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Mesoscopic pattern extraction (MPE) is the problem of finding a partition of the nodes of a complex network
that maximizes some objective function. Many well-known network inference problems fall in this category,
including, for instance, community detection, core-periphery identification, and imperfect graph coloring. In this
paper, we show that the most popular algorithms designed to solve MPE problems can in fact be understood
as special cases of the maximum likelihood formulation of the stochastic block model (SBM) or one of its
direct generalizations. These equivalence relations show that the SBM is nearly universal with respect to MPE
problems.
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I. INTRODUCTION

Whether it is called community detection, graphical infer-
ence, spectral embedding, unsupervised learning, bisection,
or graph coloring, the idea of summarizing the structure of
a complex system by grouping its elements in blocks is a
popular one, discovered time and time again in different areas
of science [1]. As such, there are now a plethora of algorithms
and techniques—developed essentially in parallel—that pro-
vide good solutions to this ubiquitous problem [2]. In the
past few years, a great deal of work has been done toward
unifying and contrasting these approaches, building bridges
across cultural divides [1,3]. This has been fruitful work thus
far, for—sometimes surprising—equivalences between dras-
tically different methods have turned up in the process, e.g.,
between modularity and the maximum likelihood formulation
of the degree-corrected stochastic block models (SBM) [4–7],
various spectral methods [8], normalized-cut [9], random-
walks [10], and nonnegative matrix factorization [11]. These
results invite the question: Is there a deeper reason for the cor-
respondences, or are they simply mathematical coincidences?

The purpose of this paper is to show that equivalences arise
because most of these mesoscopic pattern extraction (MPE)
methods are actually the maximum likelihood formulation
of the SBM in disguise (and a generalization of its degree-
corrected version [12,13]). By MPE problems, we mean any
problem where one is asked to find a partition of the network
that maximizes some implicit or explicit score, encoded via
an objective function.

Our results rest on the concepts of equivalence and spe-
cialization of the objective functions: Two objective functions
are equivalent when they order any pair of partitions the same
way (i.e., they implement the same notion of optimality), and
specialization refers to the idea of limiting the expressiveness
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of an objective function by fixing some of its parameters
(see Sec. II). With these two operations, we delineate a
hierarchy that crystallizes the idea of the SBM as a general
MPE tool: Through specialization of its likelihood, it can be
tailored to find patterns such as assortative and disassortative
communities [5], bipartite structures [14], or core-periphery
splits [15] (in Sec. III). Importantly, we show that these
specialized likelihoods are exactly equivalent to the objective
functions implemented by MPE algorithms such as modu-
larity maximization, balanced cut, core-periphery search, etc.
Our framework therefore offers principled methods to deter-
mine any arbitrary parameters that might arise in otherwise ad
hoc modularities [5], but also suggests statistical techniques to
carry out principled inference, in the spirit of Refs. [4,16] (see
Sec. IV).

II. MESOSCOPIC STRUCTURES AND OPTIMIZATION

The mesoscopic pattern extraction (MPE) problem is usu-
ally stated as follows. We are given an extremely large com-
plex network, generated by some random hidden process.
Its overall organization is impossible to grasp, because its
structure is much too detailed. Our goal with MPE is to reduce
this complexity, by subsuming nodes in larger coherent units,
using the structure of the network as our only input (and
possibly additional metadata [17,18]). Sometimes, the hope
is to reveal functional components and hints about assembly
mechanisms, while at other times it is only a matter of making
the dataset more manageable, or interpolating from what is
known [2,3,19–24]. There is, however, a common theme:
MPE algorithms take a complex network as their input, and
produce as output a partition B = {B1, ..., Bq} of the n nodes
in q blocks B1, ..., Bq , assigning precisely one block to each
node. Despite these commonalities, the definition of what is a
suitable partition will of course depend on the MPE problem
at hand; there is thus a wealth of MPE algorithms, reflecting
the wealth of MPE problems (see Fig. 1).
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(a) (b)
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FIG. 1. Four examples of mesoscopic pattern extraction prob-
lems on artificial networks. (a) Community detection [22,25], (b)
community detection with further structure, (c) the identification of a
simple core-periphery split [15,26], (d) identification of a core with a
structured periphery. The targeted patterns are identified with colors.

To establish parallels between algorithms of diverse na-
tures, we must first clearly answer: What is the essence of an
MPE algorithm? And what do we mean, when we say that two
algorithms are equivalent? The answers to these questions are
not trivial, and crucial to the interpretation of the results of
Secs. III A–III B. Our goal with the next four subsections is
therefore to clarify these issues.

