structure to predict and model pedestrians’
motion and walking behavior. Note that Nash equilibrium
predicts the most likely outcome of the game considering that
each player maximizes his/her own utility while anticipating
the strategies played by other players. This is indeed in
line with the utility maximization/cost minimization principal
used by numerous crowd dynamic models in the literature
[16,17,37,38,40,43,46–48]. Moreover, the Nash-based solu-
tion offers another key dimension by capturing the corre-
sponding anticipation behavior of human agents discussed
in the previous sections. In the proposed game structure,
each player computes his/her corresponding payoff for each
possible strategy profile and then chooses the strategy that
maximizes his/her payoff given the strategies selected by
other players.

B. Model calibration results

This section presents the results for the numeric parameter
estimation of the proposed game structure. For simplicity and
without any loss of generality, we chose the strategy range
of θ = 45◦. With this selection, the 360◦ zone around each
individual is divided into eight identical zones, as illustrated
in Fig. 4. Note that considering an average shoulder width of
0.4 meter, each individual is modeled as a circle with a radius
of 0.2 meter.

The visibility zone for each pedestrian is defined as the
135◦ zone in front of them, corresponding to [−67.5◦, 67.5◦]
deviation from their desired direction (the shaded area in
Fig. 4). According to this structure, the possible moving
directions for each pedestrian are categorized into eight inde-
pendent zones, resulting in eight pure strategies for him/her to

FIG. 5. Schematic of the first game for PA for θ = 45◦.

choose from at each time step. As discussed, these strategies
can be defined based on the deviation from the desired direc-
tion. Table I indicates the strategy set for each pedestrian that
is used to calibrate and validate the proposed game theoretical
framework. The following acronyms are hereafter used to
refer to each of these strategies: Moving Forward (F), Forward
Left (FL), Forward Right (FR), Left (L), Right (R), Backward
Left (BL), Backward Right (BR), and Backward (B).

Figure 5 illustrates a schematic of the first game played
between the target pedestrian (PA) and the nearest pedes-
trian/obstacle in his/her visibility zone (PB). As illustrated in
Fig. 5, the visibility zone for each pedestrian involves the three
strategies of F, FL, and FR in the proposed structure.

Figure 6 represents the extensive form of the first game,
where players simultaneously choose a strategy from their
available strategy set. Notice that this figure is indeed the
corresponding form of Fig. 1 for the proposed setting with
8 pure strategies.

To evaluate the proposed model, this study uses real-world
pedestrian trajectories associated with a bidirectional flow
passing through a corridor and exiting from an instructed
direction [56]. Figure 7 illustrates a schematic of this experi-
ment, where the corridor has the following geometries: width
of the corridor (bcor ) = 3.60 m and width of the entrances
(bent ) = 0.90 m.

At the beginning of the experiment, each participant is
assigned a random number and located within the designated
sites behind the entrances on both sides of the corridor. They
were then asked to cross and exit the corridor from instructed
directions determined by their assigned personnel numbers
during a total period of 2.5 min. Pedestrians with an even
personnel number are instructed to exit the corridor on the

TABLE I. Strategy set for each pedestrian at each time step for θ = 45◦.

Strategy Moving direction Deviation from desired direction (deg) Average deviation from desired direction (deg)

F Forward [−22.5, 22.5] 0
FL Forward Left [22.5, 67.5) 45
FR Forward Right [−67.5, −22.5) −45
L Left [67.5, 112.5) 90
R Right [−112.5, −67.5) −90
BL Backward Left [112.5, 157.5) 135
BR Backward Right [−157.5, −112.5) −135
B Backward [−157.5, −180] or [157.5, 180] 180
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FIG. 6. The extensive form of the first game.

right, and those with odd personnel numbers are instructed
to exit the corridor on the left. It is worth noting that forc-
ing specific exit directions creates more crossing movements
while walking, and thus, more complex dynamics. Therefore,
such an experiment can better evaluate the model’s capabil-
ity in describing pedestrians’ walking behaviors in dynamic
environments.

