
PHYSICAL REVIEW E 98, 032308 (2018)

Phase transitions in social networks inspired by the Schelling model
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We propose two models of social segregation inspired by the Schelling model. Agents in our models are nodes
of evolving social networks. The total number of social connections of each node remains constant in time,
though may vary from one node to the other. The first model describes a “polychromatic” society, in which colors
designate different social categories of agents. The parameter μ favors/disfavors connected “monochromatic
triads,” i.e., connected groups of three individuals within the same social category, while the parameter ν controls
the preference of interactions between two individuals from different social categories. The polychromatic model
has several distinct regimes in (μ, ν )-parameter space. In ν-dominated region, the phase diagram is characterized
by the plateau in the number of the intercolor connections, where the network is bipartite, while in μ-dominated
region, the network looks as two weakly connected unicolor clusters. At μ > μcrit and ν > νcrit two phases are
separated by a critical line, while at small values of μ and ν, a gradual crossover between the two phases occurs.
The second “colorless” model describes a society in which the advantage or disadvantage of forming small
fully connected communities (short cycles or cliques in a graph) is controlled by a parameter γ . We analyze the
topological structure of a social network in this model and demonstrate that above a critical threshold, γ + > 0, the
entire network splits into a set of weakly connected clusters, while below another threshold, γ − < 0, the network
acquires a bipartite graph structure. Our results propose mechanisms of formation of self-organized communities
in international communication between countries, as well as in crime clans and prehistoric societies.
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I. INTRODUCTION

The celebrated Schelling model [1] of spontaneous segrega-
tion in a society is one of the most popular models describing
collective (social) behavior in communities of individuals. It
can be formulated as follows: consider a lattice partially filled
with social agents (individuals) represented by two colors,
green and red. Colors designate social categories and according
to the model, agents prefer to live in the surrounding of the
neighbors with the same color. In the original work, Shelling
considered a square lattice, where the number of neighbors
is eight (direct and diagonal nearest neighbors). An agent of
some color (say, red), who has fraction of nearest neighbors
of the same color below some threshold, f , is “unhappy”
with its surrounding and can be moved to a randomly selected
nearest empty lattice cell as long as such cell could be found.
In another version of the model, unhappy agents could be
moved to any unoccupied cell independent of the distance.
Repeating many times these steps, one arrives at a dynamic
equilibrium. Note that the number of agents of each color is
conserved in the course of such evolution. If the number of
steps tends to infinity, one can speak about the phase transition,
which occurs at a critical value, f ∗, such that for f < f ∗

agents form monochrome clusters with mobile boundaries. The

critical threshold, f ∗ = 1
2 , is exactly known for the Schelling

model on a 1D lattice. For a two-dimensional square lattice the
value of f ∗ depends on whether occupied lattice sites are above
or below the percolation transition. As discussed in Ref. [2]
the result f ∗ = 1

2 in 2D holds only below the percolation
transition.

The Schelling model demonstrates how relatively weak,
short-ranged interactions, which are encoded in the preference
to live with people of the same social category, combined with
mixing (ability to move to an empty place) could force global
(macroscopic) changes in the system [2,3]. Moreover, these
global changes appear abruptly as a first-order phase transition
when the personal intolerance to unhappiness, quantitatively
expressed in f , falls below some critical threshold, f ∗.

The Schelling model in its canonical form was aimed
to uncover statistical mechanisms of racial/religious/social
segregation associated with resettlement of humans in com-
munities (e.g., city neighborhoods). Thus, the model naturally
depends on spatial proximity among agents. To adapt the
standard Schelling model to modern times, in which distant
connections mediated by social networks such as Facebook,
Twitter, etc., become even more important than those in
agents’ local physical neighborhoods, one can consider the
segregation on the topological graph as this has been done
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in Refs. [4–7] for various modifications of Schelling-like
model. Our work remaining in the same paradigm differs
from the mentioned ones (i) by detailed study of the phase
transitions between various topological structures of emerging
communities, which is accompanied by the spectral analysis
of corresponding adjacent and Laplacian matrices of networks,
and (ii) by special updating procedure which keeps fixed the
degree of connections of each network node.

In our study we represent the society as a collection of
agents from two social categories labeled by red and green
colors, connected by some relations represented by edges in
a social network. Our society is dynamic, which means that
agents can create or destroy social interactions (edges). To
formulate the Schelling-like model on a graph, one needs (i) to
quantify the affinity for creation of social interactions between
agents mediated by their social categories (node colors), and
(ii) to define the updating (mixing) rules. The details of our
model are described in the next section, while here we provide
some generic motivations behind the choice of dynamics and
formulate the set of phenomena we are attempting to describe
by our model.

As we demonstrate below, a variant of the Schelling
model operating on a graph instead of a lattice is capable
of reproducing a rich pattern of social behaviors beyond a
simple segregation (clusterization). Specifically, we impose the
following modifications of the original Schelling model:

(1) We assume that the number of social connections of
each agent (the vertex degree of the social network) is strictly
conserved. The degree may vary from one agent to another,
however for each particular agent it is fixed and cannot be
changed during the society evolution.

(2) Updating rules (which replace mixing in the original
Shelling model) consist of adding and removing social con-
nections between agents (network links) under the condition
of a strict conservation of a vertex degree in each network node.