A. Anatomy of a black box

There are essentially two possible ways to formulate our
answers, depending on how we think of MPE algorithms.

First, we may take the empirical point of view and declare
that the essence of algorithms is their action, independent of
their inner workings. According to this point of view, equiv-
alence is functional and context dependent: If two algorithms
give the same result on a series of networks G1,G2, ...Gk ,
then the algorithms are equivalent with respect to these k

networks. This allows us to treat algorithms as black boxes:
Network in, partition out. It is certainly an appealing ap-
proach, because it may be used to compare algorithms of
widely different natures—say a genetic algorithm with an
evolved objective function and a label propagation method.
Functional equivalence, however, has the drawback that it
depends on the context, which makes it hard to draw definitive
conclusions about algorithms. Furthermore, it may identify
somewhat artificial parallels, because it is insensitive to the
origin of the equivalences.

A second point of view is centered on the definitions of
MPE algorithms rather than their action therefore appears
necessary. Due to the diversity of existing MPE algorithms,
this point of view will only be useful if we are able to first
express MPE algorithms in some canonical form that can
be readily analyzed. One possibility is a two–part model

(a)

(b)

(c)

FIG. 2. Two-part algorithms in practice. We apply different com-
binations of maximizers and objective functions to a simple network
with a clear block structure, generated using the SBM. Different
MPE algorithms reveal different mesoscopic structures, but changing
the objective function has the largest impact. (a, b) Same objective
functions (modularity, see Sec. III B 3) and different maximizers
[(a) spectral, (b) greedy]. (b, c) Same maximizer (greedy) with two
different objective functions [(b) modularity, (c) core-periphery see
Sec. III A 3]. The greedy maximizer is adapted from the Kernighan-
Lin algorithm [30], in the spirit of Ref. [12], and the spectral
maximizer relies on the embedding of the q − 1 leading eigenvectors
of the modularity matrix [25,31] in Rq−1, followed by a clustering
step, here implemented using a Gaussian mixture [32].

expressed as the coupling of (i) an objective function that
induces a total ordering of the partitions, and (ii) a maximizer
that can find a—potentially local—optimum of the objective
function (see Fig. 2). This two-part model captures the two
important mechanisms that any MPE algorithm must possess.
On the one hand, the objective function captures the notion of
quality of the partition and, consequently, tells the algorithm
when to stop, and what partition to prefer whenever it has a
choice. On the other hand, the maximizer provides a mean
of moving in the solution space, and of pinpointing the
best partitions, as per the above criterion. These mechanisms
might be interwoven or hidden—we will touch on the subject
shortly—but the separation holds quite generally.

With the two-part model in place, equivalence takes on a
crisp and clear meaning. Two algorithms are either partially
equivalent—same objective or same maximizer—or com-
pletely equivalent—same objective and same maximizer. In
the present paper, we will focus on partial equivalence, essen-
tially ignoring the maximizers. This choice is motivated by the
observations that (a) maximizers are, by necessity [27], only
efficient heuristics designed to find “good enough” optima
in the rugged landscape of partitions [1,28,29] (b) the no
free lunch theorem implies that different objective functions
and different inputs are associated with different optimal
maximizers [29].

Hereafter, by equivalence, we will therefore refer to the
equivalence of the objective functions used.
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B. A glance under the hood

In the simplest—and quite common—case, the separation
in two parts is explicit. For example, modularity–based meth-
ods famously attempt to maximize the modularity function
over the set of all partitions of a network [22]. If there are
many modularity optimization algorithms, it is because there
are many different mechanisms that can propose and refine
partitions to find the optima of the modularity, e.g., the itera-
tive spectral method of Ref. [31], the fast unfolding method of
Ref. [21], or the message-passing algorithm of Ref. [4]. The
two–part algorithmic model is an exact description of these
methods because they are framed in the language of objective
functions.

Importantly, the two-part algorithmic model also holds in
many cases where the emphasis is shifted away from an ex-
plicit objective function and maximizer dichotomy. Consider
as an example the classical label propagation algorithm of
Ref. [33]. This algorithm moves through the partition space by
first assigning temporary labels (blocks) to nodes, and then re-
peatedly updating the labels with a majority rule (a node takes
the label worn by the majority of its neighbors). Optimality is
thus not defined for arbitrary pairs of partitions; it is instead
expressed as a dynamical, initial condition dependent concept.
But a description in two parts can still be given, provided
that we do some translation work: The label propagation
mechanism can be thought of as a maximizer, which naturally
leads to partition flow as a notion of optimality. A partition B1

is better than B2 if the algorithm goes from B2 to B1 when it
updates labels based on the majority rule. With this definition,
the best partitions are those that are stable against majority
updates, and they are found via the propagation of labels.
One can construct an objective function with these orderings,
and therefore a two–part algorithm indistinguishable from the
original [34–36].

