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Synchronization in time-varying complex dynamical systems has been explored in a variety of different
coupling topologies during the last two decades. In most of the previous cases, the basic time-varying coupling
topologies were considered to be a single interaction between the nodes or in a monolayer configuration, although
in many real situations the types of interactions are more than one or in the form of multilayer. In this work, we
study the synchronization in multiplex neuronal network, which evolves with time, and each layer consists of
more than one interaction function. Specifically, we consider a neuronal hypernetwork at each layer in which
neurons are communicated with each other via electrical and chemical synapses simultaneously and indepen-
dently. The network corresponding to the electrical gap junctional coupling form a small-world network while
the connection associated with the chemical synaptic interaction forms a unidirectional random network. Then
intralayer connections are allowed to switch stochastically over time with a characteristic rewiring frequency,
whereas interlayer connections via electrical synapses are time invariant. We explore the intralayer and interlayer
neuronal synchrony in such network and analytically derive the necessary stability conditions for synchrony us-
ing master stability function approach, and excellently match with our numerical findings. Interestingly, we find
that the higher frequency of switching links in the intralayer enhances both intralayer and interlayer synchrony
and conferring larger windows of synchrony. We also analyze the robustness of these synchronization states
with respect to initial conditions using the basin stability framework. Furthermore we find that rapidly changing
networks take much less time to reach synchronization state. Lastly, we inspect the dynamical robustness of
interlayer synchronization against stochastic demultiplexing of each replica, with analytical justification.
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I. INTRODUCTION

The research on complex networks provides a good tool
for better understanding the universal properties and vari-
ous collective features, which appear through the interaction
among the large number of dynamical units, ranging from
biological systems to technological and social systems. Dif-
ferent types of interactions appear due to the depending on
their nature of coupling mechanisms. The combination of
different connection types and underlying network structures
play a crucial role for proper functioning of the connecting
unit. From the dynamical point of view, different types of
interaction schemes can be figured out into various classes of
network architectures.

The different class of network structures can be organized
in a single network in which each class of networks effects the
other networks and such architecture is named a multilayered
network [1–3]. Generally, the multilayer network structure
possesses two types of interactions, one is intralayer and
another is interlayer interaction. The first type is defined as the
interaction of nodes within the same layer, while the second
type established the link between the nodes, which are located
in different layers. It may consist of more than two different
layers where the interaction within each layer may differ from
other layers as well as layer-layer connections. When the
layers are composed with the same number of nodes and the
connection between the same nodes from the different layer
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are preserved, then the multilayered structures are termed as
a multiplex network, where a given node in a layer is only
connected to its counterpart nodes in the rest of the layers.
The multilayered networks are assisted to better understand
the various types of social interactions, from physical to online
level. For instance, mobility networks [4] where each isolated
unit may be served through the different types of transports,
spreading of epidemic process, and social network [5] in
which the people from one community are tied to and interact
with the other communities by various types of relations,
subway network [6], air transportation network [7], neuronal
network [8,9], and also several real-world systems [1,2], all
are captured in multilayered structure. In the neurosciences,
how the functional brain activities are connected to their
underlying interacting structural connectivity is a big issue.
In the multilayer formation, such connection type may be
suitably described by considering the one layer as structural
connectivity layer and other is functional interaction layer
[10]. Various types of natural phenomena, such as epidemic
spreading [11–14], percolation [15,16] and diffusion process
[17], evolutionary games [18], and controllability [19] were
studied in the multilayered framework and have been found to
be significantly different results from the monolayer case.

Recently, the study on hypernetworks [20], containing
two or more network topologies corresponding to different
interaction schemes, is an interesting topic of research. In this
network, different interaction types are fully independent, i.e.,
the presence of connection between two nodes does not affect
the other types of interactions between them. The interneu-
ronal communication type is one of the best representations of
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such network where the interaction between neurons happens
through two different synapses, namely, the electrical gap
junction and chemical synapses [21]. Another example, the
coordination motion of the shoal of fish [22,23], where the
coordination of each individual not only depends on their
visual perception, but also they have chemical sensing in
order to locate their mates with respect to the shoal. Also, the
concept of interdependent network [25], networks of networks
[24], and computer communication networks [25] all belong
to the class of hypernetwork where the set of interacting nodes
are connected to the other set of nodes with different modes
for normal functioning.

Various types of nontrivial collective features emerge due
to the presence of interactions in two or more dynamical
systems, among them synchronization phenomenon is the
more studied subject during the last few decades for its
many applications in several physical and engineered systems
[26]. In multilayered network structure, different types of
synchronization have been investigated such as interlayer and
intralayer synchronization [27–30], cluster synchronization
[31], chimera states [32], and explosive synchronization [33].
In all these cases, the network structures are assumed to
be time static, i.e., the underlying network architectures do
not evolve with respect to time. However, in many realis-
tic situations where the connection types are not stagnant,
rather they are dynamic, structured, and time variant, which
means the interactional arrangements are appeared, disap-
peared, or rewired at different time scale [34]. For example,
the social interaction network [35], where the relationship
between two communities or individuals are continuously
created, changed, or terminated over time, person-to-person
communication [36], temporal progression of the links in
various neuronal and artificial networks [37]; all are time-
varying features. In this context, significant attention has been
devoted in the last decade for investigation of synchronization
property in time-varying complex network [38–42], since the
time-varying concept has lots of applications in many fields
of science, which include power transmission systems [43],
disease spreading [44], consensus problem [45], process of
chemotaxis [46], protein-protein interaction, gene regulatory
network [47], and functional brain network [48], etc.

Brain function depends on the communication between the
neurons where the interaction happens through the electrical
and chemical synapses. The coexistence of these two different
types of synaptic communications were observed in most of
the nervous systems and worked independently [21]. Such
types of interactions’ arrangement among the neurons are well
understood by constructing a neuronal hypernetwork [49] and
the time-varying interactions are inherent features of such
hypernetwork as both the synaptic interactions change over
time. The neuronal synchrony is one of the fundamental issues
in the field of brain dynamics, since there are several types
of abnormal patterns of synchronization in the brain, which
are associated with the various types of brain disordered
diseases [50] such as Parkinson’s, Alzheimer’s, epilepsy, and
schizophrenia. Also in many neuronal systems such as human
thalamocortical area, mammalian visual cortex, stomatogas-
tric ganglion of the spiny lobster, and human cardiorespira-
tory system [51], the patterns of neuronal synchrony were
detected experimentally [52–54]. Due to the presence of a

large number of neurons in the neuronal network, the neurons
are always performing with a subnetwork in which they are
highly lumped and clotted within these subensembles and also
several subpopulations are connected through different types
of interactions for various biological processes. In this con-
text, multilayered network structure is the best representation
of such type of neuronal interaction. In most of the previous
works, networks were investigated by considering either elec-
trical or chemical synaptic communication in the monolayer
case with static interaction scheme. The neuronal synchrony
in the time-varying hypernetwork in the multilayer formation
has not yet been studied, which has a great importance in the
field of neuroscience and deserves significant attention.

Motivated by the above discussion, we study the complete
neuronal synchrony in the time-varying multilayer hyper-
network where each node of the network is modeled with
Hindmarsh-Rose (HR) neuronal oscillator. Here, we consider
that each layer consists of two types of synaptic communi-
cations, bidirectional electrical coupling and unidirectional
chemical synaptic interaction in which the connection as-
sociated with the electrical communication forms a small-
world network while the links corresponding to the chemical
synaptic interaction form a unidirectional random network.
All the intralayer connections are allowed to vary with respect
to time with a characteristic frequency, whereas interlayer
connections are modeled by electrical coupling, which is
stagnant. We analytically derive the necessary condition for
intralayer and interlayer synchronization through master sta-
bility function (MSF) [55] approach and confirmed by numer-
ical investigations. To quantify the stability of synchronized
states in a global scene, we use the basin stability [30,56,57]
framework.

The rest of the paper is organized in the following way.
Section II introduces the general mathematical framework
for temporal multilayer hypernetwork model. In Sec. III, we
describe both types of synaptic communications and neuronal
hypernetwork with multilayer architecture by taking the HR
neuronal model. Section IV is devoted to our numerical re-
sults on intralayer and interlayer synchronization and global
stability analysis using basin stability framework. The linear
stability analysis of both synchronize states are analyzed in
Sec. V by MSF approach. Section VI provides the robustness
of the interlayer synchronization state under stochastic demul-
tiplexing. Conclusions of our entire findings are in Sec. VII.

II. MATHEMATICAL MODEL OF THE TIME-VARYING
MULTIPLEX HYPERNETWORK

We start by considering two layers where each layer is
composed of N nodes of d-dimensional identical dynamical
systems. The states of the layers are represented by the vectors
X = {x1, x2, . . . , xN } and Y = {y1, y2, . . . , yN } with xi , yi ∈
Rd for i = 1, 2, . . . , N . In our prescribed model, each of
the layers interact through M different tiers of connections,
which represent different kinds of couplings among them-
selves. The nodes for a particular layer interacting in each
tier are precisely the same elements. Then, the dynamics of
the entire system in layer-1 and layer-2 can be described,
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respectively, as

ẋi = F (xi ) +
M∑

α=1

εα

N∑
j=1

A (1,α)
ij (t ) Gα (xi , xj ) + η H (yi , xi ),

and

ẏi = F (yi ) +
M∑

α=1

εα

N∑
j=1

A (2,α)
ij (t ) Gα (yi , yj ) + η H (xi , yi ),

(1)

where F : Rd → Rd and H : Rd → Rd are the continuously
differentiable functions, which represent the autonomous evo-
lution of the uncoupled oscillator and output vectorial func-
tion between the layers, respectively. Here Gα : Rd → Rd

be the vector field of the output vectorial function within
the layers for the tier α. Parameter εα is the intralayer cou-
pling strength for the tier α and η is the interlayer coupling
strength. These intralayer network configurations are time
varying, encoded by the adjacency matrices A (l,α)(t ) for
the tier α in the lth layer (l = 1, 2 and α = 1, 2, . . . , M ).
At time t , A (l,α)

ij (t ) = 1 if ith node and j th node of layer
l are connected in the tier α and zero otherwise. Consider
L (l,α)(t ) to be the corresponding zero-row sum Laplacian
matrices obtained from the adjacent matrices A (l,α)(t ) with
the diagonal elements L (l,α)

ii (t ) are the sum of the corre-
sponding rows of A (l,α)(t ) and the off-diagonal elements are
the negative of the corresponding elements in the adjacent
matrices, i.e., L (l,α)

i,j (t ) = −A (l,α)
i,j (t )(i �= j ) and L (l,α)

i,i (t ) =∑N
j=1 A (l,α)

i,j (t ). Now the links of each tier in both the layers
vary over time through the rewiring of each link in the entire
network stochastically and independently, with characteristic
rewiring frequency f , while the interlayer connections are
preserved over time. Particularly, at any time t , given time
step dt , we rewire each layer by constructing a new network
independently, with probability f dt . Large f indicates very
fast switching of links, implying that the networks change
rapidly, whereas small f implies that the two layers are almost
static, as the links have a very low probability of change.