The dataset used for calibrating the game parameters
includes the trajectories of 170 pedestrians during a 1-min
period, corresponding to a 6.1-m-longsegment on the corridor.
Each pedestrian is assumed to play the proposed game every
0.1 sec. The speed of each individual is calculated at every
0.1 sec, and the desired speed is assumed to be 1.3 m/s for
all of the pedestrians. The desired direction is also defined
as the direction of the line connecting the pedestrian to
his/her destination. The selected strategies for each pedestrian
are determined based on the deviation from the desired
direction at each time step. The initial estimates for the
learning game are set based on the best fits provided by
the model: P (F )0

A = 0.98, P (FL)0
A = P (FR)0

A = 0.93,
P (L)0

A = P (R)0
A = 0.65, P (BL)0

A = P (BR)0
A = 0.30,

P (B )0
A = 0.10. Table II shows the parameter estimation

results and the standard deviations for the calibrated
parameters. These values provided the best fit for the
introduced game structure, leading to a log-likelihood ratio of
0.979.

Note that according to the proposed game framework, PA

will play the first game with PB only if he/she is located
in PA’s visibility zone. Thus, for the structure illustrated in
Fig. 5, the interaction term in the payoff functions will only
appear for those strategy profiles that include the strategies of

F, FL, or FR in PA’s strategy set. In addition, the collision
avoidance term in PA’s payoff functions will only appear for
the strategies of F, FL, FR, L, or R, since PB is in PA’s
visibility zone and assumed to move through, up to one zone,
at each time step. Therefore, there is no chance for a potential
collision between the two players if PA chooses to move BL,
BR, or B.

V. MODEL VALIDATION

In this section, the proposed game theoretical framework
is validated to assess its capability in capturing and modeling
real-world pedestrian behavior. New trajectories of 178 pedes-
trians during another 1-min period are used to validate the
model’s capability in predicting the actual strategies played by
each player. Considering 0.1 sec time step, 27 761 strategies
are tested and validated.

A. Microscopic analysis of crowd dynamics

To validate the proposed framework at microscopic level,
the individual strategies played by each pedestrian in the
game are compared to the corresponding real-world choices
of the pedestrians. Accordingly, the values of the joint payoff
functions are calculated for each player at each time step,
using the parameter estimation results presented in Table II.
The optimum strategy for each pedestrian is then identified
based on the Nash-based solution of the game. Comparing
the predicated and corresponding actual choices indicates an
86.89% accuracy in predicting the moving strategies chosen
by each pedestrian at each time step. To further evaluate the
calibration results, root mean square error (RMSE) is also

FIG. 7. The schematic of the corridor experiment: bidirectional flow, free choice of destination [56].
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TABLE II. Model calibration results.

Parameter Calibrated value STD

α0
F 0.000 0.000

αDM
F 13.160 0.451

αint
F − 0.873 0.062

βF 12.531 0.056

αcollision
F 0.977 0.011

α0
FL − 0.159 0.020

αDM
FL 1.079 0.404

αint
FL − 13.691 0.504

αcollision
FL 1.004 0.066

α0
FR − 6.449 0.815

αDM
FR 3.330 0.058

αint
FR 1.154 0.037

αcollision
FR 1.015 0.018

α0
L − 8.853 0.064

αDM
L − 0.484 0.094

βL 20.114 0.133

αcollision
L 0.978 0.022

α0
R 0.203 0.029

αDM
R − 1.381 0.054

βR 0.174 0.034

αcollision
R 0.981 0.044

α0
BL − 6.039 0.082

αDM
BL 3.783 0.153

βBL − 2.471 0.011

α0
BR − 1.314 0.001

αDM
BR − 16.979 0.047

βBR 6.462 0.101

α0
B 2.334 0.231

αDM
B 1.748 0.008

βB − 1.377 0.321

calculated as follows [26]:

RMSE =
√

1

n
f (xi, x ′

i ), (9)

where f (xi, x
′
i ) = ∑

i 1(x ′
i − xi )2 and n is the number of

observations. x ′
i and xi denote the predicted and actual values,

respectively. 1(x ′
i − xi ) is equal to zero if the predicted and

actual values are identical (i.e., x ′
i = xi) and 1 otherwise. For

the proposed game theoretical model, the actual strategies
played by each pedestrian at each time step are evaluated and
compared to the corresponding optimum strategies predicted
by the model. The discrete RMSE value for 27 761 strategies
chosen by all of the pedestrians is then computed as 0.29,
indicating the relatively high prediction power of the model
in predicting the moving decisions made by individual pedes-
trians at each time step.