(3) We formulate two different models (the details are
provided below) for which we introduce a concept of collective
triadic interactions between individuals. In the first model we
consider a “polychromatic” network whose vertices belong
to the set of M different colors and recoloring of nodes is
prohibited. The advantage or disadvantage of specific configu-
rations are controlled by the parameter,μ, which (depending on
its sign) encourages or discourages the formation of unicolor
triads (i.e., connected sets of three agents from the same social
category joined together), and by the parameter ν, which
fixes the average number of cross-color links. In the second
“colorless” model, the affinity parameter, γ is attributed to
any short triadic cycle in a network (triple of vertices joined
together by three links).

We are interested in typical patterns formed in evolving
societies (networks), reached from an entirely random initial
network configuration. The social network from that perspec-
tive is the Erdős-Rényi graph. The extensions of our model to
scale-free networks is the subject of follow-up studies.

The paper is organized as follows. In Sec. II we introduce
the two-parametric model of a “polychromatic” randomly
evolving network with the advantage (or disadvantage) of
monochrome triads and inter-color links formations. In Sec. III
we propose a model of a “colorless” randomly evolving
network favoring the formation of triangles (fully connected

triads of nodes). For both models we discuss the results of our
numerical simulations, provide the corresponding statistical
arguments, and propose possible social interpretations of
observed phenomena. In Conclusion (Sec. IV) we summarize
our findings and formulate questions for future investigations.

II. MODEL I: CRITICAL BEHAVIOR IN
POLYCHROMATIC NETWORKS

A. Abstract model

Consider a topological network, where vertices are indi-
viduals (agents), and links—“relations between individuals.”
Vertices (nodes) could be of different “features,” tentatively
assigned as “colors.” For simplicity, we consider in details a
dichromatic (green-red) network of nodes, however, obtained
results can be straightforwardly generalized to polychromatic
networks of M � 2 colors.

The initial network configuration is a paricular random
sample from a standard Erdős-Rényi graph ensemble without
multiple links. The vertex degree of each node is fixed at the
network preparation and remains unchanged during the net-
work evolution. We call such class of graphs the “constrained
Erdős-Rényi networks” (CERNs). As in the original Schelling
model, we start with the case of M = 2 colors and introduce
two subclasses of nodes, denoted as “green” and “red,” which
could represent nations, races, religions, clans, genders, social
statues, etc. of social agents. In our polychromatic model, indi-
viduals prefer to form “monochromatic triads,” which are sets
of three connected vertices connected by two links (open sets)
or three links (closed sets). In Ref. [8] such sets are referred to as
“2-star motifs.” The advantage of formation of monochromatic
triads of vertices replaces the original Schelling’s “happiness
with surroundings.” To describe advantage and disadvantage of
triads, we associate energies (chemical potentials) μG and μR

to each unicolor green and red triad. In addition, we attribute
the chemical potential ν to each cross-color pair of nodes. That
enables us to define the partition function,

Z =
∑

e−(μGNG+μRNR+νDNGR ), (1)

where NG and NR are numbers of green and red triads of
vertices μG and μR are respective chemical potentials, NGR is
the number of cross-color links, and D is the average degree
of the network. The sum in Eq. (1) runs over all possible
configurations in the network for fixed number of bonds under
the condition that the degree of each vertex is the same as in the
seed network. Our partition function can be considered as the
combination of the models suggested in Ref. [9] (for ν = 0)
and Ref. [10] (for μG = 0, μR = 0).

Computing Eq. (1) is a challenging problem; however, it
is feasible at least in the mean-field approximation since it
resembles in some aspects the generalization of the model
discussed in Ref. [8], where the interaction between nearest-
neighboring nodes is quadratic (i.e., only two joint links are
involved in the interaction). The analytic approach for the
two-color model we plan to discuss in a separate publication
[11]. To proceed with numerics, we use currently the dynamic
algorithm which replaces the numerical evaluation of the
combinatorial problem Eq. (1) by running stochastic evolution
of the CERN (the discrete Langevin dynamics), starting from
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FIG. 1. (a) Switching of links preserving degrees of all vertices;
(b) example of a local network updating process which increases the
number of red and green triads by one. Thick lines (right) highlight
edges connecting new unicolor (red and green) triads that were absent
before the switch (left). To distinguish nodes in a color-less mode, we
painted the core of green vertices in black and the core of red vertices
in white.

some initial configuration until the evolution converges. The
initial state of the network is prepared by connecting any ran-
domly taken pair of vertices with the probability p (regardless
the node color). Then, one randomly chooses two arbitrary
links, say, between vertices i and j (i−j ) and between k and
m (k−m), and reconnect them, getting new links (i−m) and
(j−k) as shown in Fig. 1(a). Such a reconnection conserves
the vertex degree [12]. As prescribed in Ref. [12], if at least
one of the links attempted to be generated by the rewiring step
exists already, this step is aborted and a new pair of links is
selected. That prevents of creating multiple links between the
same pair of nodes. Then, following Refs. [13,14], we apply
the standard Metropolis rule to each step of a reconnection.
The Metropolis rules are as follows: (i) if after the rewiring the
number of connected unicolor connected triads of nodes (green
or red) is increased, then a move is accepted; (ii) if the number
of connected unicolor triad of nodes is decreased by some
�n, or remains unchanged, then a move is accepted with the
probability e−μ�n. Here it was assumed that μR = μG = μ;
however, the generalization to μR �= μG is straightforward.