A schematic diagram illustrating time-varying interactions
in such a multilayer hypernetwork of N = 10 nodes and M =
2 different tiers of connections is shown in Fig. 1. By con-
sidering the distinct nature of the interactions, we construct
two different types of interacting layers, one unidirectional
random network and the other one is a bidirectional small-
world network. The green solid line shows a small-world net-
work of average degree 4 corresponding to the bidirectional
coupling and the dashed red line shows the unidirectional
random network with constant in-degree 1. The coexistence of
these two networks constitutes a hypernetwork, with each tier
generally having different links and representing a different
kind of interaction. At two particular instances of time t = t1
and t = t2, the different interaction patterns, as reflected by
different links, are shown in Figs. 1(a) and 1(b), respectively.

III. TIME-VARYING MULTILAYER NEURAL
HYPERNETWORK

A neuronal network is one of the most important examples
of time-varying hypernetwork, as neurons interact through

FIG. 1. Schematic representation of time-varying connections in
a hypernetwork at two different time instants: (a) t = t1 and (b)
t = t2. Each node is denoted by a gray solid circle. The red dashed
lines denote unidirectional interactions, and forms a random network
with constant in-degree 1, while the green solid lines represent
bidirectional coupling, forming a small-world network of average
degree 4.

both electrical gap junctions, as well as chemical synapses,
and these links are known to vary with time. These two
types of synapses are elementary functional connections,
which enable information to be swiftly transferred between
neurons. Through a chemical synapse, a signal is conveyed
chemically via neurotransmitter molecules such as Acetyl-
choline, gamma-Aminobutyric acid, dopamine, and serotonin,
packaged inside small synaptic vesicles. In a probabilistic
manner, neurotransmitters are released by exocytosis from a
presynaptic neuron into the synaptic cleft. These molecules
then bind to specific postsynaptic receptors in adjacent postsy-
naptic neuronal cells, leading to a unidirectional transmission
of information. In this case the distance between presynaptic
and postsynaptic ends may be large, approximately 20–40
nm [58] [see the schematic diagram Fig. 2(a)]. In electrical
synapses, the cytoplasm of adjacent cells is directly connected
by a channel called a gap junction. So direct bidirectional
passage of electric current, calcium, cyclic AMP, and inositol-
1,4,5 trisphosphate occurs between the presynaptic end and
the postsynaptic neuron [cf. Fig. 2(b)]. Here the membranes of
the presynaptic and postsynaptic neurons are extremely close
to each other, approximately 3.5 nm [59]. So the electrical
synapses are naturally bidirectional, and the signal transmis-
sion speed is much faster than chemical transmission. The
electrical signal propagates through the membrane potential
in two adjacent neuronal cells by making a gap junctional
channel and it occurs bidirectionally. In the case of chemical
synaptic interaction, the information passes chemically from
presynaptic cell to postsynaptic cell and it always happens in
a unidirectional manner. Both these types of synapses coexist
during information processing in most of the nervous systems.
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FIG. 2. Different types of neuronal interactions through elec-
trical and chemical synapses. (a) Chemical transmission occurring
unidirectionally through chemical synapses. (b) Bidirectional elec-
trical communication intercedes by the electrical gap junction. (c)
Mixed synaptic interaction: coexistence of both electric and chemical
synaptic interactions eventuate between two neurons. (d) Heterosy-
naptic interaction: one neuron simultaneously coupled with two other
neurons, one through the chemical synapse and the other through gap
junction channel.

For interneuronal communication both types of coupling do
not necessarily act simultaneously, rather they operate in-
dependently [21] over time. The coexistence of chemical
and electrical synapses among two neurons is known as a
mixed synapse [cf. Fig. 2(c)], while heterosynaptic interaction
of a neuron is connected with two different neurons one
by chemical synapse and another by electrical synapse [cf.
Fig. 2(d)].

To represent the mathematical form of the above hypernet-
work, we consider two layers where each layer is composed
of N Hindmarsh-Rose neurons connected simultaneously by
electrical and chemical synapses. Dynamics of the entire
network can be described by

Layer-1:

ẋ1i = y1i − ax3
1i + bx2

1i − z1i + I − ε

N∑
j=1

L (1,e)
ij (t ) x1j

+ gc

kc

(vs − x1i )
N∑

j=1

A (1,c)
ij (t ) �(x1j ) + η(x2i − x1i ),

ẏ1i = c − dx2
1i − y1i ,

ż1i = r (s(x1i − x0) − z1i )

and Layer-2:

ẋ2i = y2i − ax3
2i + bx2

2i − z2i + I − ε

N∑
j=1

L (2,e)
ij (t ) x2j

+ gc

kc

(vs − x2i )
N∑

j=1

A (2,c)
ij (t ) �(x2j ) + η(x1i − x2i ),

ẏ2i = c − dx2
2i − y2i ,

ż2i = r (s(x2i − x0) − z2i ), (2)

where i = 1, 2, . . . , N is the neuron index, N is the total
number of neurons in each layer. Here xli is the membrane
potential of the ith neuron, yli is associated with the fast cur-
rent (for example Na+ or K+), zli with the slow Ca2+ current
in the lth layer (l = 1, 2) and r modulates the slow dynamics
of the system. The control parameters gc and ε are strengths
of the chemical and electrical synapses, respectively, which
determine how much the information will distribute between
neurons through the different coupling channels. η is the inter-
layer electrical coupling strength, that allows one to tune the
strength of the interactions between two layers. We fix the pa-
rameters a = 1, b = 3, c = 1, d = 5, r = 0.005, s = 4, x0 =
−1.6, I = 3.25, for which an isolated system exhibits multi-
time-scale chaotic spiking-bursting behavior of the membrane
potential. With the above set of parameter values, the isolated
system is monostable, i.e., there is no other multiple asymp-
totic states. The mechanism for the activation and deactivation
of nonlinear chemical synapse is modeled by the sigmoidal
input-output function �(x) = 1

1+exp[−λ(x−�s )] . The synaptic re-
versal potential is vs , and for vs > xli (t ), the synaptic current
has depolarizing effect making the synapse excitatory, and for
vs < xli (t ), the synaptic current has a hyperpolarizing effect
making the synapse inhibitory. For the chosen set of system
parameters, |xli (t )| < 2, thus (xli (t ) − vs ) is always negative
if vs = 2, and so that the chemical synapse is excitatory
forever, i.e., when the presynaptic neuron spikes, it induces the
postsynaptic neuron to spike. The parameter λ determines the
slope of the sigmoidal function and �s is the synaptic firing
threshold. Hereafter �s = −0.25 and λ = 10.

Here one neuron in a layer is connected to its replica
on the other layer by the electrical synapse, i.e., the inter-
layer connection is diffusive type. The intralayer couplings
are considered through two types of interactions: bidirec-
tional electrical gap junctional coupling and the unidirectional
chemical ion transportation through chemical synapses. The
connectivity of the chemical synapses of layer l is considered
to be a unidirectional random network, described by the
adjacency matrix A (l,c)(t ), for l = 1, 2. The corresponding
Laplacian matrices are given by L (l,c)

ij (t ) = −A (l,c)
ij (t ) for

i �= j , and L (l,c)
ii (t ) = ∑N

j=1 A (l,c)
ij (t ). The diverse in-degree

of the nodes does not yield complete synchronization due
to the nonexistence of the synchronization manifold. So to
exist the intralayer synchronization, we have to consider
identical in-degree kc of each node in each layer for all time.
Here in-degree kc reflects the number of signals each neuron
receives through chemical synapses. So, L (l,c)

ii (t ) = kc and
A(l,c)(t ) are always nonsymmetric matrices. The Laplacian
matrices corresponding to the electrical synaptic network
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in the two layers are L (1,e)(t ) and L (2,e)(t ), respectively,
which deliberated as small-world networks. These networks
are constructed by following the procedure proposed by Watts
and Strogatz [60]. We commence with N nodes with regular
ring coupling topology, where each node is connected to its
2k nearest neighbors, k on each side. Then with probability p,
we reconnect all the initial edges to vertices chosen uniformly
at random from distant nodes, with dual edges impermissible.
So the average degree of the electrical synaptic networks is
ke = 2k.

In addition, we consider the time-varying electrical and
chemical synaptic connections for both the layers, which form
a time-varying neuronal hypernetwork. The intralayer links in
both the layers vary over time through the rewiring of each
link in the entire network stochastically and independently,
with an average frequency f , while the interlayer connections
are preserved over time. At any time t , two networks corre-
sponding to two synapses coexist in each layer and hence the
four networks rewire with probability f dt , where dt is the
integration time step. For the sake of simplicity, we take the
rewiring frequency of the four networks in both the layers
are identical. Particularly, at any time t , given time step dt ,
we rewire each network by constructing a new network, inde-
pendently, with probability f dt . Now the successively created
new networks will be statistically equivalent with the previous
one due to choice of fixed identical parameters ke, kc, and p

throughout the procedure. Large f implies that the networks
change rapidly, whereas for small f the links have very low
probability of change. In the unidirectional random network,
if there is an edge from the node i to j , it will be rewired
from node i to any another node excluding j with probability
(1 − kc

N−1 )f dt . In the small-world network, if there is an edge
between two distant neighbors, it is rewired to one of the
nearest-neighbor nodes with probability (1 − p)f dt , and if
there is an edge between two nearest neighbors, then with
probability pf dt , it is replaced by a connection to a randomly
chosen distant node.

In the following section, our main aim is to explore the
effect of network’s parameters, namely rewiring frequency
f through which each link in each layer is rewired stochas-
tically and independently, interlayer and intralayer coupling
strengths η and ε on the emergence of intralayer and interlayer
synchronization states. For that, we fix the local dynamics
of each HR neuronal node in the chaotic spiking-bursting
state. We integrate the Eq. (2) using fourth-order Runge-Kutta
method with integration time step dt = 0.01 and random
but fixed initial conditions from the phase space volume
[−1.5, 2.0] × [−0.7, 1.0] × [2.9, 3.4]. To draw the following
parameter regions, we have taken 20 network realizations at
each point.

IV. NUMERICAL RESULTS AND GLOBAL
STABILITY ANALYSIS

In the proposed multiplex hypernetwork (2), two distinc-
tive forms of synchronization emerge, namely, intralayer and
interlayer synchronization. Interlayer synchronization occurs
when each unit in a given layer evolves synchronously with
its replicas, regardless of whether or not it is synchronized
with the other units of the same layer. Contrariwise, intralayer

FIG. 3. Left and right panels represent the intralayer and inter-
layer synchronization error in (ε, η) parameter space with different
values of f = 0.001 (top row), f = 0.1 (middle row), f = 10.0
(bottom row). Other parameters: gc = ε

2 , ke = 6, kc = 5, and p =
0.125.

synchronization is defined as the state of synchrony in each of
the individual layer, irrespective of the synchrony between the
replica nodes. Here we delve into the intralayer and interlayer
synchronization state of the temporal complex hypernetwork
by changing the network parameters. The intralayer and inter-
layer synchronization errors are, respectively, defined as

Eintra = lim
T →∞

1

T

∫ T

0

N∑
j=2

‖xj (t ) − x1(t )‖
N − 1

dt, (3)

and

Einter = lim
T →∞

1

T

∫ T

0

N∑
j=1

‖yi (t ) − xi (t )‖
N

dt, (4)

where ‖ · ‖ denotes Euclidean norm and T is the long-time
interval. To calculate the intralayer and interlayer synchro-
nization errors, the time interval is taken over 1×105 units
after an initial transient of 2×105 units.

