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Decentralized navigation of multiple packages on transportation networks
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We investigate by numerical simulation and finite-size analysis the impact of long-range shortcuts on a
spatially embedded transportation network. Our networks are built from two-dimensional (d = 2) square lattices
to be improved by the addition of long-range shortcuts added with probability P (rij ) ∼ r−α

ij [J. M. Kleinberg,
Nature 406, 845 (2000)]. Considering those improved networks, we performed numerical simulation of multiple
discrete package navigation and found a limit for the amount of packages flowing through the network. Such a
limit is characterized by a critical probability of creating packages pc, where above this value a transition to a
congested state occurs. Moreover, pc is found to follow a power law, pc ∼ L−γ , where L is the network size.
Our results indicate the presence of an optimal value of αmin ≈ 1.7, where the parameter γ reaches its minimum
value and the networks are more resilient to congestion for larger system sizes. Interestingly, this value is close to
the analytically found value of α for the optimal navigation of single packages in spatially embedded networks,
where αopt = d . Finally, we show that the power spectrum for the number of packages navigating the network at a
given time step t , which is related to the divergence of the expected delivery time, follows a universal Lorentzian
function, regardless of the topological details of the networks.
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I. INTRODUCTION

The navigation problem consists of sending a message, or
some piece of information, from a given source node to a
target node of a network [1,2]. Taking this perspective into ac-
count, communication networks, the internet, and the network
of streets for public transportation all share the same basic
purpose: to deliver the desired packages as faster as possible
to their destiny, while maintaining the network’s functionality.
From this point of view, the 1967 small-world experiment
proposed by the American psychologist Stanley Milgram is
a paradigmatic example [3]. The algorithmic approach of the
experiment performed later by Kleinberg [4] showed not only
that navigation guided solely by decentralized algorithms is
capable of accomplishing the task, but also that the underlying
dimension of the spatially embedded network can drastically
affect the expected delivery time. In the present work, we
investigate the impact of the underlying geography of the
transportation network on the navigation of multiple packages
where a load limit to the network nodes exists.

In many transportation networks of interest in science
and technology, efficient transport of information packages,
energy, or even people is thought of in terms of avoiding
congestion rather than minimizing expected delivery time
[5–7]. For instance, when using a crowdsourcing map appli-
cation to navigate a city, the driver usually sacrifices time
of travel, adopting a longer detour in order to avoid traffic
jams. Consider now that, by the addition of new shortcuts,
we aim to plan or improve an existing transportation network.
As we shall show, to consider the underlying structure of such
network, while adding shortcuts, plays an important role in
the way the transportation occurs, allowing the increase of the
number of packages traveling the network, without missing its
functionality.

The framework of spatially embedded networks makes use
of a regular lattice of dimension d with long-range connec-
tions randomly added upon it. Generally, it considers the
addition of long-range connections between two given nodes
i and j with a probability decaying with their lattice distance
rij , P (rij ) ∼ r−α

ij [4]. The interplay between the underlying
regular structure and a randomized long-range construction
is a well-known recipe to mimic the so called small-world
phenomenon [8], where the typical distance � between a pair
of nodes grows slowly with the number of nodes N of the
network, � ∼ log10 N [9]. However, for the case of spatially
embedded networks, this is true only for α � d [10,11]. Re-
markably, the small-world property can be accessed by a de-
centralized algorithm only when α = d [4,12–15], a result that
holds for fractals [16,17], transport phenomena that obey local
conservation laws [18,19], nonlocal percolation rules [20],
and brain networks [21,22]. Moreover, when a cost constraint
is imposed on the addition of shortcuts to the underlying
network, it has been found that better conditions to navigation
are attained when α = d + 1 [23–26]. It is argued that such
conditions, with and without cost constraint, are optimal due
to strong correlations between the underlying spatial network
and the long-range structure, allowing the package holder to
find the shortest paths in the small-world network [4]. It is
claimed that such a compromise between local and long-range
structures leads to an effective dimension higher than the
dimension of the underlying local structure [27,28].