C. General graphical objective function

Having established that a separation of algorithms into
an objective function and a maximizing mechanism is often
possible, let us turn to the functions themselves.

The outcome of pairwise interactions determines the struc-
ture of a complex network. A general objective function de-
vised to uncover the mesoscopic patterns of a network there-
fore ought to include all these interactions in its calculation,
at the very least. If it does no more than that, then the function
can be called graphical, in the sense that no high-order terms
are considered (i.e., there are no direct dependency on triplet
of nodes, etc.). From this point onward, we will focus on
graphical objective functions alone; the remainder of this
paper is a testament to the generality of such a “limited”
approach.

The definition of graphical objective function begins with
the definition of its basic elements: Scores associated with
each pair of nodes. For the sake of generality, we will define
these scores as real-valued functions, with essential dependen-
cies on the partition B = {B1, . . . , Bq} under consideration,
on the structure of the network as encoded by the n × n adja-
cency matrix A, and on an additional n × n side-information
matrix λ that contains any pairwise information not directly
captured by A. Let us therefore write the score associated

with the pair of nodes (i, j ) ∈ [n] × [n] (we use the integers
[k] = {1, ..., k} to denote the nodes) as

f (aij , λij , σi, σj ), (1)

where σi ∈ [q] is the index of the block of node i, i.e., σi = r

if and only if i ∈ Br . We then express the aggregate of these
local scores as

H ( A,λ, σ ; f ) =
∑

i,j :1�i�j�n

f (aij , λij , σi, σj ), (2)

yielding a global objective function based on pairwise scores.
This form highlights the close parallel that exists between
graphical objective functions and Edward-Anderson Hamil-
tonians [28], explicitly harnessed in a number of specific
cases in Refs. [37–41], for example. The choice of a sum is,
otherwise, for mere convenience; a product aggregate could
have been equivalently implemented by taking f �→ log f

and H �→ eH .

D. Equivalence and hierarchy under specialization

The last piece of the theoretical framework is a clear notion
of connections among functions. We use two concepts to
establish these connections: Equivalence and specialization.

1. Equivalence

We say that two objective functions are equivalent if they
induce the same total ordering of partitions, regardless of
their inputs. This definition captures the correct notion of
equivalence, because it is clear that two equivalent objective
functions—by this standard—will yield two MPE indistin-
guishable algorithms when they are paired with the same
maximizer. As it stands, however, this notion of equivalence
is not easy to handle mathematically. We therefore resort
to a second, stronger, criterion that leads to a more direct
comparison procedure. It is obvious that if

H ( A,λ, σ ; f ) < H ( A,λ, σ ′; f )

⇓
g ◦ H ( A,λ, σ ; f ) < g ◦ H ( A,λ, σ ′; f ), (3)

for some strictly increasing function g, then H and g ◦ H are
equivalent according to the first definition. While this second
version is more restrictive, it reduces the comparison of objec-
tive functions to the identification of the transformation g—an
often straightforward process.

As we will see in Sec. III, in practice, an even stronger
criterion that limits g to a particular subset of all linear
transformation will often suffice to establish many equiva-
lence relations. Namely, whenever a pairwise score functions
f (aij , λij , σi, σj ) can be split as

f (aij , λij , σi, σj ) = f1(aij , λij , σi, σj ) + f2(aij , λij ), (4)

where f2 does not depend on the partition, we will be able to
rewrite the global objective function as

H ( A,λ, σ ; f ) =
∑
i�j

f1(aij , λij , σi, σj ) +
∑
i�j

f2(aij , λij )

∼
∑
i�j

f1(aij , λij , σi, σj )

= H ′( A,λ, σ ; f ), (5)
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where “∼” denotes equivalence, and “i � j” is a shorthand
for the more precise statement “i, j : 1 � i � j � n.” The
equivalence holds because the additive terms are independent
from σ and therefore do not affect the ordering. Thus, equiva-
lence will often follow from a simple linear transformation of
the form g ◦ H = H − ∑

i�j f2(aij , λij ).

2. Specialization

With specialization, we aim to capture the idea that an ob-
jective function can be less expressive than its parent function,
i.e., that it is possible to fix some parameters of a function (the
parent) to obtain a “simpler” version of the function [42]. It is
more straightforward to define specialization at the level of
pairwise score, and so we will say informally that a pairwise
score function fS is a specialization of f if fS is constructed
by fixing some of the free parameters of f , in a way that
alters the ranking of partitions, for some inputs. Furthermore,
we will say that the objective function H ′(A,λ, σ ; fS ) is a
specialization of the objective function H ( A,λ, σ ; f ) when
fS is a specialization of f .