The synchronization and desynchronization region are
plotted in (ε, η) plane in Fig. 3 by taking several rewiring fre-
quencies where color bar shows the variation of synchroniza-
tion error. Here, chemical synaptic interaction strength gc = ε

2
is systematically varied with fixed average in-degree of the
chemical synaptic network kc = 5, SW probability p = 0.125
and average degree of the electrical synaptic network ke = 6.
The intralayer synchronization regions are shown by simulta-
neously varying ε and η in the left panel [Figs. 3(a)–3(c)]. For
lower rewiring frequency f = 0.001, that is, when intralayer
connections are almost static over time, higher intracoupling
strength is needed for complete neuronal synchrony in both
the layers in presence or absence of interlayer connection,
result illustrated in Fig. 3(a). When the rewiring frequency is
increased at f = 0.1 and f = 10.0, then more enhancement
of neuronal synchrony is observed (black region), presented
in Figs. 3(b) and 3(c), respectively. Interestingly, in presence
of interlayer interaction, mixed types of intralayer synchro-
nization transition are observed, that is, first enhancement
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of intralayer synchronization appears up to certain values of
η = 0.4. Beyond that interlayer coupling strength, deenhance-
ment of intralayer synchronization happens up to a critical
threshold of ε and this scenarios is occurred in all exemplify
values of the rewiring frequency f [Figs. 3(a)–3(c)]. Also
note that, after certain value of η = 0.55, interlayer interaction
does not have any effect on intralayer synchronization and
is fully determined of ε for all respective values of rewiring
frequencies. The right panel of Fig. 3 represents the interlayer
synchronization regions in (ε, η) plane for different values
of rewiring frequencies f . For lower switching case, i.e.,
f = 0.001, the interlayer synchronization region (black color)
is small [Fig. 3(d)] compared to the slightly higher switching
case as f = 0.1 in Fig. 3(e). Further rapid changing in the
networks for f = 10.0 leads to the larger windows of the
interlayer neuronal synchrony, depicted in Fig. 3(f). So from
this figure, it is clear that more rapid changing of the networks
leads to the enhancement of the both types of the neuronal
synchrony while the presence of the interlayer connection
induced the mixed type (enhancement and deenhancement)
of intralayer synchronization transitions in the time-varying
multilayer hypernetwork.

Now we analyze the global stability of these intralayer
and interlayer synchronization states using basin stability
(BS) measurement, which is a global nonlinear measure of
stability that can be freely employ to any high-dimensional
complex systems. It focuses on the volume of the basin
of attraction, and a robust gadget for quantifying different
multistable states. The algorithm for numerically computing
BS is a highly practicable calculating algorithm with a cross-
validation procedure. Our considered individual HR system
is monostable in the local dynamics, so the destruction of
the stable synchronization state due to bistability (or multista-
bility) [61] will not be effected here. We integrate the entire
system with sufficiently large number T of initial conditions,
which are drawn randomly from the phase space volume. Let
finally M be the number of initial conditions for which the
desired synchronous state arrive. Then our desired BS for
synchronous state is approximately M

T
. Clearly the value of

BS is bounded in the range [0,1]. The completely unstable
synchronized state corresponds to BS = 0. When BS = 1,
the entire basin of attraction will support the synchronized
state, suggesting a globally stable state. Whereas 0 < BS < 1
corresponds to the probability of getting the synchronous state
form any randomly chosen initial state from the phase vol-
ume. Here we sample the phase space volume [−1.5, 2.0] ×
[−7.0, 1.0] × [2.9, 3.4], and the final state is considered as
synchronized if the corresponding synchronization error is
less than 10−6, otherwise the system is in a desynchronized
state.

The BS of the complete neuronal synchronization is shown
in (ε, η) parameter plane in Fig. 4 corresponding to Fig. 3.
The color bar denotes the variation of BS for the quantifi-
cation of global stability of the synchronization state. The
deep blue color indicating the BS value as BS ∼ 0, which
implies that choosing any random initial condition from the
prescribed basin volume always produces the incoherent dy-
namics. The deep red color corresponds to the BS ∼ 1, which
means that the full basin volume support gives rise to the
synchronized states. The intermediate colors of the bar are

FIG. 4. Basin stability of intralayer (left) and interlayer (right)
synchronization in (ε, η) parameter space with different values of
f = 0.001 (top), f = 0.1 (middle), f = 10.0 (bottom). Other pa-
rameters are same as in Fig. 3.

associated with 0 < BS < 1, signifying the coexistence of
the desynchronized and synchronized states. The left and
right panels of the Fig. 4 represent the BS of the intralayer
and interlayer synchronized states with different rewiring fre-
quencies at f = 0.001, 0.01, and 10.0. The enhancement of
the synchronization region in (ε, η) parameter space with the
increasing values of the rewiring frequencies is also reflected
in Fig. 4 as same as in Fig. 3. Interestingly, we observe that
the coexistence of synchronized and desynchronized regions
is decreases with the increasing values of the rewiring fre-
quencies and for sufficient fast switched links, there is a sharp
transition from incoherent to coherent state.

Now we explore the intralayer and interlayer synchronized
states in (f, ε) parameter space with systematically varying
the chemical synaptic strength gc = ε

2 and interlayer inter-
action strength η = ε

3 . Intralayer and interlayer synchronized
regions (black color region) are shown in left and right panels
of Fig. 5, respectively, for two different average degrees ke =
4 (top row) and ke = 6 (bottom row) of the SW network
corresponding to the electrical synaptic communication in
the neuronal hypernetwork. The desynchronized and syn-
chronized regions are characterized through the synchroniza-
tion error whose variations are shown in the color bar. The
larger synchronization area is observed for higher average
degree of SW network of intra- as well as interlayer syn-
chronization states. The higher rewiring frequencies give rise
to the enhancement of both types of synchronization states.
In intralayer synchronization case, discontinuous transition is
observed. In Fig. 3, we observe first enhancement and then
deenhancement of the intralayer synchronization because of
the parameter η. Now along η = ε

3 line it first enters to the
synchronization region initially from the incoherent region,
again the desynchronization region, and finally the synchro-
nization region. This leads to the discontinuous transition of
the intralayer synchronization in (f, ε) space. In Fig. 5(a) for
f ∈ (0.16, 30) after the occurrence of intralayer coherence it

032305-6



SYNCHRONIZATION IN A TEMPORAL MULTIPLEX … PHYSICAL REVIEW E 98, 032305 (2018)

FIG. 5. Left and right panels represent the synchronization error
of intralayer and interlayer synchronization in (f, ε) parameter space
with gc = ε

2 and η = ε

3 . Here kc = 5 and p = 0.125 (ke = 4 for top
panel, ke = 6 for bottom panel).

again goes to incoherent as ε increases after further increased
values enhancement of intralayer synchrony again happens.
For higher average degree ke = 6, this type of discontinuous
transition occurs in a very narrow region for f ∈ (0.005, 0.04)
in Fig. 5(b). For interlayer synchrony, strictly monotonic
enhancement is observed in (f, ε) plane for ke = 4, but it is
almost homogeneous for ke = 6. The scenarios are displayed
in Figs. 5(c) and 5(d).

The robustness of initial conditions on the complete neu-
ronal synchronized state is investigated using the BS frame-
work in Fig. 6 by simultaneous changes of parameters f

and ε for two fixed values of degree of electric synaptic
network ke. The BS of intralayer and interlayer synchronized
states are plotted in Figs. 6(a) and 6(b) and Figs. 6(c) and

FIG. 6. The BS measure of intralayer (left) and interlayer (right)
synchronization in (f, ε) parameter space for ke = 4 (top) and ke = 6
(bottom). The other parameters are same as in Fig. 5.

FIG. 7. (Left) intralayer and (right) interlayer synchronization
error in (f, p) parameter plane. For ke = 4, ε = 1.8 (top row),
ke = 6, ε = 1.8 (middle row), ke = 6, ε = 2.7 (bottom row). Other
parameters: kc = 5, gc = ε

2 , and η = ε

3 .

6(d) respectively, with average degree of SW network ke = 4
(top panel) and ke = 6 (bottom panel) with fixed chemical
in-degree kc = 5. Here BS characterized the larger average
degree leads to the more enlargement of the synchronized
regions in (f, ε) parameter space. In the region of mixed
type transition in (f, ε) plane of intralayer synchronized
states, BS measure indicates the larger coexistence region
of synchronized and desynchronized states while a narrow
coexistence region is observed in interlayer synchronous state.
Also note that the more coexistence regions of synchronized
and desynchronized states are appeared in slow switching case
while rapid changing links in the network bring on to the sharp
transition from desynchronous to synchronous state, which
reflects on the both types of synchronization states.

Next we investigate the emergence of synchrony in the
neuronal hypernetwork with the interplay of SW probability p

and rewiring frequency f . The smaller values of p represent
the regular network topology, near unit value they represent
the complete random network, and for certain intermediate
values of p, it denotes the SW topology. Here we show the
effect of continuous variation of the p and f on intralayer and
interlayer synchronization states. Color bar of Fig. 7 shows the
variation of the synchronized error by simultaneous changing
of f and p. The black region of Figs. 7(a)–7(c) and 7(d)–7(f)
represent the intra- and interlayer synchronization states in
(f, p) parameter plane. Top, middle, and bottom panels for
different average degree of SW network and synaptic strength
as ke = 4, ε = 1.8; ke = 6, ε = 1.8, and ke = 6, ε = 2.7, re-
spectively. Average in-degree of chemical synaptic network
kc = 5 is fixed, chemical synaptic interaction gc = ε

2 and in-
terlayer coupling strength η = ε

3 . The intralayer and interlayer
synchronization regions are smaller when the hypernetwork
possesses lower average degree of the electrical synaptic
network and the results are shown in Figs. 7(a) and 7(d),
respectively. However, when average degree of SW network
is increased at ke = 6, then larger synchronous area in (f, p)
plane are seen in Figs. 7(b) and 7(e) compare to Figs. 7(a) and
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FIG. 8. BS for intralayer (left) and interlayer (right) synchroniza-
tion in (f, p) parameter space corresponding to Fig. 7.

7(d). Further increasing the value of synaptic strength ε = 2.7
with ke = 6, the critical threshold of p reduced and more
larger synchronous region are observed in (f, p) parameter
space in Figs. 7(c) and 7(f) for both intralayer and interlayer
synchronization states. From this figure it is clearly shown
that rapid switching of the intralayer links leads to the en-
hancement of the SW probability p for synchronization states
irrespective values of the average degree of the bidirectional
electrical communication network. Also, the transition from
intralayer and interlayer synchronization states in (f, p) plane
is nearly horizontal, which implies that p is independently
determine the synchronization states for certain ke and kc.

Using BS measurement, the global stability of the in-
tralayer and interlayer synchronization states are explored
in Fig. 8. For most of these figures, there are a multistable
regions of synchronized-desynchronized state in the transition
area, especially for lower rewiring frequency. In Figs. 8(d)
and 8(e) there is a significantly more bistable area beyond the
transition point.