This paper is organized as follows. In Sec. II we describe
the spatially embedded network model proposed by Klein-
berg [4]. The rules for node overload used in the present
study in order to mimic the onset of congestion are also
presented in Sec. II. In Sec. III the results of our simulations
and numerical analysis are presented, where we study the
behavior of the order parameter, the scale of the critical point
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FIG. 1. Kleinberg networks are built by adding long-range con-
nections on regular lattices. For a given node i, a node j is randomly
chosen and an undirected link of length rij is added between them
with probability P (rij ) ∼ r−α

ij . By doing so, the node j can be any
node with a Manhattan distance of rij . The dashed lines highlight the
eight nodes separated from node i by a lattice distance r = 2. We
randomly choose the node j from this set of eight nodes.

and the divergence of the characteristic time. We leave further
discussion and conclusions to Sec. IV.

II. MODEL FORMULATION

Using a simple and general model based on a decentralized
algorithm, we study the effects of nonlocality assuming three
simple ingredients [5,7]. The first is a physical spatially
embedded structure where the transportation process takes
place, in other words, the transport network itself. Second, we
assume that the channels through which the information flows
have limited capacity. Finally, the information navigating this
network is composed of discrete packages. Without lack of
generality, the important characteristics of the problem are
obtained by the analysis of the navigation and congestion of
these discrete packages.

As shown in Fig. 1, the transportation network is embedded
in a square lattice with N = L × L nodes upon which we add
long-range connections. In this model, pairs of nodes i and
j are chosen at random to receive one of those long-range
connections with probability proportional to r−α

ij , where rij

is the Manhattan distance between nodes i and j . The lattices
have periodic boundary conditions and receive a fixed number
of long-range connections. By construction, we attach one of
the ends of a long-range connection to each one of the N = L2

nodes of the underlying lattice, while the other end is ran-
domly connected to another node according to the probability
P (rij ) ∼ r−α

ij , as previously defined. Therefore, each node
receives one long-range connection, but may receive others
due to the random connection process. Since the number of
nodes separated by the lattice distance r from a node i in a
d-dimensional lattice is proportional to rd−1 (see Fig. 1), the
probability P (rij ) can be mapped into the density distribution
function p(r ) ∼ rd−1−α . After the distance r is chosen follow-
ing the distribution p(r ), we randomly choose node j from
the set of nodes separated from i by the distance r . Clearly,
the present model satisfies the small-world paradigm, i.e., it is

rich in short-range connections, but has only a few long-range
connections [8].

The package transportation algorithm is defined as follows.
First, we assign to the whole network a probability p for the
creation of information packages. After that, at each time step
t , we draw a uniformly distributed random number in the
interval ranging from 0 to 1 for each node s. If this number
is smaller than p, a package of information is created at node
s. Then, for each new package a target node t is randomly
assigned. In order to mimic real life situations, the nodes (e.g.,
the routers from the Internet) do not have information about
the whole network topology. Therefore, an information holder
node a chooses from its set of neighbors, both short- and
long-range, the neighbor node b that is geographically closer
to t to send the package. Clearly, this algorithm has close
relationship with the greedy algorithm proposed by Kleinberg
utilized to study the problem of efficient navigation of one
package of information in small-world networks [4].

After the next potential holder is chosen, the package is
transmitted or not from node a to node b through a channel
(link) of quality qab [5]. In real life situations, such quality
influences the transmission probability, and it is expected
to depend on the package load of the nodes it connects.
Accordingly, the capacity κa of node a to receive a new
package can be defined as

κa =
{

1 if na = 0,

n
−ξ
a if na = 1, 2, 3, . . . ,

(1)

where na is the number of packages at node a. Thus, one
can define the channel quality as the geometric average qab =√

κaκb [5]. Then, to better understand our simulations, we
write a scaling relation for the channel quality as

qab = (nanb )−ξ/2, (2)

for na > 0 and nb > 0. Assuming qab as the probability of
node a to deliver a package to node b, the average number of
packages delivered from a to b per time unit should scale as
〈nab〉 ∼ n

1−ξ/2
a n

−ξ/2
b [6]. Note that the packages are uniformly

created across the network; therefore, we can assume na ∼ nb.
Consequently,

〈nab〉 ∼ n1−ξ
a . (3)