In the context of MPE, if fS is derived from f and there
exists at least one pair of nodes (i, j ) such that

fS (aij , λij , σi, σj ) = fS (aij , λij , σ
′
i , σ

′
j )

and

f (aij , λij , σi, σj ) 	= f (aij , λij , σ
′
i , σ

′
j ), (6)

where σ 	= σ ′, then fS is a specialization of f (and similarly
for the resulting H ′ and H ).

Specialization is, in a sense, a one-way operation, because
it involves reducing the complexity of a function. In Eq. (6),
f could act as fS but not the other way around, because fS is
derived from f by specialization. Thus, specialization induces
a hierarchy, with the most general functions at the top, and the
most specialized ones at the bottom. This is the hierarchy that
we propose to delineate in the next sections.

III. OBJECTIVE FUNCTION HIERARCHY
UNDER SPECIALIZATION

Recall that our claim is essentially the following: The
objective functions of many mesoscopic pattern extraction
algorithms are, in fact, special cases of the maximum like-
lihood formulation of the SBM. Sections III A and III B are
devoted to showing how this comes about. We begin with
the methods that do not account for any side information
λij , in Sec. III A. We show that they can be understood as
specialization of the maximum likelihood formulation of the
classical SBM [43]. We then move on to general MPE meth-
ods, in Sec. III B, by adding a side-information dependency
to the score functions. Again, we show that these methods
can be seen as specializations of a generalized SBM, close
in spirit to the degree-corrected SBM of Ref. [12]. This part
of the hierarchy sits above the methods of Sec. III A, since the
generalized SBM contains the classical SBM as a special case.
We summarize the relations between the various methods in
Fig. 3, and we show in Fig. 4 that they can be used to extract
various patterns from a same real network.

A. Partial hierarchy (no side information)

1. Stochastic block model

Our starting point is the stochastic block model (SBM).
It is not an MPE algorithm per se, but rather a random
network model, amenable to statistical inference. It prescribes
a likelihood for the network G, parametrized by a latent
partition B of its nodes. The SBM becomes a MPE algorithm
once this likelihood is used to infer the hidden partition B of
G. Although there are many ways of harnessing the likelihood
to extract the mesoscopic patterns encoded by B, we will
only focus on likelihood maximization, because it directly
fits within the two–part model of MPE algorithms defined
in Sec. II A; the likelihood is the objective function and the
maximizer does not matter.

Given a network and a partition of the nodes in blocks
associated with the vector σ , the classical SBM [44] pre-
scribes that the number of edges between nodes (i, j ) should
be drawn from a Poisson distribution of mean ωσiσj

. All edges
are assumed to be independent, such that the likelihood of the
complete graph is given by

P(G|B,ω) =
∏
i�j

(ωσiσj
)aij

aij !
e
−ωσi σj . (7)

It is parametrized by the q × q matrix ω and the partition B
(or equivalently by the block assignments σ ). The standard
inference procedure calls for the estimation of both, ω and
B, usually through alternated learning of the two sets of pa-
rameters (via the expectation–maximization algorithm [39]).
However, we will focus on the estimation of B alone, treating
the parameters ω as “control buttons.” The freedom to impose
parameters ω on the network will ultimately allow us to draw
relations with other MPE algorithms.

To extract B∗(G)—the “true” partition of the nodes—from
the network, we maximize the likelihood of the SBM with
respect to the partition (see also Sec. IV). Since the logarithm
is a strictly increasing function of its argument, we may
equivalently maximize the log-likelihood

logP(G|B,ω) =
∑
i�j

[aij log ωσiσj
− ωσiσj

− log aij !]. (8)

This is a first (trivial) example of the concept of equivalence of
Sec. II D. It becomes evident upon inspection of Eq. (8) that
the log-likelihood is, in fact, a graphical objective function
of the general form appearing in Eq. (2), associated with the
pairwise score function

fSBM(aij , σi, σj ) ∼ aij log ωσiσj
− ωσiσj

. (9)

Thus, any objective function that can be written as a special
case of Eq. (9) will be a specialization of the maximum
likelihood formulation of the SBM.