The network updating after one step of Metropolis dynamics
is schematically shown in Fig. 1(b).

The Metropolis algorithm runs repetitively for a large set of
randomly chosen pairs of links, until it converges. In Ref. [15] it
has been shown that the algorithm actually converges to the true
ground state in the equilibrium ensemble of random undirected
colorless Erdős-Rényi networks with fixed vertex degree. For
polychromatic networks such a convergence has not yet been
considered rigorously in the literature.

Below we describe typical patterns of behavior of a dichro-
matic constrained Erdős-Rényi network in various regions of
the 2D-parameter plane (μ, ν), where μ = μG = μR and ν are
correspondingly chemical potentials for unicolor connected
triads of nodes (red and green), and for cross-color pairs of
nodes.

Our investigation of a novel two-color constrained Erdős-
Rényi network with equal chemical potentials μG = μR = μ

for unicolor connected triads of nodes, and ν for cross-color
pairs of nodes, provides the following results in different
regions of the two-dimensional parameter plane (μ, ν).

1. μ = 0: Network defragmentation in absence
of affinity of unicolor connected triads

At ν = 0 (compare to Ref. [9]), the two-color network
is absolutely unstable with respect to any energy μ > 0
favoring formation of unicolor triads of connected vertices,
and immediately splits into two mostly monochrome (green
and red) clusters, or “layers” (one layer = one color) with
relatively small number of cross-color connections between
them. The number of cross-color links, NGR , rapidly vanishes
in this regime as a function of μ.

2. μ �= 0, ν �= 0: Transition from “cross-community”
to “intracommunity” network topologies

If μ �= 0, ν �= 0 the typical phase portrait of the model is
shown in Figs. 2(a) and 2(b). In Fig. 2(a) we have plotted
the fraction of cross-color links, fGR = NRG/N . The region
ν > μ is characterized by the plateau in the density of inter-
color links where the network is bipartite and demonstrates
the “cross-community” structure. To the contrary, the region

(b)(a)

ytisned lartceps fo tnemom drihtsknil roloc-ssorc fo ytisned

intra-community
structure

cross-community
structure

cross-community
structure

cross-community
structure

intra-community
structure

intra-community
structure

FIG. 2. Phase portrait of the network in the parameter (μ, ν )–plane: (a) Density plot of the fraction of cross-color links, ρGR (μ, ν ); (b)
density plot of the third moment of the spectral density, which measures bipartitness of the network. In the simulations there are 128 nodes of
each color, p = 0.15, averaging is performed over 500 realizations.
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FIG. 3. (a) Fraction of cross-color bonds, ρRG, as the function of the chemical potential of unicolor triads, μ at fixed chemical potential of
cross-color bonds, ν = 0.1 – upper panel, and the behavior of the second eigenvalue of Laplacian matrix, λ2(μ) – lower panel; (b) The behavior
ρRG(ν ) at fixed μ = 0.1 – upper panel, and the behavior λ2(ν ) – lower panel.

ν < μ looks as two weakly connected unicolor clusters with
vanishing density of cross-color links. We call this region
“the intra-community dominated phase.” At (μ > μcrit, ν >

νcrit ), these two phases are separated by the first-order phase
transition critical line, while at small values of (μ, ν), the
transition between two phases occurs as a smooth crossover.
In the region ν > μ at high values of ν we have ρGR → 1.
To understand better the topological structure of the network,
we have drawn in Fig. 2(b) the behavior of the third moment
of the spectral density, which measures the bipartitness of the
network [16].

The behavior of the fraction of cross-color links, ρGR

near the critical line is plotted in Fig. 3 for two particular
cross-sections. In Fig. 3(a) we have fixed the chemical potential
of cross-color links, ν = 0.1 and have looked at the dependence
ρGR (ν). In the region μ < μcrit the function ρGR (μ) develops
a finite plateau, while at μ ≈ μcrit the number of cross-color
links nearly vanishes and remains negligible with further
increasing of ν. In the lower panel of Fig. 2 we have shown
the dependence of the second eigenvalue, λ2 of the Laplacian
matrix of the network as a function of ν. It is known that λ2

measures the minimal number of links which should be cut to
split the connected network into two disconnected parts. As
one sees, the behaviors λ2(μ) and ρGR (μ) coincide, which we
consider as an additional support of the correct interpretation
of the topological structure of our dichromatic network.

In Fig. 3(b) we have studied an opposite situation and have
fixed the chemical potential of unicolor triads at μ = 0.1,
investigating the dependenceρGR (ν). Slightly below the transi-
tion point, νcrit, the function ρGR (ν) grows very rapidly (in fact,
exponentially), reaching just above νcrit the plateau, ρGR =
1, which is the semi-infinite plateau observed in Ref. [10].
Measuring the dependence of the second eigenvalue λ2 of
the Laplacian matrix of the network on ν, we reproduce the
behavior of the function ρGR (ν) and demonstrate that in the
plateau regime, the network is almost bipartite graph looking
as a Corbino disk filled by the links connecting the inner and
outer boundaries.

If there is no affinity of unicolor triad formation, i.e., μ = 0,
which is the case in Refs. [10,17,18], the fraction of cross-color
links ρGR grows exponentially with ν slightly below νcrit, at
which the plateau begins without the jump.