When ξ < 1, the average number of delivered packages in-
creases with the package load of nodes, and for this reason, the
system is always found to be in a free-flow phase. On the other
hand, if ξ > 1, the average number of delivered packages
decays fast, meaning that nodes fail to deliver the packages,
causing the emergence of a congested phase. It is important to
note that this fact does not mean that congestion phases appear
for all p and ξ > 1, but only that no congestion phase occurs
for ξ < 0. For example, for ξ > 1, there may exist nontrivial
values of p > 0 for which abrupt phase transitions occur,
as reported in literature [6]. Along these lines, the present
model has a clear phase transition from a free-flow phase to a
congested one at ξ = 1. In what follows, we focus our study
at this critical value of ξ for d = 2.
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FIG. 2. Transition to congested phases for different values of α.
In (a) we show the order parameter η as a function of the probability
of creating new packages p. When the network topology favors the
decentralized delivery algorithm, the packages are delivered at a
higher rate than new packages are created, avoiding nodes becoming
overloaded, therefore preventing congestion. This is the case for
α = 0, 1, and 2, where the transition occurs for higher values of p. As
depicted in (b), the critical threshold pc marks a maximum value on
the response susceptibility χ . Here, we use L = 128 with T = 104

for each value of α and simulation time equal to 105.

III. RESULTS AND DISCUSSION

A. Transition from free phases to congested phases

For ξ = 1, we expect to have both free flow and congestion
phases, depending of the probability p. Therefore, we start
our analysis by defining and computing the order parameter η

given by

η(p) = lim
t→∞

1

pL2

〈�N〉
�t

, (4)

where pL2 is the average number of packages created per
time step and �N is the number of undelivered packages
navigating the network at time windows of duration �t . At
stationary states (t → ∞), the average 〈�N〉 is related to the
rate of creating packages and the rate of delivering packages
per time step, and therefore it depends only on p at large
t , since �N will be proportional to the duration of the time
windows �t [5,7].

As depicted in Fig. 2(a), the analysis of the order parameter
η allows us to define the critical probability of creating new
packages, pc, characterizing a typical second-order phase
transition between congested and free phases [5–7]. For small
values of p, 〈�N〉 = 0 at the stationary state, resulting on free
phases, meaning that the rate of creating packages is smaller

than the rate of delivering packages. As p increases, the rate
of creating packages also increases, till it reaches the critical
threshold pc, where the rate of created packages is equal to
the supported rate of delivering packages. Beyond this critical
threshold, the value of 〈�N〉 increases with t , resulting in
values for η > 0, marking the existence of a congested phase.

Interestingly, pc presents a nontrivial behavior with α on
Kleinberg networks, as depicted in Fig. 2(a). Specifically,
when α > 0, the critical threshold slightly increases (α = 1
and 2), showing that in this range of α the networks are more
resilient to the creation of information packages. However,
for larger values of the exponent α, α = 3 and 4, the critical
threshold drastically decreases, leading to networks more
prone to congestion.

B. Behavior of the critical threshold

Next, we investigate the behavior of pc. Second-order
phase transitions are expected to be dominated by larger
fluctuations of the order parameter close to their critical
threshold [29]. Thus, in order to compute pc with precision, it
is convenient to define a macroscopic susceptibility function
χ (p) as

χ (p) = lim
T →∞

T ση(T ), (5)

where ση(T ) is the standard deviation of the order parameter
computed in many time windows of width T . Hence, in
order to compute χ (p), it is necessary to have quite a long
simulation time for one single realization. In the context of
critical phenomena, such a function is sensitive to fluctuations
of the order parameter diverging as the control parameter
approaches its critical value [29]. As shown in Fig. 2(b),
χ (p) presents a maximum at nontrivial values of p for
different value of α. Accordingly, we identify these values
as pc [5,7].

In order to determine how the exponent α affects the
network’s resilience to congestion, we study the dependence
of the critical point pc on the linear size L for different
values of α. Figure 3(a) shows the estimated values of pc

as a function of the exponent α for three different system
sizes. In accordance with the results for η(p) and χ (p), the
critical point pc presents similar behavior with respect to α.
As presented in Fig. 2, pc increases with α for 0 < α < 2.
However, it decreases for 2 < α < 4, and finally saturates and
reaches its lower values for α > 4.