These findings from model validation at microscopic level
indicate the capability of the proposed game theoretical model
in describing the real-world behavior of pedestrian dynamic
environments.

FIG. 8. Three-dimensional pedestrian trajectories [57].

B. Macroscopic analysis of crowd dynamics

This section presents a macroscopic level analysis of crowd
dynamics to provide a more accurate evaluation of the model
performance and a better understanding of the model’s capa-
bility in capturing the complex dynamics in the crowd. As
discussed to in the previous sections, pedestrians are assumed
to play two simultaneous games at each time step and an
optimum strategy is then determined for each player based
on maximizing the subjective joint payoff functions. Each
pedestrian then moves in that direction and at the speed
associated with his/her optimal strategy at the current time
step. The game is played again in the next time step based on
the new locations of the pedestrians and the updated beliefs
from the previous time steps. The repeated cycles of the game
generate the predicted trajectories of a single pedestrian, used
to evaluate the macroscopic features of crowd dynamics.

In order to analyze the macroscopic characteristics, pedes-
trian flow, speed, and density are calculated based on the
method introduced by Saberi and Mahmassani [57]. This
method is an extension of Edie’s definition [58] to a three-
dimensional time-space diagram for pedestrians, where the
x and y axes are, respectively, the width and length of the
walking facility, and the z axis represents time. In their
work, Saberi and Mahmassani calculated the time spent and
the distance traveled inside a hypothetical volume, V , with
dimensions of dx, dy, and dt (see Fig. 8). The corresponding
crowd density (k) and flow (q) are then defined as follows:

k =
∑

i∈N ti

|V | =
∑

i∈N ti

dxdydt
, (10)

q =
∑

i∈N di

|V | =
∑

i∈N di

dxdydt
, (11)

where ti and di denote the total time spent and distance
traveled by pedestrian i inside shape V , respectively. Saberi
and Mahmassani [57] showed that their method results in a
more accurate estimation of flow and density compared to
traditional methods.

Applying Eqs. (10) and (11), the actual and simulated
density and flow values are calculated for the proposed game
structure. Figure 9 indicates the density profiles based on
actual (a) and simulated (b) pedestrian trajectories during a
1-min period over a 1.5-m-long segment in the middle of the
test corridor. As illustrated, both profiles create approximately
identical dynamics. Lower density values can be identified

032312-10



LEARNING-BASED GAME THEORETICAL FRAMEWORK FOR … PHYSICAL REVIEW E 98, 032312 (2018)

FIG. 9. Density profiles (ped/m2) based on (a) actual and (b) simulated pedestrian trajectories.

near the entrance-exit points (meter markers 0 and 5) in both
graphs. An increased crowd density is also identified around
the center of the corridor between meter markers 2 and 3.
Figure 10 also illustrates the similar patterns in flow profiles
for actual and simulated crowd dynamics. It can be seen that
the proposed game theoretical framework can capture the flow
fluctuations in pedestrians’ motion, and more interestingly, the
increased flow values around the meter markers 2 and 3.

Figure 11 illustrates the changes in density over time,
based on actual and simulated pedestrian trajectories during
a one-minute period over the selected 1.5-m segment in the
middle of the corridor. As shown, the simulated density-time
curve fits well to the corresponding curve based on the real-
world pedestrian dynamics. Simulated and actual trajectories
generate almost similar fluctuations of the density over time,
revealing the model’s capability in capturing macroscopic
characteristics of crowd dynamics. It can be seen that sim-
ulated dynamics result in relatively higher values for crowd
density in comparison to the actual values over the same
segment of the corridor. However, the continuous RMSE
evaluation of the simulated and actual density values yields
to a considerably low average error of 0.150 (ped/m2).

