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In many natural systems, attractive coupling together with repulsive coupling plays a vital role in determining
their evolutionary dynamics. We investigate the stabilization of amplitude chimera through repulsive coupling
in the presence of attractive coupling in a system of nonlocally coupled oscillators. The nonlocal repulsive
coupling can facilitate the emergence of stable amplitude chimera even for random initial conditions contrasting
with the earlier investigations, where the amplitude chimera was observed just as a transient state and that
too for a specific cluster initial conditions. The stability of the observed amplitude chimera is analyzed using
Floquet theory. To elucidate the transition among the distinct dynamical states, we find the average number
of inhomogeneous oscillators as a function of the coupling strength and show that the transition among the
dynamical states exhibits hysteresis. Further, we deduce analytically the critical stability curve that separates
the oscillatory (amplitude chimera and traveling wave) states from the death (multi-incoherent oscillation death,
cluster chimera death, cluster oscillation death) states. We also analyze the influence of the nonisochronicity
parameter and noise on the stable amplitude chimera. We report that the nonisochronicity parameter favors the
traveling wave state from incoherent death through the stable amplitude chimera state.
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I. INTRODUCTION

The chimera state, an intriguing and counterintuitive col-
lective dynamical behavior, has become an active area of
research in recent years. It is characterized by the spontaneous
splitting of a network of coupled identical oscillators into co-
existing domains of coherent and incoherent dynamical states,
as initially reported in nonlocally coupled phase oscillators
by Kuramoto and Battogtokh [1–3]. Since then, a plethora
of investigations have been carried out toward understanding
the onset of chimera both theoretically and experimentally.
Theoretical investigations have been carried out in coupled
chaotic oscillators [4–6], neural networks [7,8], time discrete
maps [9,10], planar oscillators [11], and so on. Recently,
many complementary experimental observations have also
been made to understand the robustness of such states in
many natural and manmade systems. The first experimental
observation was reported in optical systems [12] and chem-
ical oscillators [13]. Later, chimera states were observed in
mechanical oscillators [14,15], as well as electronic [16,17],
electrochemical [18–20], optoelectronic delayed-feedback os-
cillators [21], Boolean networks [22], and optical combs [23].
Investigations of chimera states have revealed that such dy-
namical behavior bears a resemblance to the unihemispheric
sleep of some mammals, migratory birds, and humans [24–26]
, epileptic seizures [27], and power grid blackouts [28], and
it even has potential applications in social networks [29] and
neural activities [7,30].
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Distinct types of chimera states, including globally clus-
tered chimera [31], amplitude mediated chimera [32,33], and
spiral wave chimera [3,34], have been reported in the liter-
ature. Among them, recently a special type of chimera state
was reported by Zakharova et al. [35] in a network of non-
locally coupled oscillators with symmetry-breaking coupling.
In this state, coherent and incoherent dynamical behaviors
emerge with respect to the amplitude of the oscillators, termed
amplitude chimera, despite the fact that the oscillators in the
network exhibit periodic oscillations with the same frequency
and correlated phases. In a later study, the same group of
authors analyzed the stability of the amplitude chimera us-
ing the Floquet theory, and they reported that the observed
amplitude chimera is just a transient state [36]. In this con-
nection, time delay was found to enhance the lifetime of
such transient amplitude chimera significantly [37]. Further,
the lifetime was found to decrease with an increase in the
noise intensity [38]. Recently, stable amplitude chimera was
observed in locally coupled oscillators in the presence of the
nonisochronicity parameter. It was also reported that the stable
amplitude chimera loses its stability upon deviating a few
oscillators from the cluster initial states [39]. The transition
from spatiotemporal chaos to coherent oscillation death and
chimera death through an amplitude chimera was reported
recently in coupled chaotic oscillators [40]. Very recently, the
tradeoff between attractive and repulsive coupling was found
to induce the onset of distinct collective dynamics, which
shows the swing of the synchronized state, chimera, chimera
death, and oscillatory cluster state [41]. In the present study,
we will investigate the role of repulsive coupling in stabilizing
the amplitude chimera. Indeed, we show that such a state does
exist due to repulsive interaction and is more stable even with
random initial conditions.
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In particular, we unravel the onset of stable ampli-
tude chimera in a network of nonlocally coupled Stuart-
Landau oscillators with combined attractive and repulsive
interactions. To start with, we analyze the emerging behavior
of the coupled Stuart-Landau oscillators using the cluster ini-
tial conditions as employed in the earlier studies. Further, we
will show that the repulsive coupling facilitates the emergence
of stable amplitude chimera even for random initial condi-
tions. Furthermore, the stability of the amplitude chimera is
corroborated using the Floquet theory. The dynamical transi-
tion takes place from the traveling wave state to incoherent
death through the stable amplitude chimera state. To delineate
the transition among the distinct dynamical states, we have
analyzed the average number of inhomogeneous oscillators in
the observed dynamical states. Further, the dynamical transi-
tion is also analyzed with respect to distinct coupling ranges
and is found to be robust in a wide range of both attractive and
repulsive coupling ranges exhibiting a bell-shaped function
with a Gaussian fit. Furthermore, we deduce the probability
of the observed dynamical behaviors as a function of the
coupling strength to illustrate the emergence of multistability.
We have also deduced analytically the critical stability curve
that delineate the oscillatory (amplitude chimera and travel-
ing wave) states from the death (multi-incoherent oscillation
death, cluster chimera death, cluster oscillation death) states.
The effect of the nonisochronicity parameter is also analyzed
by introducing it. The nonisochronicity parameter is known
to induce either desynchronization [42] or a death state [43].
In contrast, to our surprise we found that the nonisochronicity
parameter facilitates the existence of the traveling wave via
stable amplitude chimera from the incoherent death state. We
will also unravel the effect of Gaussian white noise on the
stability of the amplitude chimera. Finally, the robustness of
the dynamical behaviors in larger networks is also elucidated.