3. Leadership formation

When the number of cross-color links is small, at ν = νcrit

the centrality of the network [19] gets changed and strongly
decreases above νcrit. The same happens at the plateau exit
in the regime in Sec. II A 2. In such cases the “spontaneously
induced leadership” emerges. Two communities start to com-
municate via two spontaneously emerged “leaders” (hubs)
[20,21], which have many connections inside the community
and only one (or a few) emitted outside. The example of
M = 4-color network (of 64 nodes in each color) is shown
Fig. 4. The social interpretation of this effect is discussed
at length of the Sec. II C 1, while here we propose some
hand-waving statistical arguments behind the phenomenon.
There are two question to be elucidated:

(i) why the clusters in the vicinity of the transition point in
the “intra-community phase” (μ > ν, both μ and ν are large)
communicate through “leaders” (or “ambassadors”);

green

red

yellow

black

FIG. 4. Typical sample of M = 4-color network in the “intra-
community” phase near the transition boundary. The “ambassadors”
provide communication gates between clusters. Each cluster has 64
nodes.
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FIG. 5. The phase diagrams (density plots of ρRG) in the (μ, ν )-plane for three different values of N : (a) N = 128, (b) N = 256, (c)
N = 512.

(ii) who becomes the “ambassador,” i.e., is any correlation
between the vertex degree and the possibility to become a
“leader” in a polarized world?

The answer to question (i) is straightforward. The free en-
ergy of the network consists of energetic and entropic parts. At
μ < μcrit and ν < νcrit the entropy, which tends to “mix” links
in the whole network as much as possible under prescribed con-
servation laws, has the contribution comparable to the energy.
Thus, the multigate “democratic” communication between
communities is entropically favorable. However, at μ > μcrit

and ν > νcrit, the entropic contribution becomes negligible
with respect to the energy of collective interactions, and when
μ < ν, the system tries to minimize cross-community contacts.
The “ambassador”-like topology is the unique possibility
for communications between polarized clusters in energy-
dominated phase before the complete rupture of all relations.
Whether the network could be completely defragmented at
μ � 1 and finite ν depends on the density of bonds, p, at
the preparation condition. This question definitely requires
additional investigation.

The answer to the question (ii) seems a bit counterintuitive:
the network nodes with intermediate values of vertex degrees
(conditionally called “dark horses”), are the best candidates for
the leaders in the polarized world. The statistical explanation
of this effect is as follows. Network nodes randomly acquired
large vertex degree at the preparation condition are the most
“energetically favorable,” since they could participate in many
triads of the same color. From this point of view, we gain more
energy connecting these nodes to the vertices of the same color.
Thus, the “best” nodes do their job inside their own com-
munities and for communication to the “external world” the
“next-to-the-best” vertices should be chosen. It is an open and
difficult question how this selection happens precisely. The so-
ciological interpretation of this effect we provide in Sec. II C 1.

B. Overview of the phase behavior and finite-size corrections

The first two phenomena, described in Secs. II A 1 and II A 2
are analogous of the segregation happen in the original
Schelling model. Indeed, in the Schelling model the social
segregation begins at some critical value of “happiness with
the surroundings” [1], which in our model is replaced on
the graph by the chemical potential μ controlling the affinity
of connected triads of nodes of one social category. In our

consideration the Schelling-like segregation occurs at any
positive μ.

The principal distinction between our model on a graph and
the original Schelling model on a lattice is twofold. First, the
adjacency matrix in the Schelling model corresponds to the
distribution of neighbors on a two-dimensional surface, while
in our model we deal with the topological network and do not
care about lengths of network bonds and their weights, taking
into account only their presence or absence. Second, our model
on the graph demonstrates some features of spin-glass behavior
due to the condition of “quenched” vertex degree distribution
in course of the network rearrangement, thus making the phase
diagram more rich compared to the original Schelling model,
which by definition is “annealed.”

The most important feature of the regime considered in
Sec. II A 2 is the presence of a critical line started at some point
(μcrit, νcrit ) in the phase space. This means that the passage
from the “intracommunity dominated phase” to the “cross-
community dominated phase” at large chemical potentials
occurs via a phase transition. The vertex degree conservation
serves as the local constraint, while the maximization of
monochromatic triads and cross-color links, is the global
condition.

We have investigated the dependence of the critical behavior
of the system on the total number of nodes, N . The density plots
ρGR in the (μ, ν) parametric plane are shown in Fig. 5 for three
different values of N : for N = 128 [Fig. 5(a)], for N = 256
[Fig. 5(b)], and for N = 512 [Fig. 5(c)].

Two comments on these plots are in order. First, we see the
strong dependence of position of the end point of the critical
line, (μcrit, νcrit ), on N : it is located at the distance ∼N−1

along the diagonal from (μ, ν) = 0. Second, the equation for
the critical line μ = ν is N -independent, though it depends
on the number of colors as it will be shown at length of the
Sec. II E.

C. Social interpretation

In the context of social dynamics, our model captures
some aspects of competition between individual and collective
behaviors. This issue has been addressed in Refs. [22–24].
References [23,24] review the applications of methods of
statistical physics to the social phenomena.
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The phase transition between cross-community and in-
tercommunity behavior, found in our two-parametric (μ, ν)
colored topological network, is expected to occur in a wide
context of social systems including interstate communications,
formation of crime clans, and groups of interests. We hope
that some modification of the model, which takes into account
different weights of directed links, could describe relationships
between social agents of different genders, races, or ethnicities.
The conservation of the number of connections between indi-
viduals (i.e., the conservation of degrees of network vertices)
requested in our model is crucial for the emergent behavior
reported above, though seems rather natural for evolution of
many real social networks. The degree of a network node
represents the “extent of extroversion” (presumably fixed) of
social agents incorporated into the network.