2. General modular graph model

One such (explicit) specialization is the general modular
graph model (GMGM) [45,46]. Like its general counterpart,
the GMGM is a generative model for networks that supposes a
latent partition of the nodes in blocks. The crucial difference is
that the connection matrices ω of the GMGM are much more
structured than that of the SBM.
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Max. likelihood of the SISBM
aij log ωσiσj

− ωσiσj
λij

ωσiσj ≥ 0, λij ≥ 0

Max. likelihood of the SBM
aij log ωσiσj − ωσiσj

ωσiσj ≥ 0

Max. likelihood of the SIGMGM
xσiσj aij + γλij

λij ≥ 0, xσiσj ∈ {0, 1}, γ < 0

General modularities
xσiσj

aij + γλij

λij ≥ 0, γ < 0

Modularities
δσiσj aij + γλij

λij ≥ 0, γ < 0

Max. likelihood of the GMGM
xσiσj aij + γ

xσiσj ∈ {0, 1}, γ < 0

Edge counts with
quadratic size constraints

xσiσj
aij + γ

xσiσj ∈ {0, 1}, γ < 0

Balanced cut
δσiσj aij + γ

γ < 0

Balanced coloring
(1 − δσiσj ) aij + γ

γ < 0

Core-periphery
e.g.: δσi1δσj1 aij + γ

γ < 0

FIG. 3. Partial hierarchy of objective functions. The pairwise score function of MPE methods are shown with the range of parameters
below. Arrows denote specialization; doubled–sided arrows denote equivalence. Only the most direct arrows are drawn for the sake of clarity;
specialization and equivalence are transitive operations. The abbreviations are: stochastic block model (SBM), with side information (SISBM);
and general modular graph modular model (GMGM), with side information (SIGMGM). Functions derived from the perspective of statistical
inference are colored in blue (general classification) and red (binary classification).

Pairs of blocks are assigned one of two types, say a and
b, and this information is encoded in a q × q binary (and
symmetric) matrix X . If a pair of blocks (Br, Bs) is of type
a, then we set xrs = 1. Contrariwise, we set xrs = 0 if the
pair (Br, Bs ) is of type b. Pairs of blocks of type a are then all
associated with a connectivity ωrs = ωa , while pairs of type b

are associated with a connectivity ωrs = ωb, where we take
ωb < ωa without loss of generality [47]. Every connection
matrix of the GMGM can therefore be written as

ω = ωb11ᵀ + (ωa − ωb )X, (10)

where 1 is column vector of ones.
The principal motivation for using the simplified matrices

of Eq. (10) is that the mathematical treatment of the model
becomes simpler at the expense of a moderately reduced
flexibility [45,46]. In particular, the two identities (used in
similar derivations in Refs. [5,48])

ωrs = ωb + xrs (ωa − ωb ), (11a)

log ωrs = log ωb + xrs (log ωa − log ωb ), (11b)

lead to a likelihood and a log-likelihood analogous to—but
much simpler than—the ones appearing in Eqs. (7) and (8).
They are associated with the score function

fGMGM(aij , σi, σj )

= aij [log ωb + xσiσj
(log ωa − log ωb )]

− [ωb + xσiσj
(ωa − ωb )]

∼ xσiσj
[aij (log ωa − log ωb ) − (ωa − ωb )]

∼ xσiσj
[aij + γ ], (12)

where γ = (ωb − ωa )/(log ωa − log ωb ) ∈ (−∞, 0], a dras-
tic simplification when contrasted with Eq. (9). In essence, the
GMGM only cares about the type of a block pair. If a pair of
nodes (i, j ) is associated with a block pair of type a, then the
global objective function is increased by a factor of aij + γ

(greater when aij = 1 than when aij = 0). If a pair of nodes
(i, j ) is associated with a block pair of type b, then it only has
an indirect impact, by omission.

3. Combinatorial objective functions

The GMGM specialization of the SBM is interesting not
only for its mathematical simplicity but also because its
pairwise score function can be obtained from a completely
different perspective. As we have seen, the essence of the
GMGM is its binary classification of block pairs; it turns out
that there are countless examples of MPE objective functions
that rely on a similar dichotomy (see, for instance, Ref. [2]
for a recent review). Their design is essentially the following.
Some subsets or intersections of nodes are first identified as
special. The MPE objective function is then designed as to
maximize the number of edges within or to these subsets.
Finally, because there are often trivial maxima (e.g., place all
nodes in the special subset), some constraints are added to
avoid trivial optima.