The structure of the paper is as follows: In Sec. II, we
introduce our model of nonlocally coupled Stuart-Landau
oscillators with combined attractive and repulsive couplings.
In Sec. III, we demonstrate the emergence of stable amplitude
chimera for both the cluster initial conditions and random ini-
tial conditions. We discuss the global dynamical behavior and
multistabilities in Sec. IV, and we describe detailed transitions
among the dynamical states in Sec. V. The analytical stability
condition delineating the oscillatory and death states will be
deduced in Sec. VI. Further, the effects of nonisochronicity
parameter and the Gaussian white noise are investigated in
Sec. VII. Finally, we summarize our results in Sec. VIII.
The effect of the size of the network on the stable amplitude
chimera is discussed in Appendix.

II. MODEL

The Stuart-Landau oscillator is a simple, paradigmatic
model exhibiting limit cycle oscillations [44,45]. It is the nor-
mal form of the Hopf bifurcation, and hence many nonlinear
oscillators exhibiting Hopf bifurcation can be approximated as
the Stuart-Landau oscillator. Further, limit cycle oscillations
can be seen often in biological and chemical systems, for
example in circadian rhythms, bursting of neurons, and so
on. Thus the Stuart-Landau limit cycle oscillators have been
used widely to understand various collective dynamical states
of nonlinear dynamical systems [46–48]. To elucidate the

emergence of stable amplitude chimera, we consider a ring of
nonlocally coupled Stuart-Landau oscillators with combined
attractive and repulsive couplings, whose governing equations
are represented as

żi = (λ + iω − |zi |2)zi + ε

2P1

i+P1∑
k=i−P1

Re(zk − zi )

− i
ε

2P2

i+P2∑
k=i−P2

Im(zk − zi ), (1)

where the state variables zi = xi + iyi ∈ C, i = 1, 2, . . . , N ,
N is the total number of oscillators in the network. Here,
λ and ω correspond to the bifurcation parameter and the
natural frequency of the system, respectively. The attractive
coupling is established through the state variables xi whereas
the repulsive coupling is accomplished via yi variables [49]. ε

is the strength of the attractive and repulsive couplings. P1 and
P2 represent the number of nearest neighbors in the attractive
and repulsive couplings, respectively, with the corresponding
coupling ranges r1 (r1 = P1/N ) and r2 (r2 = P2/N ). The
Runge-Kutta fourth-order integration scheme is used for all
our simulations with time step 0.01.