We evaluate average synchronization time by taking 50
network realizations. The intralayer and interlayer synchro-
nization time are shown in Figs. 9(a) and 9(b), respectively,
changing the synaptic strength for several representative val-
ues of rewiring frequency f . For f = 0.001 and f = 0.01,

there is a mixed type behavior for intralayer synchronization
time. It increases for some intermediate range of ε, in the
exterior of that range it decreases. This happens due to the
emergence of coexistence of synchronous and desynchronous
state for those values of ε in Fig. 6(b). Also note that the
higher rewiring frequency trends to minimize the synchrony
time against the lower coupling values. Whereas interlayer
synchronization time strictly decreases by increasing synap-
tic strength ε. From this figure (Fig. 9), it is clear that
rapidly switching intralayer connections lead to decreases in
the intralayer synchronization time by enhancing the criti-
cal synaptic coupling threshold. Interestingly, intralayer syn-
chronization time increases with respect to higher coupling
values, after reaching the minimal synchrony time. However,
interlayer synchronization time is minimum at lower coupling
strength for fast switching links in the network and for suffi-
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FIG. 9. (a) Intralayer and (b) interlayer synchronization time
with respect to ε for different rewiring frequencies. Other parame-
ters: gc = ε

2 , η = ε

3 , ke = 6, kc = 5, p = 0.125.

ciently large coupling values, interlayer synchronization time
is saturated irrespective values of the rewiring frequencies.

V. LINEAR STABILITY ANALYSIS

This section is devoted to the linear stability analysis for
the intralayer and interlayer synchronization in the multiplex
hypernetwork given by Eq. (2) using MSF approach. It was
reported that a time-varying network could be approximated
by the time-averaged network for sufficiently fast rewiring.
So we approximate our time-varying multilayer hypernet-
work by a time-averaged static multilayer hypernetwork, for
sufficiently fast switching. Then there exists a constant T
(sufficiently large) such that

L̄ (lc,le) = 1

T

∫ t+T

t

L (lc,le)(τ ) dτ, l = 1, 2, (5)

with the time-averaged network and the rapidly varying net-
work yielding the same synchronization transition, for suffi-
ciently fast switching [62]. Since the topologies of the chem-
ical synaptic networks in both the layers are same, their time-
averaged adjacency matrices will be identical. For the similar
reason, the time-averaged adjacency matrices of the electrical
synaptic networks for both the layers will be also identical. Let

¯A (c) be the time-averaged adjacency matrix of the chemical
synaptic networks for the two layers, with

∑N
j=1

¯A (c)
ij =

d
(c)
i (i = 1, 2, . . . , N ) and D̄ (c) = diag(d (c)

1 , d
(c)
2 , . . . , d

(c)
N );

L̄ (c) & L̄ (e), respectively, be the time-averaged Laplacian
matrices of the network for chemical and electrical synapses
for both layers, with respective set of eigenvalues {0 =
γ

(c)
1 , γ

(c)
2 , . . . , γ

(c)
N } and {0 = γ

(e)
1 , γ

(e)
2 , . . . , γ

(e)
N }. Also con-

sider that V (c) be the matrix of eigenvector of L̄ (c). The
entries of L̄ (c) for both the layers are

L̄ (c)
ij = − kc

N − 1
for i �= j,

= kc for i = j. (6)
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Also the entities of time-averaged networks of the electrical synapses are

L̄ (e)
ij = −(1 − p) for i − k � j � i + k and i �= j,

= ke for i = j,

= − ke p

N − ke − 1
otherwise. (7)

Taking time-averaged electrical and chemical synaptic networks for both the layers, the time-averaged system corresponding to
the system (2) can be written as

ẋ1i = f (x1i , y1i , z1i ) − ε

N∑
j=1

L̄ (e)
ij x1j + gc

kc

(vs − x1i )
N∑

j=1

¯A (c)
ij �(x2j ) + η(x2i − x1i ),

ẏ1i = g(x1i , y1i , z1i ), ż1i = h(x1i , y1i , z1i ),

ẋ2i = f (x2i , y2i , z2i ) − ε

N∑
j=1

L̄ (e)
ij x2j + gc

kc

(vs − x2i )
N∑

j=1

¯A (c)
ij �(x1j ) + η(x1i − x2i ),

ẏ2i = g(x2i , y2i , z2i ), ż2i = h(x2i , y2i , z2i ), (8)

where, i = 1, 2, . . . , N ; f (x, y, z) = y − ax3 + bx2 − z + I, g(x, y, z) = c − dx2 − y, h(x, y, z) = r[s(x − x0) − z]. No-
tice that each neuronal oscillators are identical in the time-averaged network and coupled by bidirectional electrical and
chemical synapses. The evolution and interaction dynamics all are continuous and differentiable. So the stability criterion
for synchronization can be found through the MSF formalism, which gives the necessary condition for the stability of the
synchronous solution.

A. Intralayer synchronization

When intralayer synchronization occurs, let layer-1 evolve synchronously with synchronization manifold
[x1i (t ), y1i (t ), z1i (t )] = [x1(t ), y1(t ), z1(t )] and for layer-2, [x2i (t ), y2i (t ), z2i (t )] = [x2(t ), y2(t ), z2(t )], ∀ i = 1, 2, . . . , N .
Now, at time t , perturb the ith node of layer-1 from its synchronization manifold with small amount [δx1i (t ), δy1i (t ), δz1i (t )]
and the amount of perturbation for the ith node of layer-2 is [δx2i (t ), δy2i (t ), δz2i (t )]. So, the current state of the ith node for
each layer can be written as

Layer-1: (x1i , y1i , z1i ) = (x1 + δx1i , y1 + δy1i , z1 + δz1i ),
Layer-2: (x2i , y2i , z2i ) = (x2 + δx2i , y2 + δy2i , z2 + δz2i ).
Now considering small perturbations and expanding around the intralayer synchronous solution up to first order, we obtain

linearized equations of the error systems for layer-1 as

˙δx1i = fx (x1, y1, z1)δx1i + fy (x1, y1, z1)δy1i + fz(x1, y1, z1)δz1i − ε

N∑
j=1

L̄ (e)
ij δx1j − gc�(x1)δx1i

+ gc

kc

(vs − x1)�x (x1)

⎡
⎣kcδx1i −

N∑
j=1

L̄ (c)
ij δx1j

⎤
⎦ + η(δx2i − δx1i ),

˙δy1i = gx (x1, y1, z1)δx1i + gy (x1, y1, z1)δy1i + gz(x1, y1, z1)δz1i ,

˙δz1i = hx (x1, y1, z1)δx1i + hy (x1, y1, z1)δy1i + hz(x1, y1, z1)δz1i , i = 1, 2, . . . , N, (9)

where fx (x, y) denotes the partial derivative with respect to x. Similarly, the linearized equations for layer-2 are

˙δx2i = fx (x2, y2, z2)δx2i + fy (x2, y2, z2)δy2i + fz(x2, y2, z2)δz2i − ε

N∑
j=1

L̄ (e)
ij δx2j − gc�(x2)δx2i

+ gc

kc

(vs − x2)�x (x2)

⎡
⎣kcδx2i −

N∑
j=1

L̄ (c)
ij δx2j

⎤
⎦ + η(δx1i − δx2i ),

˙δy2i = gx (x2, y2, z2)δx2i + gy (x2, y2, z2)δy2i + gz(x2, y2, z2)δz2i ,

˙δz2i = hx (x2, y2, z2)δx2i + hy (x2, y2, z2)δy2i + hz(x2, y2, z2)δz2i , ı = 1, 2, . . . , N. (10)

Now, three out of 3N Lyapunov exponents of system (9) are parallel to the intralayer synchronization manifolds of layer-1,
remaining 3N − 3 Lyapunov exponents are directed to the transverse direction to it. On the other hand, layer-1 will be
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synchronized if all the Lyapunov exponents transverse to the synchronize manifolds are negative, also similarly for layer-2. So
to find out 3N − 3 transverse Lyapunov exponents of systems (9) and (10) for layer-1 and layer-2, we project the perturbation
vectors (δx1i , δy1i , δz1i ) and (δx2i , δy2i , δz2i ) on to the Laplacian eigenvector V (c) of the chemical synaptic layer. Since the
Laplacian eigenvectors are always form a basis of RN , the choice of the layer is fully arbitrary. Then under this transformation,

(δxli , δyli , δzli ) transforms to (
∑N

j=1 V
(c)
ij δxlj ,

∑N
j=1 V

(c)
ij δylj ,

∑N
j=1 V

(c)
ij δzlj ) = (ξ (x)

li , ξ
(y)
li , ξ

(z)
li ) (say), l = 1, 2. Clearly this

transformation is a linear transformation and since Rank (V (c) ) = N , it is an isomorphism. Hence when (δxli , δyli , δzli ) becomes
(0,0,0), (ξ (x)

li , ξ
(y)
li , ξ

(z)
li ) will also becomes (0,0,0), and vice versa, for l = 1, 2. So the original error system (9) is equivalent to

the transformed error system. Now, the dynamics of ξ
(x)
1i becomes

ξ̇
(x)
1i = fx (x1, y1, z1)ξ (x)

1i + fy (x1, y1, z1)ξ (y)
1i + fz(x1, y1, z1)ξ (z)

1i − ε

N∑
j=1

V
(c)
ij

N∑
k=1

L̄ (e)
jk δx1k − gc�(x1)ξ (x)

1i

+gc(vs − x1)�x (x1)ξ (x)
1i − gc

kc

(vs − x1)�x (x1)
N∑

j=1

V
(c)
ij

N∑
k=1

L̄ (c)
jk δx1k + η

(
ξ

(x)
2i − ξ

(x)
1i

)
. (11)

Each column V
(c)
i is an eigenvector of L̄ (c), i.e.,

∑N
j=1 L̄ (c)

ij V
(c)
ij = γ

(c)
i V

(c)
i . So,

N∑
j=1

V
(c)
ij

N∑
k=1

L̄ (c)
jk δx1k =

N∑
k=1

N∑
j=1

V
(c)
ij L̄ (c)

kj δx1k =
N∑

k=1

γ
(c)
i V

(c)
ik δx1k = γ

(c)
i ξ

(x)
1i . (12)

Let V (e) be the matrix of eigenvectors of L̄ (e), the average Laplacian of the electrical synaptic network, with eigenvalue
diagonal matrix D(e). Since Laplacian matrices are real symmetric, their eigenvectors are orthonormal, i.e., V (c,e)V (c,e)tr = IN .
This gives

L̄ (e)V (e) = D(e)V (e) ⇒ L̄ (e) = V (e)D(e)V (e)tr ⇒ L̄ (e)
ij =

N∑
r=1

V
(e)
ri γ (e)

r V
(e)
rj . (13)

Now (ξ (x)
11 , ξ

(x)
12 , . . . , ξ

(x)
1N )tr = V (c)tr (δx11, δx12, . . . , δx1N )tr gives the projection of the synchronization error as

δx1i =
N∑

k=1

V
(c)
ki ξ

(x)
1k , (14)

where tr denotes the transpose of a matrix. Consider U (e) = V (e)tr V (c), which adequately captures the association of the
Laplacian eigenvectors of the electrical synaptic layer with the chemical synapses, and gives U

(e)
ij = ∑N

k=1 V
(e)
ik V

(c)
jk .