The way in which pc scales with L, however, follows
rather different behaviors, depending of the values of α. As
presented in the main plot of Fig. 3(b), our results suggest
that the critical point pc follows a scaling law with size L

following a power-law function, pc ∼ L−γ . This power-law
behavior provides an important piece of information about
our model: as the system size increases, and consequently the
distance between source nodes and target nodes also increases
in average, more packages are navigating the network at a
given time step. This makes larger networks more susceptible
to congestion, since the expected number of packages occu-
pying a node increases. For the case of mobility patterns in
cities, this result agrees with the allometric relations between
the city population and the total traffic delay [30] and traffic
accidents [31]. Moreover, the different values of the scaling
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FIG. 3. Behavior of the critical point pc. In panel (a) we show the
critical probability pc as a function of the exponent α. As the system
size L increases, the packages take longer to be delivered, causing the
increase of �N . As a consequence of that, the transition to congested
phases occurs for even smaller values of pc. However, independently
of the value of L, the critical probability always presents a maximum
as α approaches the value of α = 2. The critical probabilities follow
a power-law behavior, pc ∼ L−γ , as presented in the main plot of (b).
The values of the exponent γ resulting from a least-square fitting to
the data are presented in the inset, where a nonmonotonic behavior
can be clearly observed. Here, we use L = 25 with T = 104 for each
value of α and simulation time equal to 105.

exponent γ suggest that, for a given system size L, there are
values of α that generate networks more robust to package
transportation.

We extract more information about this scaling by per-
forming extensive simulations for different values of α and
very long realizations for different system sizes. In each case,
the critical point pc is estimated by the computation of the
susceptibility χ (p). The inset in Fig. 3(b) shows the values of
the exponent γ as a function of exponent α. As one can see, as
α increases, γ slightly decreases from γ = 0.6(9), at α = 0,
to close to γ = 0.6(1), when α approaches the dimension of
the underlying network, α = 2. Here, we obtain the minimum
value of γ for αmin = 1.7, where γ = 0.6(0). For 2 < α < 4,
the value of the exponent γ sharply increases. For the range
4 < α < 10, the values of γ increases very slowly. We
found the values of γ = 0.9(3) for α = 4 and γ = 1.0(3)
for α = 10.

The nonmonotonic behavior of γ can be better understood
by the analysis of the single-package navigation case. For

this case, under decentralized algorithms, similar behavior
was found in the same topology for the scaling of the ex-
pected delivery time [4,12,13,17]. Precisely, the value of the
exponent α that optimizes the delivery time of a package
in two dimensions is αopt = 2, where the expected delivery
time scales logarithmically with L. For α different from the
underlying network dimension d, the expected delivery time
has a power-law behavior, Lx [12,13]. In this situation, the
value α = d is a transient point, since x = (d − α)/(d + 1 −
α) for α < d while x = α − d for α > d. We believe that
the different value found for the minimum, αmin = 1.7, results
from the small network sizes used due to the long simulation
time necessary for the computation of χ (p). Hence, we con-
jecture that this optimal value, αopt = 2, would help in making
the transportation network more resilient to higher package
production rates.

C. Divergence of expected delivery time

Now, we focus our attention on the divergence of the
expected delivery time. To do this, we analyze the behavior of
the power spectrum of N (t ) defined as the Fourier transform
S(f ) = F{N (t )}, where f is the frequency associated with
package delivery. In Fig. 4(a), we show S as a function
of f for different values of the rescaled control parameter
ε = |p − pc|/pc in the free phase, p < pc, with α = 0. As
depicted, the power spectrum S has the form of a Lorentzian
function given by

S = I

1 +
(

f

fc

)2 , (6)

where the intensity I is the maximum value of S, and fc

is a characteristic frequency. The intensity parameter I is
associated with the width of the Lorentzian function. On the
other hand, the characteristic frequency fc is closely related
to the average time of delivering a package τ ∼ 1/fc. As one
can see in Fig. 4(a), as ε decreases, the width of the plateau
marking the value of I also decreases, and at the limit ε → 0
the power spectrum must scale as 1/f 2. This is a signature of
the divergence of the average expected delivery time, leading
to fc → 0 as ε → 0, since τ ∼ ε−z [6].