III. STABLE AMPLITUDE CHIMERA

To unravel the influence of the repulsive interaction on
the reported transient amplitude chimera, we have fixed the
parameters at r1 = 0.01, ω = 2.0, and λ = 1.0 of the at-
tractive coupling as in the earlier studies [39]. It is evident
from the earlier reports that the amplitude chimera exist
for a specific choice of cluster initial conditions, which can
be obtained by dividing the network of oscillators into two
parts and distributing the initial states (xi, yi ) = (+1,−1)
for i = 1, 2, . . . , N/2 and (xi, yi ) = (−1,+1) for i = N

2 +
1, . . . , N . To start with, the emergence of stable amplitude
chimera in the coupled Stuart-Landau oscillators will be
elucidated by distributing the above-mentioned cluster initial
conditions. We have fixed the total number of oscillators in
the network as N = 100 in the entire manuscript. The effect
of an increase in the size of the network on the observed
dynamical transitions will be discussed in Appendix. The
transient behavior for the coupling strength ε = 2.02 is shown
in the space-time plot of Fig. 1(a), which depicts that the
oscillators at the cluster edges attain inhomogeneous states
spontaneously and oscillate incoherently as time increases.
The phase portrait of the corresponding state after leaving
5 × 103 time units as transient is shown in Fig. 1(c). The
solid (gray) and dashed lines (pink and blue) correspond to
the phase portrait of the homogeneous and inhomogeneous
oscillations, respectively. It is evident from the phase portrait
that the coherent oscillators oscillate about the origin with a
large amplitude, whereas the incoherent oscillators oscillate
with relatively smaller amplitudes constituting the upper and
lower branches of the inhomogeneous state. The observed
dynamical behavior is also examined for its emergence by
distributing random initial conditions among the oscillators.
Surprisingly, we found that the stable amplitude chimera
emerges even for random initial conditions in contrast to
the earlier observations of it using only the cluster initial
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FIG. 1. The space-time plot and phase portrait of stable ampli-
tude chimera at ε = 2.02 for (a) cluster initial conditions and (b)
random initial conditions. In (c) and (d) the solid and dotted lines
correspond to the homogeneous and inhomogeneous oscillations,
respectively. Other parameters: r1 = 0.01, r2 = 0.22, ω = 2.0, λ =
1.0, and N = 100.

conditions. The amplitude chimera emerging from the random
initial condition is depicted in Figs. 1(b) and 1(d). From
Fig. 1(b), it is evident that all the oscillators initially oscillate
randomly, attributed to the random initial conditions, which
eventually split into coherent and incoherent domains as
they evolve. The corresponding phase portrait is shown in
Fig. 1(d). The observed amplitude chimera is stable and all
the oscillators oscillate periodically with the same frequency.
The emergence of (stable/unstable) amplitude chimera has
been reported so far in the literature only for cluster initial
conditions. In contrast, we have unraveled the existence of
stable amplitude chimera even for random initial states, as is
evident from Fig. 1(b).

Now, we use the Floquet theory to substantiate whether
the observed amplitude chimera is a long transient or a
stable state. For this purpose, we substitute xi = x∗

i + ηi and
yi = y∗

i + ζi in Eq. (1), so that the system of Eq. (1) can be
reduced as

η̇i = q1ηi − (ω + 2x∗
i y∗

i )ζi + ε

2P1

i+P1∑
k=i−P1

(ηk − ηi ),

ζ̇i = (ω − 2x∗
i y∗

i )ηi + q2ζi − ε

2P2

i+P2∑
k=i−P2

(ζk − ζi ), (2)

where q1 = 1 − 3x∗2
i − y∗2

i , q2 = 1 − x∗2
i − 3y∗2

i . Here x∗
i

and y∗
i are the solutions of the amplitude chimera (AC), and ηi

and ζi are their perturbation terms. The corresponding Floquet
multipliers are found from the fundamental matrix by inte-
grating Eq. (2) for one period [36]. Whenever the value of the
Floquet multipliers is less than unity, then the corresponding
periodic orbit is stable. Usually one of the eigenvalues is

FIG. 2. Floquet multipliers |μi | for the stable amplitude chimera
state at ε = 2.02, i = 1, 2, . . . , 2N (N = 100). The unfilled circles
connected by a line represent |μi | for random initial conditions, and
unfilled triangles with a line denote |μi | for cluster initial conditions.

always designated by the unit value, which is referred to as the
Goldstone mode in the literature. To elucidate the stability of
the periodic orbit, the values of the Floquet multipliers are de-
picted in Fig. 2. Lines connecting open circles (blue) and tri-
angles (red) correspond to the values of the Floquet multipli-
ers for random and cluster initial conditions, respectively. It is
evident from Fig. 2 that the value of all |μj | are less than unity
except |μ1| (Goldstone mode), which corroborate that the
periodic orbits constituting the amplitude chimera are stable.