Then,

N∑
j=1

V
(c)
ij

N∑
k=1

L̄ (e)
jk δx1k =

N∑
j=1

N∑
k=1

N∑
r=1

V
(c)
ij V

(e)
rj γ (e)

r V
(e)
rk δx1k =

N∑
j=1

N∑
k=1

N∑
r=1

N∑
l=1

V
(c)
ij V

(e)
rj γ (e)

r V
(e)
rk V

(c)
lk ξ

(x)
1l

=
N∑

r=1

N∑
l=1

⎡
⎣

⎧⎨
⎩

N∑
j=1

V
(c)
ij V

(e)
rj

⎫⎬
⎭γ (e)

r

{
N∑

k=1

V
(e)
rk V

(c)
lk

}
ξ

(x)
1l

⎤
⎦ =

N∑
r=1

N∑
l=1

{
U

(e)
ri γ (e)

r U
(e)
rl

}
ξ

(x)
1l . (15)

Using the results of (12), (14), and (15) in (11),

ξ̇
(x)
1i = fx (x1, y1, z1)ξ (x)

1i + fy (x1, y1, z1)ξ (y)
1i + fz(x1, y1, z1)ξ (z)

1i − ε

N∑
r=1

N∑
l=1

{
U

(e)
ri γ (e)

r U
(e)
rl

}
ξ

(x)
1l − gc�(x1)ξ (x)

1i

+ gc(vs − x1)�x (x1)ξ (x)
1i − gc

kc

(vs − x1)�x (x1)γ (c)
i ξ

(x)
1i + η

(
ξ

(x)
2i − ξ

(x)
1i

)
. (16)

Now, the two Laplacian matrices commute with each other so they can be simultaneously diagonalizable by a common basis of
eigenvectors, i.e., V (e) = V (c). So U (e) = V (e)tr V (c) = V (e)tr V (e) = IN ⇒ U

(e)
ij = δi

j . In this case,
∑N

j=1 V
(c)
ij

∑N
k=1 L̄ (e)

jk δx1k =∑N
r=1

∑N
l=1{δr

i γ
(e)
r δi

l }ξ (x)
1l = γ

(e)
i ξ

(x)
1i . Then projecting the error vector (δx1i , δy1i , δz1i ) on to the basis of eigenvectors, we can
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write the master stability equation (MSE) for intralayer synchronization of layer-1 as

ξ̇
(x)
1i = fx (x1, y1, z1)ξ (x)

1i + fy (x1, y1, z1)ξ (y)
1i + fz(x1, y1, z1)ξ (z)

1i − εγ
(e)
i ξ

(x)
1i − gc�(x1)ξ (x)

1i

+ gc(vs − x1)�x (x1)ξ (x)
1i − gc

kc

(vs − x1)�x (x1)γ (c)
i ξ

(x)
1i + η

(
ξ

(x)
2i − ξ

(x)
1i

)
,

ξ̇
(y)
1i = gx (x1, y1, z1)ξ (x)

1i + gy (x1, y1, z1)ξ (y)
1i + gz(x1, y1, z1)ξ (z)

1i ,

ξ̇
(z)
1i = hx (x1, y1, z1)ξ (x)

1i + hy (x1, y1, z1)ξ (y)
1i + hz(x1, y1, z1)ξ (z)

1i , i = 1, 2, . . . , N. (17)

Similarly, the projecting MSE for layer-2,

ξ̇
(x)
2i = fx (x2, y2, z2)ξ (x)

2i + fy (x2, y2, z2)ξ (y)
2i + fz(x2, y2, z2)ξ (z)

2i − εγ
(e)
i ξ

(x)
2i − gc�(x2)ξ (x)

2i

+ gc(vs − x2)�x (x2)ξ (x)
2i − gc

kc

(vs − x2)�x (x2)γ (c)
i ξ

(x)
2i + η

(
ξ

(x)
1i − ξ

(x)
2i

)
,

ξ̇
(y)
2i = gx (x2, y2, z2)ξ (x)

2i + gy (x2, y2, z2)ξ (y)
2i + gz(x2, y2, z2)ξ (z)

2i ,

ξ̇
(z)
2i = hx (x2, y2, z2)ξ (x)

2i + hy (x2, y2, z2)ξ (y)
2i + hz(x2, y2, z2)ξ (z)

2i , i = 1, 2, . . . , N. (18)

The direction of the eigenvector corresponding to the zero eigenvalue is parallel to the synchronization manifold, and the other
eigenvectors are for transverse directions. The partial derivatives are evaluated as fx = −3ax2 + 2bx, fy = 1, fz = −1; gx =
−2dx, gy = −1, gz = 0, and hx = rs, hy = 0, hz = −r . Finally our required MSEs transverse to the synchronization manifold
can be written as for layer-1

ξ̇
(x)
1i = ( − 3ax2

1 + 2bx1
)
ξ

(x)
1i + ξ

(y)
1i − ξ

(z)
1i − gcξ

(x)
1i

1 + exp(λ(�s − x1))
− εγ

(e)
i ξ

(x)
1i

+ gc

kc

(vs − x1)
λ exp(λ(�s − x1))

[1 + exp(λ(�s − x1))]2

[
kcξ

(x)
1i − γ

(c)
i ξ

(x)
1i

] + η
(
ξ

(x)
2i − ξ

(x)
1i

)
,

ξ̇
(y)
1i = −2dxξ

(x)
1i − ξ

(y)
1i , ξ̇

(z)
1i = r

(
sξ

(x)
1i − ξ

(z)
1i

)
, (19)

and for layer-2

ξ̇
(x)
2i = ( − 3ax2

2 + 2bx2
)
ξ

(x)
2i + ξ

(y)
2i − ξ

(z)
2i − gcξ

(x)
2i

1 + exp(λ(�s − x2))
− εγ

(e)
i ξ

(x)
2i

+ gc

kc

(vs − x2)
λ exp(λ(�s − x2))

[1 + exp(λ(�s − x2))]2

[
kcξ

(x)
2i − γ

(c)
i ξ

(x)
2i

] + η
(
ξ

(x)
1i − ξ

(x)
2i

)
,

ξ̇
(y)
2i = −2dxξ

(x)
2i − ξ

(y)
2i , ξ̇

(z)
2i = r

(
sξ

(x)
2i − ξ

(z)
2i

)
, (20)

where i = 2, 3, . . . , N . Here (x1, y1, z1) and (x2, y2, z2) be
the state variables of the synchronization manifolds for layer-1
and layer-2 respectively, obeying

ẋ1 = y1 − ax3
1 + bx2

1 − z1 + I + gc(vs − x1)�(x1)

+ η(x2 − x1),

ẏ1 = c − dx2
1 − y1,

ż1 = r (s(x1 − x0) − z1),

ẋ2 = y2 − ax3
2 + bx2

2 − z2 + I + gc(vs − x2)�(x2)

+ η(x1 − x2),

ẏ2 = c − dx2
2 − y2,

ż2 = r (s(x2 − x0) − z2). (21)

Now we calculate all the Lyapunov exponents of the two
three-dimensional systems (19) and (20) separately for i =
2, 3, . . . , N . So corresponding to both the layers, we will get
two different sets of (3N − 3) Lyapunov exponents for the

transverse direction of the intralayer synchronization man-
ifold. From these two different sets, let λ(1)

max and λ(2)
max be

the maximum Lyapunov exponents of layer-1 and layer-2,
respectively. Now intralayer synchronization resembles with
the complete synchronization of both the two layers. So
it will happen if and only if λ(1)

max < 0 and λ(2)
max < 0, i.e.,

MLEintra = max{λ(1)
max, λ

(2)
max} is negative. The variation of

MLEintra by changing the synaptic strengths ε, gc, and η

gives the necessary and sufficient conditions for the stability
of the intralayer synchronization state when MLEintra < 0.
The maximum Lyapunov exponent (MLE) of the MSE given
in Eqs. (19), (20), as a function of the parameters ε, gc,
and η, gives the necessary condition for the stability of the
intralayer synchronous solution. For the synchronous state
to be stable, perturbation along all the transverse directions
must die out, i.e., the values of MLE should be negative.
When the least stable transversal mode associated with the
eigenvalue λ2 is stable, all other transversal modes remain
stable.
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B. Interlayer synchronization

Now when the interlayer synchronization occurs, let [δxi (t ), δyi (t ), δzi (t )] be the small perturbation of the ith replica from it’s
synchronization manifold [δx1i (t ), δy1i (t ), δz1i (t )] = [δx2i (t ), δy2i (t ), δz2i (t )] = [δxi (t ), δyi (t ), δzi (t )], for i = 1, 2, . . . , N .
The dynamics of the error vector (δxi, δyi, δzi ) near the interlayer synchronization manifold becomes,

˙δxi = ẋ2i − ẋ1i = fx (xi, yi, zi )δxi + fy (xi, yi, zi )δyi + fz(xi, yi, zi )δzi − ε

N∑
j=1

L̄ (e)
ij δxj

+ gc

kc

(vs − xi )
N∑

j=1

¯A (c)
ij �x (xj )δxj − gc

kc

δxi

N∑
j=1

¯A (c)
ij �(xj ) − 2ηδxi,

˙δyi = ẏ2i − ẏ1i = gx (xi, yi, zi )δxi + gy (xi, yi, zi )δyi + gz(xi, yi, zi )δzi,

˙δzi = ż2i − ż1i = hx (xi, yi, zi )δxi + hy (xi, yi, zi )δyi + hz(xi, yi, zi )δzi, i = 1, 2, . . . , N. (22)

Putting the values of all partial derivatives, we get our
required MSF for interlayer synchronization as

˙δxi = (−3ax2
i + 2bxi

)
δxi + δyi − δzi − ε

N∑
j=1

L̄ (e)
ij δxj

+ gc

kc

(vs − xi )
N∑

j=1

¯A (c)
ij

λ exp[λ(�s − xj )]

{1 + exp[λ(�s − xj )]}2
δxj

− gc

kc

δxi

N∑
j=1

¯A (c)
ij

1

1 + exp[λ(�s − xj )]
− 2η δxi,

˙δyi = −2dxi δxi − δyi,

˙δzi = rs δxi − r δzi, i = 1, 2, . . . , N, (23)

where the dynamics of the synchronized manifolds are

ẋ1i = yi − ax3
i + bx2

i − zi + I − ε

N∑
j=1

L̄ (e)
ij xj

+ gc

kc

(vs − xi )
N∑

j=1

¯A (c)
ij

1

1 + exp[λ(�s − xj )]
,

ẏ1i = c − dx2
i − yi,

ż1i = r[s(xi − x0) − zi], i = 1, 2, . . . , N. (24)

For η = 0 the Eq. (23) becomes the linearized equation of the
interlayer synchronization manifold (24). Then the directions
of all 3N Lyapunov exponents of (23) are parallel to the
synchronized manifold. For η �= 0, all the directions of 3N

Lyapunov exponents will be transverse to it. The maximum
of those exponents (MLEinter) as a function of the parame-
ters (ε, gc, η) actually gives the necessary condition for the
stability of the interlayer synchronous solution. Whenever
MLEinter < 0, the perturbations transverse to that manifold
die out, and all the replicas will evolves in unison. So the
negativity of the maximum Lyapunov exponent MLEinter

obtained from linearized Eq. (23) together with nonlinear
Eq. (24) implies stable interlayer synchronization.