Figure 12 illustrates the flow-density relationship based on
the actual and simulated trajectories during a 1-min period

over the same 1.5-m-long segment in the middle of the corri-
dor. As indicated by the best-fit curves through the data points,
a very similar trend can be verified in both curves. However,
the maximum density and flow rates predicted by the model
are less than the observed values. The difference between
actual and simulated values in both cases is mainly due to
dividing the strategy space into only eight possible strategies.
Defining more strategies, each with smaller deviation angle
from the desired direction can further smooth the movements
of pedestrians and potentially address this inconsistency.

Generally, validation results of the proposed game theo-
retical framework provide evidence on the model’s capability
in predicting pedestrians’ microscopic choice behavior and
capturing the macroscopic characteristics of crowd dynamics.

C. Analysis of collisions

As discussed, one of the crucial behavioral factors in
pedestrians’ motion is the anticipation and mutually interac-
tive features of human agents, based on which pedestrians
develop an estimate about the future state of the surrounding
network and decide on their own walking strategies accord-
ingly. This, in turn, results in an almost collision-free move-
ment of pedestrians even in dense crowds. It is thus important

FIG. 10. Flow profiles (ped/sec/m) based on (a) actual and (b) simulated pedestrian trajectories.
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FIG. 11. The density-time curve for bidirectional flow based on
the actual (blue line) and simulated (red line) trajectories.

to incorporate these behavioral characteristics when modeling
pedestrians’ motion in dynamic environments.

The proposed game-theory-based model accounts for these
features by: (1) incorporating a learning structure to address
human agents’ feedback-oriented behavior while walking,
(2) defining a collision avoidance component in the payoff
functions of those strategy profiles that can potentially result
in a collision between the pedestrians, and (3) developing a
Nash equilibrium-based solution for the proposed game to
capture pedestrians’ mutually interactive decision making. In
this section, the performance of the proposed game theoret-
ical framework in modeling pedestrians’ collision avoidance
behavior is investigated.

To analyze potential collisions in the real-world scenario,
the effective distance to the nearest neighbor (DAct) is cal-
culated based on the real-world data for each individual
pedestrian at three randomly selected time steps, namely t1 =
27 (sec), t2 = 35 (sec), and t3 = 49 (sec). Then, using the
simulated trajectories, provided by the model, the correspond-
ing distances between PA and PB at each game is calculated
at the same time steps (DSim). Table III presents the statistical
analysis of the distance to the nearest neighbor for actual and
simulated trajectories.

Analyzing the actual and simulated trajectories at all three
time steps indicates that pedestrians have well managed their
movements such that a minimum distance of 30 cm is main-

FIG. 12. Flow-density diagram based on the actual (blue) and
simulated (red) trajectories.

TABLE III. Statistical analysis of the actual and simulated dis-
tances to nearest pedestrian.

t1 = 27 (sec) t2 = 35 (sec) t3 = 49 (sec)

DAct DSim DAct DSim DAct DSim

Mean (m) 1.36 1.35 1.35 1.26 1.26 1.32
Std Dev (m) 1.64 1.55 1.59 1.35 0.88 1.01
Minimum (m) 0.49 0.38 0.39 0.31 0.35 0.42
Median (m) 0.91 0.86 0.87 0.96 1.12 0.81
Maximum (m) 7.17 6.97 7.11 7.19 5.79 6.32
p-value 0.9822 0.7562 0.7515

tained between all of the pedestrians along the corridor. This
indeed represents the collision avoidance behavior of pedes-
trians that is also captured by the proposed model.

Table III also presents the results of the analysis of vari-
ance (ANOVA) for DAct and DSim. The large p values in
the associated t tests for all three cases show that being
99% confident, there is no evidence of a significant differ-
ence between the actual and simulated distance between a
pedestrian and his/her nearest neighbor. In other words, the
distance distribution among the nearest pedestrians simulated
by the proposed game-theory-based model shows no signifi-
cant difference from the corresponding real-world behavior.
Figure 13 illustrates the distribution of the actual and sim-
ulated distances to the nearest neighbor for t1 = 27 (sec).
These findings provide evidence of the ability of the proposed
game theoretical framework in modeling the collision avoid-
ance behavior of human agents while walking.