The general mathematical construction closely parallels
that of the GMGM. First, we designate special pairs of blocks,
and encode the result in a binary matrix X . We then assume,
without loss of generality, that the number of edges within
these blocks should be maximized by the target partition B∗.
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B1 B2

B 1
B 2

(a)

B1 B2

B 1
B 2

(b)

B1 B2 B3 B4

B 1
B 2

B 3
B 4

(c)

FIG. 4. Mesoscopic patterns learned from and imposed on a real complex network. All results are obtained on the polblog dataset, a
directed network of hyperlinks between weblogs on U.S. politics, recorded shortly after the 2004 presidential election. There are a total of
1 222 nodes (weblogs) and 16 714 edges. We use an undirected, self-loop free version of the network. All subfigures show (top) the network
with nodes colored according to the identified partition, (center) a cartoon of the matrix ω imposed for the equivalent SBM [darker shades of
blue represent larger values of ωrs], and (bottom) the adjacency matrix with the limit of blocks indicated as colored lines and edges as white
dots. The optima of the objective functions are found via simulated annealing and greedy search [46]. (a) Natural partition of the network in
q = 2 blocks, as found with the classical Bernoulli SBM via expectation–maximization (EM) on B and ω. In this case alone, ω is learned
and not imposed. (b) Balanced cut obtained with γ ≈ −25 and the GMGM. The two blocks have size nᵀ = [650, 572]. A similar partition is
identified by the modularity. (c) Double core-periphery found with γ ≈ −9. The cores are of sizes 98 and 87 while their respective peripheries
contain 396 and 641 nodes. There are only 3 703 edges between nodes of the peripheries (out of a maximum of 283 330 possible edges).

This leads to the graphical objective function

H̃ (G|B) =
∑
i�j

aij xσiσj
. (13)

Functions of the form of Eq. (13) are plagued by many
trivial optima, since it is often possible to maximize H̃ by
placing all nodes in one or a few blocks. For instance, if xrr =
1 for at least one r , then Eq. (13) is maximized by putting
all nodes in block Br—it is obvious that no mesoscopic
information is contained in the resulting partition. In general,
if Eq. (13) rewards placing many edges between some pair of
blocks (Br, Bs ) via xrs = 1, then it is possible to find good
solutions simply by putting a lot of nodes in these blocks: The
more nodes, the more edges, and therefore the better score. We

discourage these uninformative solutions by introducing an
additive balance constraints h(B) that penalizes the objective
function H̃ for partitions that contain large blocks aligned
with X . Specifically, we use a quadratic constraint on the
block sizes [16,48]

h(B) = 2γ
∑
r,s

xrsnrns, γ < 0, (14)

where nr is the size of block Br , and where |γ | controls the
overall strength of the constraint h. Because the constraint
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appearing in Eq. (14) can be rewritten as

2γ
∑
r,s

xrsnrns = 2γ
∑
r,s

xrs

(
n∑

i=1

δσir

)⎛⎝ n∑
j=1

δσj s

⎞⎠
= γ

∑
i�j

xσiσj
,

where δab is the Kronecker δ (equal to 1 if a = b and to zero
otherwise), the constrained version of Eq. (13) is equivalent to

H (G|B) = H̃ (G|B) + h(B) =
∑
i�j

xσiσj
[aij + γ ]. (15)

This balanced objective function is obviously associated with
a pairwise score function equivalent to that of the GMGM [cf.
Eq. (12)]. Therefore, all objective functions formulated as an
edge count maximization coupled with an additive quadratic
balance constraint are equivalent to the GMGM. Furthermore,
the strength of the balance constraint γ can be seen as a
function of the parameters (ωa, ωb ) of the corresponding
GMGM: The greater the difference between ωa and ωb, the
stronger the balance constraint.

The equivalence of the GMGM with combinatorial objec-
tive function has far reaching consequences, because many
MPE methods are based on variation on these functions.
A few well-known examples are: Balanced minimum cut,
with X = I where I is an identity matrix [8]; approximative
graph coloring with X = 11ᵀ − I [39,49]; nonoverlapping
core-peripheries (CP) under size constraints [26,50] with, e.g.,

XCP1 =
(

1 0
0 0

)
, XCP2 =

(
1 1
1 0

)
,

XMultiCP =

⎛⎜⎜⎜⎜⎝
1 1 . . . 0 0
1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 1
0 0 . . . 1 0

⎞⎟⎟⎟⎟⎠.

If anything, these simple examples show that the GMGM and
Eq. (15) can be used as an “objective function factory” of sort:
For any choice of γ and q, there will be 2(q

2)+q different binary
symmetric matrices X , and as many MPE objective functions.
Those that are named and well studied are but a tiny fraction
of the full spectrum of possibilities; most will uncover exotic
patterns that are mixtures of core-peripheries, cuts, coloring,
hierarchies, etc.