The variation of MLEintra is shown in the color-coded
Fig. 10(a) for the parameter space of (ε, η) by systematically
varying chemical synaptic strength as gc = ε

2 and fixed ke =
6, kc = 5, p = 0.125. Here the color bar shows the variation

of MLE in which the colors below 0 value signifies the
synchronous state. The region of the zero synchronization
error [cf. Fig. 3(c)] of the dynamic network for f ∈ [10, 100]
and the region of negative MLE for the time-averaged network
are almost identical. So the linear stability analysis of the
time-averaged network exactly matches with the numerical
results of time-varying networks for sufficiently fast switch-
ing (with f � 10). The bottom figure of Fig. 10 represents
the variation of MLEinter for interlayer synchronization with
respect to the interlayer coupling strength η for fixed values
of intralayer coupling strength ε = 1.8, and gc = ε

2 . Here
MSF crosses the 0 line at η ≈ 0.58, which is excellently
matched with the higher rewiring frequency for the interlayer
synchronization case [cf. Fig. 3(f)]. Here the results for both
types of synchronization states are drawn analytically using
linear stability analysis and perfectly match with the results of
numerical simulations.

VI. DYNAMICAL ROBUSTNESS: STOCHASTIC
DEMULTIPLEXING

This section is devoted for the robustness of interlayer
synchronization against the stochastic demultiplexing of the

FIG. 10. Variation of maximum Lyapunov exponent correspond-
ing to (a) intralayer synchronization for parameter space (ε, η) and
(b) interlayer synchronization with respect to the parameter η where
ε = 1.8. Other parameters: gc = ε

2 , ke = 6, kc = 5, and p = 0.125.
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FIG. 11. The variation of the interlayer synchronization error
Einter with respect to the demultiplexed probability pdm (a) with
fixed ε = 2.0, gc = ε

2 and different intralayer rewiring frequencies f ,
(b) with fixed f = 1.0 and varied intralayer coupling strength ε, gc.
Other parameters: η = 0.8, N = 200, and p = 0.125.

multiplex network. Previously, the robustness of interlayer
synchronization was investigated under progressive demul-
tiplexing [28,30], which means, starting from a complete
multiplex structure, successive removal of the link between
the multiplexed nodes, until the two layers become completely
disconnected. Here we explore the stochastic demultiplexing
technique, which is defined as the link between any two
replica’s node is removed with a characteristic probability pdm

in each time step. That is, if a multiplex structure of two layers
consist of N interlayer connections then the removal of the
links with probability pdm refers to the Npdm number of links
that are demultiplexed between the layers at that time. In the
next time, we again demultiplex each replica with probability
pdm from the original multiplex network, i.e., when all the
interlayer links are present. So this demultiplexing occurs
stochastically and independently for different time step, this
fact inspire us to coin the term stochastic demultiplexing.
This type of demultiplexed effect is very often in nature and
many biological systems. For instance, the social interaction
between two different populations are created, destroyed, and
rewired over time. In the interneuronal communications, the
interaction patterns between two groups of neurons always
vary with time. From the ecological perspective, the multi-
layer organization is the best way to represent the ecological
network [63]. The different types of interactions among the
various patches are varied with respect to time due to several
ecological processes. There are two probabilities in this case,
namely the probability for rewiring intralayer network and the
probability of demultiplexing replicas.

Figure 11(a) shows the variation of the interlayer synchro-
nization error Einter with respect to the demultiplex probability
pdm by considering the several rewiring frequencies f of the
intralayer interactions and a fixed intracoupling strength
ε = 2.0 and gc = ε

2 . Similarly, keeping fixed rewiring
frequency f = 1.0, and taking various intralayer coupling
strengths ε and gc = ε

2 , the interlayer synchronization error

is drawn in Fig. 11(b). From this figure, it is observed that
for both the cases, the interlayer synchronization persists
up to a certain critical value of pdm = 0.275. This feature
indicates that the robustness of the interlayer synchronization
is quite independent of the temporal variation of the intralayer
connection and intralayer interaction strength in the stochastic
demultiplexing process. This is the sharp contrast with the
previous studied of deterministic demultiplexed effect [30]
that fast switching of the intralayer connection and the
sufficient strong intracoupling strength is favorable to the
interlayer synchronization against the large fraction of
demultiplexed nodes.

Now to analyze this phenomenon mathematically, we
consider the interlayer coupling term of Eq. (1) (third
term) as

η

N∑
j=1

Bij (t )H (xi , yi ), (25)

where η be the interlayer coupling strength, H be the in-
terlayer coupling function and B(t ) is the interlayer adja-
cency matrix determining interlayer coupling topology. Here
Bij (t ) = 1 if the ith node of layer-1 is connected to the j th
node of layer-2 at time t , and 0 otherwise. Here, like the
intralayer adjacency matrix, the diagonal elements of B(t )
may not be 0. In fact for complete multiplex network, B(t ) is
a diagonal matrix with each diagonal term 1. Now pdm is the
probability that there will be no connection between the ith
node of layer-1 and ith node of layer-2 at time instant t . So
1 − pdm is the probability of there will be a link between the
ith replica of the two layers. So the time-averaged interlayer
adjacency matrix B̄ is

B̄ = 1

T

∫ t+T

t

B(τ )dτ

= diag{1 − pdm, 1 − pdm, . . . , 1 − pdm︸ ︷︷ ︸
Ntimes

}. (26)

So the term (25) becomes

η

N∑
j=1

B̄ij (t )H (xi , yi ) = η(1 − pdm)H (xi , yi ). (27)

From above it is clear that the time-averaged system is the
same as the time static complete multiplex network with
effective coupling strength η(1 − pdm).

Now if η = η0 is the critical interlayer coupling strength
for interlayer synchronization, then for the stochastic demul-
tiplex network, the condition of interlayer coherency is

η(1 − pdm) � η0. (28)

For fixed value η = 0.8 and from Fig. 3 interlayer synchrony
appears at the interlayer strength η0 � 0.58. So for stochastic
demultiplexing, the interlayer synchrony sustains if pdm �
1 − η0

η
, i.e., pdm � 0.275, which excellently matches with

our numerical simulation.

VII. CONCLUSIONS

In conclusion, we have investigated the stability of the
intralayer and interlayer neuronal synchronization in a
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mathematical frame work of the multiplex time-varying neu-
ronal hypernetwork. Here each layer of the multiplex structure
presents a hypernetwork, coexistence of two different network
topologies with corresponding two different interaction
functions in the coupled network. Our considered neuronal
hypernetwork structure is modeled through Hindmarsh-Rose
neuron model with two different types of synaptic communi-
cations, namely chemical synaptic interaction and electrical
gap junctional coupling. Since the chemical interaction
happened unidirectionally and electrical interaction is bidi-
rectional, so in our proposed neuronal network, we considered
the network corresponding to the electrical coupling form a
small-world network and chemical interaction is associated
with the unidirectional random network. The links in the
both types of network structures in each layer are allowed to
vary stochastically over time with a characteristic rewiring
frequency f with static interlayer interaction. Through the
linear stability analysis, we analytically derived the necessary
condition of both intralayer and interlayer synchronization
states and have excellent matches with the numerical findings.
We found that rapid switching of the links in intralayer
connection enhanced both the intralayer and interlayer
synchronization. Using the basin stability framework, we
quantify the stability of these two types of synchronous states

in global sense. Further, we estimate the time taken to reach
the intralayer and interlayer synchrony in the time-varying
neuronal network. Finally, we explored the robustness of
the interlayer synchronization state under stochastically
demultiplexing of the replica’s node in the multiplex network.
Interestingly, we observed that this synchronous state is
independent of intralayer rewiring frequency and coupling
strength. So, the temporal variation of each of the layers in
multiplex network has no effect on interlayer synchronization
under stochastic demultiplexing. Our findings are expected
to give a better understanding of several phenomena in
neuronal hypernetworks. The proposed study on neuronal
synchronization using time-varying hypernetwork is closely
related to the epileptic seizures [64] in the brain dynamics. We
believe that there may be some scopes that can help to analyze
the multichannel EEG [65,66] recorded neuronal brain
activity with the nonlinear time series analysis of the neuronal
network.

ACKNOWLEDGMENTS

D.G. was supported by the Department of Science
and Technology, Government of India (Project No.
EMR/2016/001039).

[1] S. Boccaletti, G. Bianconi, R. Criado, C. I. del Genio, J. Gómez-
Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang, and M.
Zanin, Phys. Rep. 544, 1 (2014).

[2] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno,
and M. A. Porter, J. Complex Net. 2, 203 (2014).

[3] G. Bianconi, Multilayer Networks: Structure and Function
(Oxford University Press, Oxford, 2018).

[4] A. Cardillo, J. Gómez-Gardeñes, M. Zanin, M. Romance, D.
Papo, F. del Pozo, and S. Boccaletti, Sci. Rep. 3, 1344 (2013);
A. Halu, S. Mukherjee, and G. Bianconi, Phys. Rev. E 89,
012806 (2014).

[5] M. Szell, R. Lambiotte, and S. Thurner, Proc. Natl. Acad. Sci.
U.S.A. 107, 13636 (2010).

[6] R. Criado, M. Romance, and M. Vela-Pérez, Int. J. Bifurcation
Chaos 20, 877 (2010); R. Criado, B. Hernández-Bermejo, and
M. Romance, ibid. 17, 2289 (2007).

[7] A. Cardillo, M. Zanin, J. Gómez-Gardeñes, M. Romance, A.
García del Amo, and S. Boccaletti, Eur. Phys. J.: Spec. Top.
215, 23 (2013).

[8] B. Bentley, R. Branicky, C. L. Barnes, Y. L. Chew, E. Yemini,
E. T. Bullmore, P. E. Vértes, and W. R. Schafer, PLoS Comput.
Biol. 12, e1005283 (2016).

[9] B. M. Adhikari, A. Prasad, and M. Dhamala, Chaos 21, 023116
(2011).

[10] J. J. Crofts, M. Forrester, and R. D. O’Dea, Europhys. Lett. 116,
18003 (2016).

[11] A. Saumell-Mendiola, M. A. Serrano, and M. Boguñá, Phys.
Rev. E 86, 026106 (2012).

[12] C. Granell, S. Gómez, and A. Arenas, Phys. Rev. Lett. 111,
128701 (2013).

[13] C. Buono, L. G. Alvarez-Zuzek, P. A. Macri, and L. A. Braun-
stein, PLoS One 9, e92200 (2014).

[14] J. Sanz, C.-Y. Xia, S. Meloni, and Y. Moreno, Phys. Rev. X 4,
041005 (2014).

[15] J. Gao, S. V. Buldyrev, H. E. Stanley, and S. Havlin, Nature
Phys. 8, 40 (2012).