Special attention should be paid to Ref. [22], discussing the
situation in which agents with a relatively small number of
links could in some situations strongly influence the structure
of the whole network. In our model the behavior discussed
in Ref. [22] manifests itself in the role of “dark horses” (the
bonds with moderate number of nodes): just such “weak” nodes
become the leaders (or “ambassadors”) in a polychromatic
network in the proximity of the transition point.

It should be emphasized that our model yet describes only
the nondirected connections. Thus, its immediate application
to gender relations seems restricted, since gender relations are
not obliged to be transitive: the interest of A to B does not
imply immediately that B is interested in A as well. Formally,
the extension of our model to take into account the nontran-
sitivity is not difficult—we should attribute different weights
to matrix elements aij and aji making the adjacency matrix
nonsymmetric and then apply spectral methods. However, the
interpretation of results is not very straightforward since the
topological sense of eigenvalues (which become complex), and
of moments of the spectral density for nonsymmetric adjacency
and Laplacian matrices is hidden. Taking into account the
existence of reliable data on friendship relations (see, for exam-
ple, Ref. [25]), the corresponding graph-topological analysis
of oriented networks and its comparison with other statistical
methods is highly demanded.

1. International relations

The transition between the bipartite graph structure (the
cross-community topology) to weakly connected closed soci-
eties (the intracommunity topology) discussed in Sec. II A 2 has
possible implication in schematic description of international
relations between countries, which being usually transitive,
are described by the symmetric adjacency matrix. Let us begin
with the “dichromatic world” consisting of agents of two colors
only (red and green). At high weights of parameters μ (triple in-
color connections), representing collective national relations,
and ν (pair cross-color relations), representing international
relations, our system can be found in one of two possible phases
(i) and (ii):

(i) at μ > ν the network provides an example of a pair of
“closed communities” characterized by a very small number
of cross-color “international” links;

(ii) at μ < ν the networks acquires a nearly bipartite “open
world” structure dominated by international relations.

The two phases (i) and (ii) are separated by the critical
line of the phase transition with a very narrow transition
region. Within this regime there is a competition between the
“energies” of unicolor triads of nodes (intrastate) and pairs of
cross-color nodes (interstate). At low values of μ and ν [when
(μ < μcrit, ν < νcrit ); see Fig. 2], a crossover regime between
two phases is governed by the competition between energetic
and entropic effects.

One could interpret the tendency to form monochromatic
triples of connected nodes, controlled by μ, as the extent of
a population nationalism, while the cross-color preference,
controlled by ν, as the tolerance toward formation of in-
ternational ties. We argue that in the regime where at least
one of the parameters (either μ or ν) is large, a switch
between the nationalism-dominated phase to the tolerance-
dominated phase occurs as a first-order phase transition. This
observation might have important consequences for internal
and international policies of the state. Our study clearly shows
that, at high values of μ and ν, manipulating by relative weights
attributed to internal and international issues is quite risky,
since the switch of the population’s attention between different
paradigms is very sharp.

Even a modest increase of ν favoring international commu-
nications (e.g., due to state’s desire to benefit from international
trade), or conversely, a modest increase of μ favoring national
coherence (e.g., as state’s attempt to rally people around some
kind of national idea, for example, national sport, or jointly
fight against the “external enemy”), both could lead to a sudden
and irreversible changes of the collective paradigm of the
society. Societal changes at the beginning of a war may operate
in this regime of an abrupt (first-order) phase transition. To the
contrary, evolutionary smooth collective changes are possible
at low weights in the crossover regime, when the society is less
polarized.

The transition from two closed societies in a highly po-
larized world to the relatively open bipartite world resembles
much the end of the cold war around the ’90s of the previous
century. Our study shows that the picture of the phase transition
remains the same if the chemical potentials μG and μR are
different. In that case the phase transition curve depends on
the sum μG + μR . In social terms it means that it is sufficient
to have a strong nationalism in one country only (say, making
μG big) to polarize the world, even in nationalism in another
society is low (μR is small). The signature of such a behavior
we see in the modern world: the patriotism based on the military
rhetoric of one of the current players pushes the world to
the new turn of the cold war—formation of closed, weakly
communicating societies.

Even more intriguing phenomenon occurs when commu-
nities are closed and the number of intercommunity links,
NGR is relatively small. In such a regime, the importance of
hubs increases drastically [20,21] culminating in the sponta-
neous emergence of leaders and ambassadors considered in
Sec. II A 3. All international relations between countries pass
in this case through a small number of newly created “hubs”
representing a country’s leaders or “ambassadors.”

It is eligible to ask the question: “Who becomes the ambas-
sador at the transition point?” We have examined numerically
this question and rather counterintuitive answer is as follows:
the “dark horse,” i.e., the “weak” node with a moderate number
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of links at the preparation condition becomes the leader,
mediating the cross-community relations in the regime when
closed societies are dominated. This rhymes well with the
conclusion of the work [22], where the importance of “weak
ties” has been emphasized. The statistical arguments behind
this effect are provided in Sec. II A 3.