D. Comparison of the game theoretical and
discrete choice models

Discrete choice models (DCMs) are behavioral frame-
works developed to model choices made by decision makers
between discrete alternatives. Some researchers have also
used DCMs to predict the walking behavior of human agents
and describe pedestrian motion in dynamic environments
[35,36].

Despite similarities in defining basic concepts, there are
fundamental differences between game-theoretical and dis-
crete choice modeling approaches. As indicated, payoffs in
the game-theory-based model are defined for each possible
state of the network in the future (i.e., for each potential
strategy profile) to capture human agents’ anticipation and
collision avoidance behavior while walking. DCMs, on the
other hand, are based on pure utility maximization behavior
where utilities (payoffs) are defined for each possible option
of the decision-maker, based on the current state of the
network. In other words, decision-makers’ utility gain from
one option is independent of the decisions made by other
decision makers in a discrete choice modeling framework.
The individual decisions in DCMs are therefore modeled as
the best response to the observed surrounding environment,
leading to a merely reactive model without considering the
estimation ability of humans in anticipating probable future
movements of other decision makers.

In this section, a quantitative analysis is conducted to
compare the performance of the proposed game theoretical
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FIG. 13. Distribution of the actual (blue) and simulated (red) distances to nearest pedestrian in visibility zone at t1 = 27 (sec).

model and the corresponding discrete choice framework in
describing pedestrians’ motion. The structure of the DCM
is selected based on the work of Antonini et al. [46]. For
the comparison to be valid, both models use the same fea-
tures when computing the utilities/payoff functions for each
option/strategy profile. The corresponding DCM for the pro-
posed game structure is then developed considering the same
moving alternatives (strategies) as well as the same variables
in defining the utility functions, while neglecting: (1) the
learning game structure in the proposed game-theory-based
model, and (2) the collision avoidance component of the
payoff functions for different strategy profiles of the game.
Therefore, the associated utility gain for decision-maker A if
he/she decides to choose his/her j th option can be formulated
as (note that for simplicity, the notations of the correspond-
ing variables in the two models are kept identical where
possible)

πA(j ) = α0
j + αDM

j πA(j )DM + 1(V Z)αint
j πA(j )int + εj ,

(12)

where πA(j ) represents the utility that decision-maker A
will get if he/she chooses his/her option sA = j ; πA(j )DM is
the directional-movement component of decision-maker A’s
utility gain from choosing option sA = j [refer to Eq. (3)];
πA(j )int represents the interaction between decision-maker A
and the nearest pedestrian to him/her [refer to Eq. (5)]; 1(V Z)
is equal to 1 if option sA = j falls into decision-maker A’s
visibility zone, and 0 otherwise; εj is the error term to capture
the stochastic behavior of human agents; and α0

j , αDM
j , and

αint
j are parameters to be estimated.

Identical to the proposed game-theory-based framework,
the corresponding DCM is calibrated and also validated us-
ing the same dataset of pedestrian trajectories introduced in
Sec. IV B. The model parameters of DCM are calibrated
using the maximum likelihood estimators (MLE), and the
utility value for each moving option is calculated based on
the calibrated parameters. Each pedestrian is then assumed
to maximize his/her utility gain from decisions made at each
time step. Table IV presents the parameter estimation results
for the corresponding DCM.

Table V shows the model evaluation results and the per-
formance of both models in describing pedestrians’ motion.
It can be seen that the proposed game theoretical model has

improved the prediction performance of the corresponding
DCM by approximately 8%. Even larger improvements can
be expected for pedestrian motion modeling in more crowded
scenarios, as there is a higher chance of collision between in-
dividuals and thereby, the mutual interaction and anticipation
of future movements of the nearby pedestrians play a more
critical role. The comparison results highlight the importance
of incorporating the anticipation as well as feedback-oriented
characteristics of human agents into pedestrian motion mod-
eling. In fact, merely reactive models, such as DCMs, fail to

TABLE IV. DCM calibration results.