[16] G. Bianconi and S. N. Dorogovtsev, Phys. Rev. E 89, 062814
(2014).

[17] S. Gómez, A. Díaz-Guilera, J. Gómez-Gardeñes, C. J. Pérez-
Vicente, Y. Moreno, and A. Arenas, Phys. Rev. Lett. 110,
028701 (2013).

[18] Z. Wang, A. Szolnoki, and M. Perc, J. Theor. Biol. 349, 50
(2014).

[19] G. Menichetti, L. DallAsta, and G. Bianconi, Sci. Rep. 6, 20706
(2016).

[20] F. Sorrentino, New J. Phys. 14, 033035 (2012).
[21] A. E. Pereda, Nature Rev. 15, 250 (2014).
[22] B. L. Partridge and T. J. Pitcher, J. Comput. Phys. 135, 315

(1980).
[23] N. Abaid and M. Porfiri, J. R. Soc. Interface 7, 1441

(2010).
[24] C. Zhou, L. Zemanová, G. Zamora, C. C. Hilgetag, and J.

Kurths, Phys. Rev. Lett. 97, 238103 (2006); New J. Phys. 9,
178 (2007).

[25] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S.
Havlin, Nature (London) 464, 1025 (2010).

[26] A. Pikovsky, J. Kurths, and M. Rosenblum, Synchronization:
A Universal Concept in Nonlinear Sciences, Cambridge Non-
linear Science Series, Book 12 (Cambridge University Press,
Cambridge, 2003).

[27] L. V. Gambuzza, M. Frasca, and J. Gómez-Gardeñes, Europhys.
Lett. 110, 20010 (2015).

[28] R. Sevilla-Escoboza, I. Sendiña-Nadal, I. Leyva, R. Gutiérrez,
J. M. Buldú, and S. Boccaletti, Chaos 26, 065304 (2016).

032305-14

https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1038/srep01344
https://doi.org/10.1038/srep01344
https://doi.org/10.1038/srep01344
https://doi.org/10.1038/srep01344
https://doi.org/10.1103/PhysRevE.89.012806
https://doi.org/10.1103/PhysRevE.89.012806
https://doi.org/10.1103/PhysRevE.89.012806
https://doi.org/10.1103/PhysRevE.89.012806
https://doi.org/10.1073/pnas.1004008107
https://doi.org/10.1073/pnas.1004008107
https://doi.org/10.1073/pnas.1004008107
https://doi.org/10.1073/pnas.1004008107
https://doi.org/10.1142/S0218127410026162
https://doi.org/10.1142/S0218127410026162
https://doi.org/10.1142/S0218127410026162
https://doi.org/10.1142/S0218127410026162
https://doi.org/10.1142/S0218127407018397
https://doi.org/10.1142/S0218127407018397
https://doi.org/10.1142/S0218127407018397
https://doi.org/10.1142/S0218127407018397
https://doi.org/10.1140/epjst/e2013-01712-8
https://doi.org/10.1140/epjst/e2013-01712-8
https://doi.org/10.1140/epjst/e2013-01712-8
https://doi.org/10.1140/epjst/e2013-01712-8
https://doi.org/10.1371/journal.pcbi.1005283
https://doi.org/10.1371/journal.pcbi.1005283
https://doi.org/10.1371/journal.pcbi.1005283
https://doi.org/10.1371/journal.pcbi.1005283
https://doi.org/10.1063/1.3584822
https://doi.org/10.1063/1.3584822
https://doi.org/10.1063/1.3584822
https://doi.org/10.1063/1.3584822
https://doi.org/10.1209/0295-5075/116/18003
https://doi.org/10.1209/0295-5075/116/18003
https://doi.org/10.1209/0295-5075/116/18003
https://doi.org/10.1209/0295-5075/116/18003
https://doi.org/10.1103/PhysRevE.86.026106
https://doi.org/10.1103/PhysRevE.86.026106
https://doi.org/10.1103/PhysRevE.86.026106
https://doi.org/10.1103/PhysRevE.86.026106
https://doi.org/10.1103/PhysRevLett.111.128701
https://doi.org/10.1103/PhysRevLett.111.128701
https://doi.org/10.1103/PhysRevLett.111.128701
https://doi.org/10.1103/PhysRevLett.111.128701
https://doi.org/10.1371/journal.pone.0092200
https://doi.org/10.1371/journal.pone.0092200
https://doi.org/10.1371/journal.pone.0092200
https://doi.org/10.1371/journal.pone.0092200
https://doi.org/10.1103/PhysRevX.4.041005
https://doi.org/10.1103/PhysRevX.4.041005
https://doi.org/10.1103/PhysRevX.4.041005
https://doi.org/10.1103/PhysRevX.4.041005
https://doi.org/10.1038/nphys2180
https://doi.org/10.1038/nphys2180
https://doi.org/10.1038/nphys2180
https://doi.org/10.1038/nphys2180
https://doi.org/10.1103/PhysRevE.89.062814
https://doi.org/10.1103/PhysRevE.89.062814
https://doi.org/10.1103/PhysRevE.89.062814
https://doi.org/10.1103/PhysRevE.89.062814
https://doi.org/10.1103/PhysRevLett.110.028701
https://doi.org/10.1103/PhysRevLett.110.028701
https://doi.org/10.1103/PhysRevLett.110.028701
https://doi.org/10.1103/PhysRevLett.110.028701
https://doi.org/10.1016/j.jtbi.2014.01.037
https://doi.org/10.1016/j.jtbi.2014.01.037
https://doi.org/10.1016/j.jtbi.2014.01.037
https://doi.org/10.1016/j.jtbi.2014.01.037
https://doi.org/10.1038/srep20706
https://doi.org/10.1038/srep20706
https://doi.org/10.1038/srep20706
https://doi.org/10.1038/srep20706
https://doi.org/10.1088/1367-2630/14/3/033035
https://doi.org/10.1088/1367-2630/14/3/033035
https://doi.org/10.1088/1367-2630/14/3/033035
https://doi.org/10.1088/1367-2630/14/3/033035
https://doi.org/10.1038/nrn3708
https://doi.org/10.1038/nrn3708
https://doi.org/10.1038/nrn3708
https://doi.org/10.1038/nrn3708
https://doi.org/10.1007/BF00657647
https://doi.org/10.1007/BF00657647
https://doi.org/10.1007/BF00657647
https://doi.org/10.1007/BF00657647
https://doi.org/10.1098/rsif.2010.0175
https://doi.org/10.1098/rsif.2010.0175
https://doi.org/10.1098/rsif.2010.0175
https://doi.org/10.1098/rsif.2010.0175
https://doi.org/10.1103/PhysRevLett.97.238103
https://doi.org/10.1103/PhysRevLett.97.238103
https://doi.org/10.1103/PhysRevLett.97.238103
https://doi.org/10.1103/PhysRevLett.97.238103
https://doi.org/10.1088/1367-2630/9/6/178
https://doi.org/10.1088/1367-2630/9/6/178
https://doi.org/10.1088/1367-2630/9/6/178
https://doi.org/10.1088/1367-2630/9/6/178
https://doi.org/10.1038/nature08932
https://doi.org/10.1038/nature08932
https://doi.org/10.1038/nature08932
https://doi.org/10.1038/nature08932
https://doi.org/10.1209/0295-5075/110/20010
https://doi.org/10.1209/0295-5075/110/20010
https://doi.org/10.1209/0295-5075/110/20010
https://doi.org/10.1209/0295-5075/110/20010
https://doi.org/10.1063/1.4952967
https://doi.org/10.1063/1.4952967
https://doi.org/10.1063/1.4952967
https://doi.org/10.1063/1.4952967


SYNCHRONIZATION IN A TEMPORAL MULTIPLEX … PHYSICAL REVIEW E 98, 032305 (2018)

[29] I. Leyva, R. Sevilla-Escoboza, I. Sendiña-Nadal, R. Gutiérrez,
J. M. Buldú, and S. Boccaletti, Sci. Rep. 7, 45475 (2017).

[30] S. Rakshit, S. Majhi, B. K. Bera, S. Sinha, and D. Ghosh, Phys.
Rev. E 96, 062308 (2017).

[31] S. Jalan and A. Singh, Europhys. Lett. 113, 30002 (2016).
[32] V. A. Maksimenko, V. V. Makarov, B. K. Bera, D. Ghosh, S. K.

Dana, M. V. Goremyko, N. S. Frolov, A. A. Koronovskii, and
A. E. Hramov, Phys. Rev. E 94, 052205 (2016); S. Majhi, M.
Perc, and D. Ghosh, Sci. Rep. 6, 39033 (2016).

[33] X. Zhang, S. Boccaletti, S. Guan, and Z. Liu, Phys. Rev. Lett.
114, 038701 (2015).

[34] P. Holme and J. Saramäki, Phys. Rep. 519, 97 (2012).
[35] S. Wasserman, and K. Faust, Social Network Analysis: Methods

and Applications (Cambridge University Press, Cambridge,
1994).

[36] J. P. Onnela, J. Saramaki, J. Hyvonen, G. Szabo, D. Lazer, K.
Kaski, J. Kertesz, and A. L. Barabasi, Proc. Natl. Acad. Sci.
U.S.A. 104, 7332 (2007); Y. Wu, C. Zhou, J. Xiao, J. Kurths,
and H. J. Schellnhuber, ibid. 107, 18803 (2010); J. L. Iribarren
and E. Moro, Phys. Rev. Lett. 103, 038702 (2009).

[37] R. Pastor-Satorras and A. Vespignani, Evolution and Structure
of the Internet: A Statistical Physics Approach (Cambridge
University Press, Cambridge, 2004).

[38] I. V. Belykh, V. N. Belykh, and M. Hasler, Physica D 195, 188
(2004).

[39] V. Kohar, P. Ji, A. Choudhary, S. Sinha, and J. Kurths, Phys.
Rev. E 90, 022812 (2014).

[40] J. Lü and G. Chen, IEEE Trans. Autom. Control 50, 841
(2005).

[41] M. Frasca, A. Buscarino, A. Rizzo, L. Fortuna, and S. Boc-
caletti, Phys. Rev. Lett. 100, 044102 (2008); L. Prignano, O.
Sagarra, and A. Díaz-Guilera, ibid. 110, 114101 (2013).

[42] D. Levis, I. Pagonabarraga, and A. Díaz-Guilera, Phys. Rev. X
7, 011028 (2017).

[43] M. L. Sachtjen, B. A. Carreras, and V. E. Lynch, Phys. Rev. E
61, 4877 (2000).

[44] V. Kohar and S. Sinha, Chaos Solitons Fractals 54, 127
(2013).

[45] R. Olfati-Saber, J. A. Fax, and R. M. Murray, Proc. IEEE 95,
215 (2007).

[46] D. Tanaka, Phys. Rev. Lett. 99, 134103 (2007).

[47] T. M. Przytycka, M. Singh, and D. K. Slonim, Briefings In
Bioinformatics 11, 15 (2010); S. Lèbre, J. Becq, F. Devaux, M.
P. H. Stumpf, and G. Lelandais, BMC Syst. Biol. 4, 130 (2010);
A. Rao, A. O. Hero, D. J. States, and J. D. Engel, EURASIP J.
Bioinform. Syst. Biol. 2007, 51947 (2007).