2. Criminal clans

The tendency of humans to establish social interactions with
members of the same social category (the same stratum) is well
known from the “everyday experience” and is supported by
many investigations. In some sense, this is the continuation
of the friendship relations, which in the extreme case can
be considered as collective relations in one gang. Typically,
friendship relations are transitive and can be attributed to the
nonoriented edges connecting vertices (social agents) of the
network.

The polarization of relationships between two conflicting
gangs living in one area, happens according to our model,
by increasing the “in-gang” collective affinity (μ), decreas-
ing of “cross-gangs” communication (ν), and leads to the
“intracommunity” dominated network topology. In extremely
polarized societies, the cross-clans relations are mediated by
ambassadors—the criminal authorities.

There are two scenarios to convert this network struc-
ture to the much less polarized bipartite “cross-community”
dominated phase. The first scenario implies increasing the
chemical potential of cross-community relations, ν. This could
be realized in practice by opening, for example, a joint
sport centers where agents of different communities could
meet each other. However, the transition from polarized to
cross-community phase is supposed to be sharp (first-order
phase transition), and as every first-order transition could be
accompanied by the instability. The second scenario implies
decreasing the collective in-color affinity, μ, for example, by
diminishing the time spent by social agents together. Such
effect could be reached by providing relevant job offers. The
second scenario looks more preferable since the passage to
the bipartite cross-community phase happens as a crossover
if (μ < μcrit, ν < νcrit ) and therefore is less sharp and not
accompanied by instabilities.

D. Spectral view on dichromatic networks

Let us make few comments concerning the spectral prop-
erties of our dichromatic network. To this aim we need some
standard notions from the graph theory. It is convenient to study
the network evolution using the network adjacency matrix, A,
of size N × N , whose elements, aij are defined as follows:
aij = 1 if vertices i and j are connected, and aij = 0 otherwise.
More information about the network structure can be obtained
by studying its Laplacian matrix, L = D − A, which is related
to the adjacency matrix, A, and the diagonal matrix, D, with the
elements di = ∑N

j=1 aij , i = 1, ..., N . The Laplacian matrix is
positively defined and has the minimal eigenvalue λ1 = 0 cor-
responding to the homogeneous eigenvector v1 = (1, . . . , 1).
The degeneration of λ1 (i.e., the number of zero’s eigenvalues
in L) defines the number of disconnected components of the
graph. The behavior of the second eigenvalue of the Laplacian,
λ2, in random graphs is the subject of several mathematical

studies [26,27] and has an important meaning, known as “the
algebraic connectivity.” In particular, if λ2 > 0, then the graph
is connected. We have seen that λ2 as a function of μ and ν

behaves exactly the same as NGR; see Figs. 2 and 3. This can
be considered as the check of the numerical analysis.

Quantitatively, the plateau entrance in the μ = 0 limit can
be formulated in terms of relation between λ2 and λ3 [10]:

λ2(A,μ) = λ3(L,μ), (2)

where λ2(A,μ) is the second eigenvalue of the Laplacian
matrix of the cluster A, and λ3(L,μ) is the third eigen-
value of the Laplacian matrix of the whole network L. The
second eigenvalue λ2 besides its topological sense discussed
in Sec. II A 2 has an important physical meaning: It defines
the diffusion time for the propagation of an excitation in the
network. The relation Eq. (2) is perfectly seen in our numerical
simulations.

E. Clusterization in polychromatic graphs

The clusterization holds also for polychromatic networks
of M � 2 colors. The unicolor clusters get formed above
some critical values of μi , which depend on νik , where
(i, j ) = 1, ...,M . The new phenomena taking place in the
polychromatic network is as follows. Since each cluster yields
the separated eigenvalue in the spectrum of the Laplacian
matrix of the network, we obtain M isolated eigenvalues in
the spectrum apart from the continuum. These are low-energy
modes which turns out to be organized in the second zone.

To get the intuition about the critical behavior of multicolor
networks we have considered the M = 3-color network with
the particular choice of chemical potentials involving only
two parameters. Namely, we have simulated the network with
μ1 = μ2 = μ3 = μ and ν12 = ν13 = ν23 = ν. The results of
simulations are presented in Figs. 6(a) and 6(b) showing the
density plot of cross-color links [Fig. 2(a)] and the third mo-
ment of the spectral density [Fig. 2(b)]. Two phases separated
by the critical lines are three monochromatic clusters and a
tripartite graph. The new interesting feature of this case is that
the slope of the critical line gets changed, having the slope
described by the equation ν = 2

3μ for M = 3. The end of the
critical line approaches the point (0,0) on the phase diagram
in the same way as for two-color network shown in the family
of diagrams Fig. 5, i.e., as N−1 for three networks of 85 nodes
each.

The social interpretation of polychromatic network of M

colors is a straightforward generalization of the dichromatic
model discussed at length of Sec. II C 1. In polychromatic
networks the spontaneous emergence of communities in the
initially homogeneous network is again accompanied by self-
organized extraction of leaders/ambassadors. This happens
when the parameter μ controlling the “coidentities of small
groups” is increasing while the parameter ν of the cross-
community relations is fixed. The described scenario provides
a conceptual model of social dynamics in a primitive com-
munal society when the division of labor and stratification of
society just emerged.
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FIG. 6. The density plots of phase diagram for the three-color network having 85 nodes of each color (compare to the two-color network
shown in Fig. 2): (a) the cross-color density of links; (b) the averaged third moment of spectral density.