B. Complete hierarchy

While the SBM and its GMGM are general enough to
specialize to many well-known MPE methods, there are also
numerous objective functions that cannot be written as in
Eqs. (9) and (12)—e.g., modularity functions—because they
rely also on some side-information matrix λ absent from the
pairwise scores of Eq. (9). The purpose of the present section
is to expand on the classification of Sec. III A to accommodate
these functions.

1. Stochastic block model with side information

In the spirit of Ref. [12], we define a generalization of the
Poisson SBM, whose likelihood is given by

P(G|B,ω,�) =
∏
i�j

(ωσiσj
λij )aij

aij !
e
−ωσi σj

λij . (16)

This (over-parametrized) version of the SBM combines meso-
scopic information (via ω) with side information at the level
of edges (via �). It directly specializes to many well–known
likelihoods, including the classical Poisson SBM (with � =
11ᵀ), or the degree-corrected SBM of Ref. [12] (with � =
kkᵀ/2m where k is the vector of degrees).

As with its classical counterpart, one can find the most
likely partition of the nodes of G by maximizing the logarithm
of the likelihood (16):

logP =
∑
i�j

[aij log ωσiσj
λij − ωσiσj

λij − log aij !].

Therefore, the maximum likelihood formulation of the SBM
with side information (hereafter SISBM) is associated with
the pairwise score function

fSISBM(aij , λij , σi, σj ) ∼ aij log ωσiσj
− ωσiσj

λij . (17)

The likelihood is not useful in itself, because there are too
many parameters for the amount of information encoded in A.
However, considering Eq. (17) not as a proper MPE method,
but rather as the starting point of a general objective function
hierarchy, it becomes a useful classification tool.

2. General modular graph model with side–information

As with the classical SBM, it is possible to define a GMGM
specialization of the SISBM. Following Sec. III A 2, the idea
is again to classify all pairs of blocks according to their density
category (via X), and to reuse the identities appearing in
Eq. (11) to rewrite the log-likelihood. The resulting likelihood
is still over-parametrized because of �, but much simpler than
that of the general SISBM, since the connection matrices ω

are now restricted to the form of Eq. (10). It is easy to show
that the pairwise score function is now

fSIGMGM(aij , λij , σi, σj )

= aij [log ωb + xrs (log ωa − log ωb )]

−[ωb + xσiσj
(ωa − ωb )]λij

∼ xσiσj
[aij (log ωa − log ωb ) − λij (ωa − ωb )]

∼ xσiσj
[aij + γ λij ], (18)

where γ < 0 is the same parameter as the one appearing in
Eq. (12).

3. Modularity functions

One of the reasons why the GMGM specialization is useful
is, again, that it can be derived from first principles in a
completely different manner, this time from the point of view
of the modularity [25]. In a nutshell, modularity is defined
as the difference between the number of internal edges of a
partition (edges that connect two nodes in the same block),
and the expected number of internal edges for this partition, if
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TABLE I. Examples of null models. In all cases, ζ > 0 is a free
parameter, ρ ∈ [0, 1] is the density of the network. The gravity model
is included as an example of an exotic null model; it is derived for
spatially embedded network, with rij being the Euclidean distance
between nodes i and j and φ some reference connection propensity
in space.

Model λij Ref.

Configuration model (CM) kikj /(2m) [25]
CM with resolution ζkikj /(2m) [38]
Erdős-Rényi ρ [51]
Constant Potts model ζ [51]
Gravity model kikjφ(rij ) [52]

the network were to be drawn from some null model. The idea
behind modularity is to maximize the number of edges within
blocks, while accounting for the edges that would have been
there in the first place, just by pure chance (assuming some
model for the network, see Table I).

Modularity is a graphical objective function, since it can
be written as a sum over pairs of nodes [31,38]. Writing the
expected number of edges between the nodes i and j as λij

under the null model of choice, the modularity of a partition
reads

HMod(B,λ,G) ∝
∑
i�j

[aij − λij ]δσiσj
. (19)

Importantly, the pairwise score function associated with the
modularity is always given by

fMod(aij , λij , σi, σj ) = (aij − λij )δσiσj

∼ (aij + γ λ̃ij )δσiσj
, (20)

independent from the choice of null model (where γ < 0 and
λ̃ij is a rescaled connection probability under the null model).

A comparison with Eq. (18) reveals that the above score
function—and therefore any modularity-type function—is in
fact a specialization of the GMGM with side information,
recovered by setting X = I, γ = −1, and by using the null
model of the modularity as the side-information matrix �. In
other words, every modularity function is equivalent to some
variant of the SIGMGM, where the null model is multiplied
with the connection matrix ω where X is simply the identity.