[48] M. Valencia, J. Martinerie, S. Dupont, and M. Chavez, Phys.
Rev. E 77, 050905(R) (2008).

[49] S. Rakshit, B. K. Bera, D. Ghosh, and S. Sinha, Phys. Rev. E
97, 052304 (2018).

[50] P. J. Uhlhaas and W. Singer, Neuron 52, 155 (2006).
[51] R. Bartsch, J. W. Kantelhardt, T. Penzel, and S. Havlin, Phys.

Rev. Lett. 98, 054102 (2007).
[52] W. Singer and C. M. Gray, Annu. Rev. Neurosci. 18, 555

(1995).
[53] R. Llinas and U. Ribary, Proc. Natl. Acad. Sci. U.S.A. 90, 2078

(1993).
[54] D. K. Hartline, Biol. Cybern. 33, 223 (1979).
[55] C. I. Del Genio, J. Gómez-Gardeñes, I. Bonamassa, and S.

Boccaletti, Sci. Adv. 2, e1601679 (2016).
[56] P. J. Menck, J. Heitzig, N. Marwan, and J. Kurths, Nature Phys.

9, 89-92 (2013).
[57] S. Rakshit, B. K. Bera, M. Perc, and D. Ghosh, Sci. Rep. 7,

2412 (2017).
[58] S. G. Hormuzdi, M. A. Filippov, G. Mitropoulou, H. Monyer,

and R. Bruzzone, Biochim. Biophys. Acta 1662, 113 (2004).
[59] E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of

Neural Science (McGraw Hill, New York, 2000).
[60] D. J. Watts and S. H. Strogatz, Nature (London) 393, 440

(1998).
[61] P. G. Lind, A. Nunes, and J. A. C. Gallas, Physica A 371, 100

(2006).
[62] D. J. Stilwell, E. M. Bollt, and D. G. Roberson, SIAM J. Appl.

Dyn. Syst. 5, 140 (2006).
[63] S. Pilosof, M. A. Porter, M. Pascual, and S. Kéfi, Nature Ecol.

Evol. 1, 0101 (2017).
[64] V. V. Makarov, V. A. Maximenko, G. van Luijtelaar, A. Lüttjo-

hann, and A. E. Hramov, Proc. SPIE 10493, 1049311 (2018).
[65] A. Hramov, V. Y. Musatov, A. E. Runnova, T. Y. Efremova,

A. A. Koronovskii, and A. N. Pisarchik, Proc. SPIE 10717,
107171M (2018).

[66] C. J. Stam, Clinical Neurophys. 116, 2266 (2005).

032305-15

https://doi.org/10.1038/srep45475
https://doi.org/10.1038/srep45475
https://doi.org/10.1038/srep45475
https://doi.org/10.1038/srep45475
https://doi.org/10.1103/PhysRevE.96.062308
https://doi.org/10.1103/PhysRevE.96.062308
https://doi.org/10.1103/PhysRevE.96.062308
https://doi.org/10.1103/PhysRevE.96.062308
https://doi.org/10.1209/0295-5075/113/30002
https://doi.org/10.1209/0295-5075/113/30002
https://doi.org/10.1209/0295-5075/113/30002
https://doi.org/10.1209/0295-5075/113/30002
https://doi.org/10.1103/PhysRevE.94.052205
https://doi.org/10.1103/PhysRevE.94.052205
https://doi.org/10.1103/PhysRevE.94.052205
https://doi.org/10.1103/PhysRevE.94.052205
https://doi.org/10.1038/srep39033
https://doi.org/10.1038/srep39033
https://doi.org/10.1038/srep39033
https://doi.org/10.1038/srep39033
https://doi.org/10.1103/PhysRevLett.114.038701
https://doi.org/10.1103/PhysRevLett.114.038701
https://doi.org/10.1103/PhysRevLett.114.038701
https://doi.org/10.1103/PhysRevLett.114.038701
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1073/pnas.0610245104
https://doi.org/10.1073/pnas.0610245104
https://doi.org/10.1073/pnas.0610245104
https://doi.org/10.1073/pnas.0610245104
https://doi.org/10.1073/pnas.1013140107
https://doi.org/10.1073/pnas.1013140107
https://doi.org/10.1073/pnas.1013140107
https://doi.org/10.1073/pnas.1013140107
https://doi.org/10.1103/PhysRevLett.103.038702
https://doi.org/10.1103/PhysRevLett.103.038702
https://doi.org/10.1103/PhysRevLett.103.038702
https://doi.org/10.1103/PhysRevLett.103.038702
https://doi.org/10.1016/j.physd.2004.03.013
https://doi.org/10.1016/j.physd.2004.03.013
https://doi.org/10.1016/j.physd.2004.03.013
https://doi.org/10.1016/j.physd.2004.03.013
https://doi.org/10.1103/PhysRevE.90.022812
https://doi.org/10.1103/PhysRevE.90.022812
https://doi.org/10.1103/PhysRevE.90.022812
https://doi.org/10.1103/PhysRevE.90.022812
https://doi.org/10.1109/TAC.2005.849233
https://doi.org/10.1109/TAC.2005.849233
https://doi.org/10.1109/TAC.2005.849233
https://doi.org/10.1109/TAC.2005.849233
https://doi.org/10.1103/PhysRevLett.100.044102
https://doi.org/10.1103/PhysRevLett.100.044102
https://doi.org/10.1103/PhysRevLett.100.044102
https://doi.org/10.1103/PhysRevLett.100.044102
https://doi.org/10.1103/PhysRevLett.110.114101
https://doi.org/10.1103/PhysRevLett.110.114101
https://doi.org/10.1103/PhysRevLett.110.114101
https://doi.org/10.1103/PhysRevLett.110.114101
https://doi.org/10.1103/PhysRevX.7.011028
https://doi.org/10.1103/PhysRevX.7.011028
https://doi.org/10.1103/PhysRevX.7.011028
https://doi.org/10.1103/PhysRevX.7.011028
https://doi.org/10.1103/PhysRevE.61.4877
https://doi.org/10.1103/PhysRevE.61.4877
https://doi.org/10.1103/PhysRevE.61.4877
https://doi.org/10.1103/PhysRevE.61.4877
https://doi.org/10.1016/j.chaos.2013.07.003
https://doi.org/10.1016/j.chaos.2013.07.003
https://doi.org/10.1016/j.chaos.2013.07.003
https://doi.org/10.1016/j.chaos.2013.07.003
https://doi.org/10.1109/JPROC.2006.887293
https://doi.org/10.1109/JPROC.2006.887293
https://doi.org/10.1109/JPROC.2006.887293
https://doi.org/10.1109/JPROC.2006.887293
https://doi.org/10.1103/PhysRevLett.99.134103
https://doi.org/10.1103/PhysRevLett.99.134103
https://doi.org/10.1103/PhysRevLett.99.134103
https://doi.org/10.1103/PhysRevLett.99.134103
https://doi.org/10.1093/bib/bbp057
https://doi.org/10.1093/bib/bbp057
https://doi.org/10.1093/bib/bbp057
https://doi.org/10.1093/bib/bbp057
https://doi.org/10.1186/1752-0509-4-130
https://doi.org/10.1186/1752-0509-4-130
https://doi.org/10.1186/1752-0509-4-130
https://doi.org/10.1186/1752-0509-4-130
https://doi.org/10.1155/2007/51947
https://doi.org/10.1155/2007/51947
https://doi.org/10.1155/2007/51947
https://doi.org/10.1155/2007/51947
https://doi.org/10.1103/PhysRevE.77.050905
https://doi.org/10.1103/PhysRevE.77.050905
https://doi.org/10.1103/PhysRevE.77.050905
https://doi.org/10.1103/PhysRevE.77.050905
https://doi.org/10.1103/PhysRevE.97.052304
https://doi.org/10.1103/PhysRevE.97.052304
https://doi.org/10.1103/PhysRevE.97.052304
https://doi.org/10.1103/PhysRevE.97.052304
https://doi.org/10.1016/j.neuron.2006.09.020
https://doi.org/10.1016/j.neuron.2006.09.020
https://doi.org/10.1016/j.neuron.2006.09.020
https://doi.org/10.1016/j.neuron.2006.09.020
https://doi.org/10.1103/PhysRevLett.98.054102
https://doi.org/10.1103/PhysRevLett.98.054102
https://doi.org/10.1103/PhysRevLett.98.054102
https://doi.org/10.1103/PhysRevLett.98.054102
https://doi.org/10.1146/annurev.ne.18.030195.003011
https://doi.org/10.1146/annurev.ne.18.030195.003011
https://doi.org/10.1146/annurev.ne.18.030195.003011
https://doi.org/10.1146/annurev.ne.18.030195.003011
https://doi.org/10.1073/pnas.90.5.2078
https://doi.org/10.1073/pnas.90.5.2078
https://doi.org/10.1073/pnas.90.5.2078
https://doi.org/10.1073/pnas.90.5.2078
https://doi.org/10.1007/BF00337411
https://doi.org/10.1007/BF00337411
https://doi.org/10.1007/BF00337411
https://doi.org/10.1007/BF00337411
https://doi.org/10.1126/sciadv.1601679
https://doi.org/10.1126/sciadv.1601679
https://doi.org/10.1126/sciadv.1601679
https://doi.org/10.1126/sciadv.1601679
https://doi.org/10.1038/nphys2516
https://doi.org/10.1038/nphys2516
https://doi.org/10.1038/nphys2516
https://doi.org/10.1038/nphys2516
https://doi.org/10.1038/s41598-017-02409-5
https://doi.org/10.1038/s41598-017-02409-5
https://doi.org/10.1038/s41598-017-02409-5
https://doi.org/10.1038/s41598-017-02409-5
https://doi.org/10.1016/j.bbamem.2003.10.023
https://doi.org/10.1016/j.bbamem.2003.10.023
https://doi.org/10.1016/j.bbamem.2003.10.023
https://doi.org/10.1016/j.bbamem.2003.10.023
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1016/j.physa.2006.04.091
https://doi.org/10.1016/j.physa.2006.04.091
https://doi.org/10.1016/j.physa.2006.04.091
https://doi.org/10.1016/j.physa.2006.04.091
https://doi.org/10.1137/050625229
https://doi.org/10.1137/050625229
https://doi.org/10.1137/050625229
https://doi.org/10.1137/050625229
https://doi.org/10.1038/s41559-017-0101
https://doi.org/10.1038/s41559-017-0101
https://doi.org/10.1038/s41559-017-0101
https://doi.org/10.1038/s41559-017-0101
https://doi.org/10.1117/12.2291696
https://doi.org/10.1117/12.2291696
https://doi.org/10.1117/12.2291696
https://doi.org/10.1117/12.2291696
https://doi.org/10.1117/12.2315140
https://doi.org/10.1117/12.2315140
https://doi.org/10.1117/12.2315140
https://doi.org/10.1117/12.2315140
https://doi.org/10.1016/j.clinph.2005.06.011
https://doi.org/10.1016/j.clinph.2005.06.011
https://doi.org/10.1016/j.clinph.2005.06.011
https://doi.org/10.1016/j.clinph.2005.06.011