III. MODEL II: EMERGENCE OF SMALL
INTERCONNECTED GROUPS

A. Favorable formation of triangles (regime A)

So far we have discussed the stability of communities in
polychromatic networks with respect to the interplay between
the number of unicolor triadic contacts and cross-color con-
nections, which mimic social contacts in small groups of
individuals. Here we consider a different phenomena occurring
in a colorless network, where we have an advantage or dis-
advantage of primitive “motifs”—small connected subgraphs
of special topology (3-cycles, 4-cycles, etc.). The evolution
of the network again strictly preserves the degrees of all
individual nodes favoring (or preventing) the formation of
triads of connected nodes. Such a degree-preserving rewiring
dynamics via the Metropolis algorithm with energy determined
by the number of small topological motifs (triangles, squares,
or some feedback loops) was first considered in Refs. [13,14]
and is schematically depicted in Fig. 7. The Metropolis dy-
namics controlled by a single chemical potential, γ , which
makes formation of small closed loops (“social clubs”) either
preferred or undesirable. In what follows we consider the case
of triangles only (complete graph of three nodes). We are
asking when the society, represented by its social network,
is stable with respect to the change of γ ; see Ref. [28].

i i
j j

k k

i j

k m

m m

i j

k m
(b)(a)

FIG. 7. (a) Switching of network links preserving degrees of
all vertices; (b) example of a local network updating move which
increases the number of triangles.

Let us begin with the case γ > 0, which makes the forma-
tion of 3-cycles favorable. If the vertex degree of graph nodes
is not fixed, the advantage of 3-cycles forces the formation of
so-called Strauss clusters [29]. This case has been analytically
investigated in Refs. [30,31]. It was argued that, when γ is
changing (while staying positive), the system develops two
phases with essentially different concentration of 3-cycles: at
large γ the system falls into the Strauss phase with a single
clique (almost full sub-graph) of nodes, while at small γ the
system looks as a weakly clustered random Erdős-Rényi graph.
The condensation of triads is a nonperturbative phenomenon
identified in Refs. [30,31] with the first-order phase transition
or crossover for different regions of parameter space in the
framework of the mean-field cavitylike approach.

The system behaves essentially differently when a vertex
degree is strictly conserved during the Metropolis rewiring. We
found that above some critical fugacity, γc, a large network is
fragmented into a collection of [p−1] almost fully connected
sub-graphs (cliques) [28], where p is the bond formation
probability in the initial random Erdős-Rényi network and
[...] denotes the integer part of the argument. In Figs. 8(a)
and 8(b) we show typical structure of adjacency matrices
at few intermediate stages of network rewiring toward the
ground states of constrained [Fig. 8(a)] and unconstrained
[Fig. 8(b)] Erdős-Rényi networks (reproduced from Ref. [28]).
The adjacency matrix A in the ground state of the constrained
network has block-diagonal structure with slightly fluctuating
blocks of the mean size N/[p−1] ≈ Np. In contrast, the
ground state in the unconstrained Erdős-Rényi network in
the Strauss phase consists of a single complete clique. To
visualize the kinetics, we enumerated vertices at the prepa-
ration condition in arbitrary order and run the Metropolis
stochastic dynamics. When the system is equilibrated and
the cliques are formed, we re-enumerated vertices sequen-
tially according to their belongings to cliques. Then we
restored corresponding dynamic pathways back to the initial
configuration.

It should be pointed out that the phase transition in the
model with the conserved vertex degree distribution has been
discussed in Ref. [32]; however, the key nature of the system,
the multiclique structure, was overlooked.
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FIG. 8. Few typical samples of intermediate stages of network evolution: (a) Networks with strictly conserved vertex degree (our model);
(b) networks with nonconserved vertex degree (“Strauss model”) (recalculated on the basis of Ref. [28]).

B. Suppression of triangles (regime B)

The negative value of the chemical potential γ means that
the triangles are suppressed. In this case the network evolution
gives rise to an interesting critical behavior conjectured in
Ref. [16], resulting in a nearly bipartite network in which
connections within each cluster are suppressed. Namely, in
the vicinity of some critical value, γc < 0, the number of tri-
angles decreases nearly to zero, making the network bipartite.
The adjacency matrix acquires the block-off-diagonal form.
Topologically the network looks as an annulus filled by links
connecting nodes in the boundaries. In Fig. 9 the dependence
of the transitivity C and the Estrada index β, which are the
measures of network bipartiteness [33], is plotted.

FIG. 9. Critical behavior at negative γ .

C. Social interpretation of regimes A and B

Various ground-state network topologies found in models
A and B have different social interpretations. The simplest
example of a short cycle (or more generally, of a fully
connected small clique) could be identified with a family
consisting of two parents and a child. Thus, by increasing
or decreasing the weight favoring short cycles (which means
the relative “proximity” of relations in the family), one can
increase or decrease the role of a family in the social structure
of the society.