It is worth pointing out that using a flat null model (i.e.,
λ̃ij = 1) in Eq. (20) amounts to opting for a GMGM without
side information, with X = I . Because the latter is associ-
ated with a pairwise score functions that is equivalent to
edge counts coupled with quadratic balance constraints, it
follows that flat null models act exactly like quadratic balance
constraints. This correspondence explains the regularization
properties of the ER null model investigated in Refs. [40,51]
(among others).

We note in closing that while the connection between the
modularity and the GMGM is presented here for X = I , it
is of course possible to define “modularities” associated with
different matrices X , in the spirit of the side-information free
equivalence. These modularities will be able to uncover any
mixture of mesoscopic patterns reflected in X .

IV. DISCUSSION

In this paper, we have shown that the maximum likelihood
formulation of the SBM is perfectly equivalent to a number of
standard mesoscopic pattern extraction (MPE) methods, upon
appropriate specialization of its density matrix ω. Specifically,
we have found that different classes of density matrices are
associated with various classes of MPE algorithms, such as
minimum cuts, modularities, core-periphery algorithm, and
combinations thereof. This has allowed us to delineate a hi-
erarchy of MPE methods (Fig. 3) and to understand all meth-
ods as increasingly simplified SBMs. In doing so, we have
shown that the SBM is universal with respect to mesoscopic
pattern extraction with graphical functions—a conclusion that
is complementary to the recent observation that the SBM is a
universal network approximator [53].

Apart from a better understanding of MPE methods, in the
light of the hierarchy of Fig. 3, there are a number of practical
consequences to the fact that many of the MPE methods of
network science are, after all, the SBM in disguise. Let us
mention a few in closing.

First and foremost, these equivalences imply that the ef-
ficient maximizers (see, e.g., Ref. [54]) developed to tackle
the hard problem of estimating B for the general SBM can
be reused to solve more specific MPE problems that are also
hard. This application of the equivalences is direct: To opti-
mize an MPE objective function, simply fix the matrix ω (and
� if there is side information) with some target mesoscopic
pattern in mind, and run an SBM likelihood maximization
procedure to uncover B (we have used this method to obtain
the results of Fig. 4).

Second, as is also pointed out in Ref. [5] (for the special
case of modularity), arbitrary MPE methods that are special-
izations of the SBM now stand on sounder statistical foun-
dations, once their connection with the SBM is recognized.
This is due to the fact that their free parameters—e.g., γ in
Eqs. (12) and (18)—can be interpreted as functions of the
connectivity matrix ω, thereby providing a statistically princi-
pled estimation procedure—expectation-maximization [39]—
for otherwise arbitrary parameters.

Third, we can conclude that a number of hidden assump-
tions are built into popular MPE methods. In particular, they
amount to fitting simplified SBMs by maximum likelihood,
often with misspecified density matrices ω. Doing so is not a
problem per se, because the goal of MPE is not always to find
the most natural or most statistically robust decomposition of
a network [3]; it might instead be to reveal different facets of
the mesoscopic organization of a same network (see Fig. 4).
However, one should bear in mind that using these MPE
methods amounts to fitting an ill-defined model, with all the
problems that this may bring about, such as missing the best
description of a network or preventing inference algorithms
from converging at all [4,55,56].

Fourth, a knowledge of equivalences can help us better
interpret the empirical outcomes of mesoscopic pattern ex-
traction. Two algorithms may behave similarly on a set of
networks not due to the robustness of the patterns therein
but because they share an equivalent notion of optimality.
Hence, empirical studies that rely on many MPE algorithms—
say, comparative analyses [57,58]—can avoid being lured by
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what appears to be a strong consensus of many methods that
actually implement the same notion of optimality.

Finally, the equivalences lead to a number of theoreti-
cal shortcuts. One, the consistency results derived for the
SBM [59] apply directly to all MPE algorithms in the hi-
erarchy, by specialization. The consistency of the SBM in
most scaling regimes (and the existence of a detectability
limit [39]) therefore extends to virtually every MPE algorithm
studied thus far. Two, formal NP-hardness results can be
extended to many MPE methods, using trivial reductions.
For example, since it is known that modularity maximization
is in NP-hard [60], the equivalence of modularity with the
likelihood maximization of the GMGM specialization of the
degree-corrected SBM [5] directly implies the NP-hardness

of the latter, and therefore of the SBM. Three, the universality
of the SBM suggests that there is an extension of the no free
lunch Theorem of Ref. [29] to a more generalized notion of
MPE problems—not just community detection.
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