To better analyze the divergence of τ close to the transition,
we compute the values of the exponent z through the analysis
of I as a function of ε. As ε → 0, it is expected that I ∼ ε−ζ .
Moreover, the exponent z, describing the divergence of the
expected delivery time, must be related to ζ by the equation
z = ζ/2 [6]. In Fig. 4(b), we show the values of I , collected
from the nonlinear curve fitting of S using Eq. (6), as a
function of ε in a log-log fashion. For α = 0, 1, and 2, we
found ζ = 2.2(0), 2.3(3), and 2.6(0), respectively. For α = 3
and 4, the behavior of I differs from such scaling as ε → 0.
Due to the Lorentzian profile, as p approaches its critical
value pc, the width of the Lorentzian function diminishes,
since S ∼ 1/f 2 at this limit, resulting on an overestimation
of I . Thus, in order to estimate ζ , we use the range of ε

where the power-law behavior of I holds. By doing this, we
found ζ = 2.9(1) and 3.0(9) for α = 3 and 4, respectively.
Therefore, since τ ∼ ε−ζ/2, the monotonic increase of ζ with
α leads to the conclusion that τ diverges faster for higher
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FIG. 4. (a) Power spectrum of S as a function of f for α = 0,
and for the free phase, p < pc. As one can see, for all values of
the rescaled control parameter ε, S has the form of a Lorentzian
function given by Eq. (6). The values of ε increase from the top
to the bottom. Therefore, the curves at the top are closer to the
critical value pc. Provided there is Lorentzian behavior, one expects
a power-law decay of S for larger values of f , as shown by the
dashed line with slope −2. (b) Intensity I as a function of the order
parameter ε obtained from the nonlinear curve fitting of S using
Eq. (6), for different values of α in the free phase. The plot suggests
that I ∼ ε−ζ . For α = 3 and 4, the estimated values of I deviates
from this behavior when the system approaches the transition at the
lower values of ε. The solid lines are the fitting results using I ∼ ε−ζ

in the ranges of ε where such power-law behavior holds. Each power
spectrum is obtained through an average of 100 realizations, with
L = 32 and simulation time equal to 105.

values of α as the system approaches the transition point. The
results for ζ and the resilience to congestion with system size
(see Fig. 3) lead to a better compromise for transportation
conditions attained when α ≈ 2. Therefore, based on previous
results reported in the literature [4,10,12,13,16,18,23–26], we
conjecture that the optimal condition for the navigation of
multiple packages on spatially embedded networks is obtained
when α = d, where d is the dimension of the underlying
network.

Interestingly, the scaling relations I = I0ε
−ζ and fc =

f0ε
ζ/2 allow us to write Eq. (6) in the more general form

S ′ = ε−ζ S(f εζ/2). (7)

As depicted in Figs. 5(a)–5(e), all data for Sεζ as a function
of f ε−ζ/2 collapse into a unique behavior for all values of α.
If one uses the values obtained for I0 and f0 [see Fig. 5(f)],
the rescaling of the plot axes shows that, regardless of the
topological details of the network defined by α, all simu-
lation data collapse into a universal curve described by the
Lorentzian

L = 1

1 + F 2
, (8)

where F = (f/f0)ε−ζ/2 and L = S ′/I0. Since the addition of
shortcuts changes the effective dimension of the network [27],
we believe that this Lorentzian behavior must hold for any net-
work topology, such as one-dimensional and two-dimensional
lattices, as well as the Cayley tree [6].