On the basis of the model A, we conjecture that by
increasing the role of families, i.e., by increasing the average
number of triangles, one could trigger defragmentation of
initially homogeneous “proto-civilization” into a collection of
weakly connected communities. The number of communities
depends on the number of connections in the protocivilization.
One could speculate about the applicability of this model to the
description of segregation in prehistoric societies. It is known
that the transition from the life in the open air to the life in
caves increased the role of tight group and hence increased
the affinity of small circles which in turn forced the separation
of the entire network (society) in communities-clans. It would
be interesting to incorporate our model in the identification of
social and cultural communities in the archeological context
reviewed in Ref. [34].

To the contrary, in the model B the familylike communities
are suppressed and a complete restructuring of the social
network happens at a critical point. Below some critical level of
suppression of triangles, γc, the whole society gets completely
polarized into two big subgroups. This emergent property is
driven exclusively by the entropic forces. Connections within
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each of two subgroups are very loose and the major fraction
of links connect vertices between opposite groups. There are
various social interpretations of inter-group links, but within
each of these interpretations agents prefer to develop “external
relations” than to form in-group connections. Interestingly, this
effect goes beyond the mean-field theoretical description. Our
current understanding of this transition lags behind that of its
counterpart taking place at positive γ .

IV. CONCLUSIONS

In this work we explore critical phenomena taking place in
evolving social networks. In particular, we study two models
inspired by the classical Schelling model of social segregation.
Both models exhibit rich collective behavior. The network evo-
lution in our simulations starts from an Erdős-Rényi random
graph, and all vertex degrees are strictly conserved in the course
of rewiring dynamics.

The first model describes a “polychromatic” network with
vertices of different “colors” which are attributed to different
social categories. The driving mechanism for the network
evolution is the competition between monochromatic triads
of connected vertices of the same color, and links between
pairs of vertices of different colors. The phase portrait of
this two-parametric model is analyzed in our study. It turns
out that if connected monochromatic triads dominate, the
network spontaneously splits into weakly connected clusters
(one cluster per each color). Defragmentation of a network
with respect to such a “color segregation” can be viewed as an
effective mechanism of revealing hidden layers (stratification)
in a society. Since the whole effect depends only on the sum of
chemical potentials for the monochromatic triadic interactions
in each color, the chemical potential in one color is capable of
inducing effective interactions in other colors. In the opposite
limit, where the formation of cross-color links dominates, the
network develops a bipartite structure. We have identified a
critical line separating these two regimes at large values of
chemical potentials μ and ν, while at small values the phase is
replaced by a crossover behavior.

The main implications of our results for real-life social
networks could be as follows. In a two-color society, whenever
the weight controlling intra-community triads, or that control-
ling pairwise inter-community connections is high enough,
a “risky” regime favoring abrupt first-order phase transitions
between the “cross-community” and the “intra-community”
network topologies is realized. To avoid unpredictable soci-
etal transformations (“revolutions”), both triadic and pairwise
weights should be kept well below some critical values. The
window for the crossover regime at small weights decreases
as N−1 as the size of the network, N , is increased. Another
interesting feature is as follows: in the regime with small
number of intercolor links, each cluster of a particular color
selects a single “ambassador” (the leader), to whom all cross-
society connections are delegated.

In the second (colorless) model we observe how a
constrained network acquires several qualitatively different
topologies separated by abrupt phase transitions. The driving
force behind these transitions is the advantage or disadvantage
of formation of small closed connected groups of individuals
(3-cycles of graphs nodes). Above some critical value γ + > 0,

attributed to 3-cycle motifs, the society gets spontaneously
defragmented into a set of weakly interacting communities.
Contrarily, the suppression of 3-cycles leads below γ − < 0 to
formation of a polarized two-community (bipartite) structure
with loose intracommunity connections. Such phenomena,
though expected from the mathematical studies, have been
observed in the simulations for the first time and to the best of
our knowledge have not yet been discussed in any physical or
social context.

Our simultaneous consideration of two different models
(polychromatic and colorless) is motivated by following rea-
sons: these models represent two faces of segregation: due
to multiple interactions of species of different types (in the
polychromatic model I) and due to formation of subgraphs
of special topology (in the colorless model II). Both models
deserve detailed analytic investigation and the model I seems
more feasible since the corresponding Hamiltonian is quadratic
in pairs of links.

There are several natural directions for the further studies.
To name but a few of them in the social context, let us point
out that it is desirable to consider more general situation when
the total number of links in the network, N , could vary. In this
case the Markov chain language would be useful. It should be
emphasized that the networks we consider in this study, belong
to the so-called “mixed ensemble” where the number of links
(and vertices) is fixed as in microcanonical ensemble, while the
number of 3-cycles is controlled by the chemical potential as
in the canonical ensemble. Critical properties of this ensemble
differ from the ones of the canonical ensemble, in which
chemical potentials control both for numbers of links and
3-cycles as in Ref. [29], or from the microcanonical ensemble,
in which both these numbers are fixed [35]. Comparison of
different ensembles seems very intriguing question since the
full microcanonical ensemble exhibits a number of phases
which still are waiting for proper identification. We also plan
to relax partially the constraint of strictly fixed vertex degree
in all nodes, allowing the vertex degrees to fluctuate under
some control in course of network rewiring. If the control of
fluctuation is entirely lost, the network will ultimately fall into
the Strauss phase; however, how it happens for large systems,
continuously or critically, is a challenging open question. Last
but not least, the open question deals with the connection
between the topological structure of directed networks and the
spectral analysis of corresponding nonsymmetric adjacency
matrix.
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