Parameter Calibrated value STD

α0
F 0.000 0.000

αDM
F 10.672 0.061

αint
F − 0.203 0.765

βF 9.001 0.871

α0
FL 5. 976 0.002

αDM
FL 6.223 0.723

αint
FL − 3.519 0.910

α0
FR − 6.449 0.003

αDM
FR 7.878 0.303

αint
FR 0.056 0.143

α0
L 4.030 0.405

αDM
L − 0.484 0.133

βL 7.108 0.023

α0
R − 0.323 0.066

αDM
R − 0.921 0.026

βR 0.984 0.079

α0
BL − 2.872 0.032

αDM
BL 0.903 0.347

βBL − 3.007 0.108

α0
BR − 2.107 0.333

αDM
BR − 10.049 0.549

βBR 2.443 0.009

α0
B − 0.937 0.555

αDM
B 0.038 0.503

βB − 1.666 0.775
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TABLE V. Comparison of the game theoretical and corresponding discrete choice model.

Model No. of decisions evaluated No. of correctly predicted decisions Percent correct (%) Improvement (%)

DCM 27761 21081 79.04 (Base)
Game theory 27761 24121 86.89 7.85

account for these behavioral factors in describing pedestrians’
motion and may lead to less accurate models and predictions.

VI. SUMMARY AND CONCLUSION

In spite of the chaotic appearance of individual pedestrian’s
behavior, particular patterns can be observed in pedestrian
motion. The characteristics of pedestrian movements are af-
fected by individual decisions and their set of actions and
strategies. Thus, any behavioral based model needs to be
directly related to the decision-making process of individual
pedestrians. On the other hand, previous studies show that hu-
man agents are anisotropic, interactive, and feedback-oriented
agents who anticipate the possible movements of the nearby
pedestrians and decide accordingly to ensure a collision-free
movement. However, a major part of the studies on modeling
pedestrian motion have incorporated merely reactive models
where pedestrians’ movements are described as a reaction to
the conditions they face, without considering the anticipation
behavior of human agents. Considering these limitations, the
present study has put forward a model to describe pedes-
trians’ motion and behavior based on a game theoretical
framework, while incorporating a learning process that can
capture pedestrians’ feedback-oriented walking behavior. The
proposed game structure provides a technical foundation to
analyze optimal decision-making of pedestrians where the
outcome of the game for each player’s choice also depends
on the strategies played by other players. This, in turn, en-
sures the frequently observed collision avoidance behavior of
pedestrians while walking.

In the proposed game structure, players are rational pedes-
trians who are assumed to play two games simultaneously:
one with the nearest pedestrian in their visibility zone, and the
other a learning game with all of the nearby pedestrians. In the

first game, a finite strategy set consisting of possible moving
directions are defined for each player and the payoffs for
each strategy profile are calculated based on directional move-
ments, interactions, and collision avoidance considerations.
In the second game, each pedestrian plays a learning game
considering the number of times each of his/her strategies in
the first game was available during the previous time steps. A
joint payoff function is then formulated for possible strategy
profiles in the game. The moving strategies at each time
step are selected based on the Nash equilibria calculations,
where everyone is playing optimally given what all other
players are playing. The game parameters are calibrated using
the real-world walking trajectories of a bidirectional flow
passing through a corridor. Validation results indicate the
model’s capability in capturing and modeling the microscopic
decision-making behavior of individual pedestrians as well as
its ability in predicting the empirically observed macroscopic
characteristics of pedestrian flow dynamics. Statistical analy-
sis of the actual and simulated pedestrian trajectories also pro-
vides evidence on the model’s performance in capturing the
collision avoidance behavior of human agents while walking.

Note that all the calibration and validation results are based
on the roughly discretized version of the model. Smaller de-
viation ranges may better differentiate pedestrians’ available
strategies to play at each game, and hence lead to more
accurate simulation results. Considering a continuous strategy
profile for each player has been left for future research. Such
an approach can result in a game with infinite strategies.
The accuracy gain in the model’s prediction should then be
evaluated against the additional computational cost.

This study uses the pedestrian dataset provided by the
“HERMES” project funded by the Federal Ministry of Edu-
cation and Research (BMBF) of Germany in cooperation with
the University of Wuppertal, Cologne, and Siegen [59].
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