IV. CONCLUSIONS

In order to reveal the role of network topology on the
transport of information packages, we studied the dynamics of
a simple and general model of transportation networks on spa-
tially embedded networks. By assuming additional long-range
connections added to a two dimensional square lattice follow-
ing a power-law distribution P (rij ) ∼ r−α

ij , we found a limit
for the total amount of information packages flowing through
the network characterized by a critical probability of creating
new packages pc. Our results show that pc is described by a
power law of the network linear size, pc ∼ L−γ , as has been
found in other topologies [7]. Remarkably, due to the char-
acteristics of the network model used, γ presents a nontrivial
dependence on the topological parameter α. Specifically, γ

has a minimum for αmin = 1.7, meaning that, in this case, the
network is more resilient to the creation of new information
packages. Since the transportation algorithm makes use only
of local knowledge of the network geography, this robust-
ness condition coincides with the small-world regime of the
network [10]. Moreover, it is close to the optimal navigation
condition for a single package in two dimensions, αopt = 2.
Therefore, the spatial peculiarities of the network play a major
role on the robustness of multiple package transportation. In
other words, when optimizing the resilience of information
exchange on transportation networks, one should take into
account not only the protocol adopted, but also look for hints
provided by the analysis of its geographical properties. These
results leads us to conjecture that the optimal navigation of
multiple packages in spatially embedded networks is attained
when αopt = d, in the same way as in the optimal navigation
of single packages [4,10,12,13,16,18,23–26].

In addition, beyond the robustness of transportation net-
works, we studied their critical behavior by analyzing the
power spectrum of the total number of packages as a function
of time. When p < pc, these spectra are described by a
Lorentzian function, and saturate at a characteristic value I .
In contrast, when p approaches pc, the power spectra present
a power-law behavior with exponent −2. Considering the
characteristic saturation value I and its power-law behavior
described by the exponent ζ , we were able to show that the
power spectra collapse into a universal Lorentzian function,
regardless of the topological details of the networks and
their embedding dimension. These power spectra provide the

032306-5



DA SILVA, REIS, ARAÚJO, AND ANDRADE JR. PHYSICAL REVIEW E 98, 032306 (2018)

10
-6

10
-4

10
-2

10
0

10
2

f - /2

10
3

10
6

10
9

S

10
-6

10
-4

10
-2

10
0

f

10
9

10
12

S

-2

(d)

 = 3

10
-4

10
-2

10
0

10
2

f - /2

10
-6

10
-4

10
-2

10
0

f

10
9

10
12

S

-2

(b)

 = 1
10

3

10
6

10
9

S

10
-6

10
-4

10
-2

10
0

10
2

f - /2

10
-6

10
-4

10
-2

10
0

f

10
9

10
12

S

-2

(e)

10
3

10
6

10
9

S

10
-6

10
-4

10
-2

10
0

10
2

f - /2

1 0
-6

10
-4

10
-2

10
0

f

10
9

10
12

S

-2

(c)

 = 2
10

3

10
6

10
9

S

10
-4

10
-2

10
0

10
2

10

10
-6

10
-4

10
-2

10
0

(f)

 = 4

(f/f0)
- /2

 = 0
 = 1
 = 2
 = 3

/I
S

0

f 
10

-4
10

-2
10

0
10

2

- /2

10
3

10
6

10
9

S

10
-6

10
-4

10
-2

f

10
9

10
12

S

-2

(a)

 = 0

10

4

FIG. 5. Data collapse of the power spectrum S for different values of the control parameter ε and (a) α = 0, (b) α = 1, (c) α = 2, (d)
α = 3, and (e) α = 4. We use ζ = 2.2(0), 2.3(3), 2.6(0), 2.9(1), and 3.0(9) for α = 0, 1, 2, 3, and 4, respectively. These values were obtained
from a least-squares fitting to the data presented in Fig. 4(b). The inset in each plot shows the original data for the power spectrum S obtained
from our simulations. (f) When the plot axes are scaled using Sεζ /I0 and (f/f0)ε−ζ/2, all data presented in panels (a)–(e) collapse into the
universal Lorentzian function L. Each power spectrum is obtained through an average of 100 realizations, with L = 32 and simulation time
equal to 105.

divergence of relevant quantities for practical purposes, such
as the average time to deliver a package and the number of
packages navigating the network. We expect that the modeling
approach and results presented here could be useful in further

studies on the multiple package navigation problem in differ-
ent network topologies, which might lead to significant im-
provements in the ever-present package delivering processes
occurring in real transportation networks.
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