Further, there is a transition to stable amplitude chimera
state from the traveling wave state and finally to the multi-
incoherent death state as a function the coupling strength ε.
The observed dynamical transition is depicted as space-time
plots in Figs. 3(a)–3(c). For the coupling strength ε = 1.9,
the system (1) exhibits a traveling wave [see Fig. 3(a)],

FIG. 3. The space-time plots of the variable yi : (a) Traveling-
wave state for ε = 1.9, (b) amplitude chimera for ε = 2.02, (c)
multi-incoherent death state for ε = 2.6; (d) and (e) correspond to the
center of mass of the left panel (a)–(c), respectively. Other parameter
values are the same as in Fig. 1.
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where the oscillators in the network oscillate with the same
amplitude and frequency, traveling with constant velocity.
Upon increasing the coupling strength to ε = 2.02, the coher-
ent part oscillates with the same amplitude while the incoher-
ent part suffers variations in their amplitude [see Fig. 3(b)].
Increasing the coupling strength further to ε = 2.6 leads to
multi-incoherent oscillation death [see Fig. 3(c)]. In this state,
the oscillators in the network populate the upper and the lower
branch of different inhomogeneous steady states alternately.
To distinguish the dynamical states and to differentiate the
domains of homogeneous and inhomogeneous oscillations,
we have calculated the center of mass using the formula
yic.m. = ∫ T

0
yi (t )dt

T
, where T = 2π

ω
is the period of oscillation

[35]. From Fig. 3(d), it is clear that all the oscillators oscillate
homogeneously about the origin in the traveling wave (TW)
state, whereas some of the oscillators take the nonzero center
of mass contributing to the inhomogeneous states of the
stable amplitude chimera in Fig. 3(e). The nonzero center
of mass of all the oscillators in the multi-incoherent death
state in Fig. 3(f) indicates that all the oscillators populate
inhomogeneous states. The global dynamical behavior as a
function of the repulsive nonlocal coupling range is illustrated
in the following section.

IV. GLOBAL BEHAVIOR AND MULTISTABLE NATURE

To understand the global dynamical behavior, we have
depicted the two-parameter bifurcation diagram in the (r2, ε)
space in Fig. 4. It is evident from the figure that the traveling
wave state prevails in the entire range of r2 for lower values
of the coupling strength ε. Transition from the TW to multi-
incoherent oscillation death (MIOD) via stable amplitude
chimera (AC) is observed as a function of ε in the entire range
of r2. Further, the spread of stable AC is more pronounced
around r2 = 0.25. It is also clear that multistability among the
distinct states can be observed between the boundary of the
traveling wave and the amplitude chimera. Regions R1 and
R3 indicate the bistability between TW-AC and AC-MIOD,
respectively. Tristability is found in the region R2 where the
coexistence of all three states TW, AC, and MIOD prevails.

FIG. 4. Two-parameter bifurcation diagram in (r2, ε) space
for 100 realizations of distinct initial conditions. TW, AC, and
MIOD represent the traveling wave, amplitude chimera, and multi-
incoherent oscillation death state, respectively. R1, R2, and R3 de-
note the multistability regions of TW-AC, TW-AC-MIOD, and AC-
MIOD, respectively. Other parameters: r1 = 0.01, λ = 1.0, ω = 2.0,
and N = 100.

FIG. 5. Probability of occurrence of TW, AC, and MIOD states
with respect to the coupling strength ε for 100 realization of distinct
cluster and random initial conditions. Other parameters: r1 = 0.01,
r2 = 0.22, ω = 2.0, λ = 1.0, and N = 100.

Using the probability of the observed dynamical states, the
multistable nature of the considered system is elucidated in
Fig. 5. We have calculated the maximum probability of the
occurrence of the observed dynamical states in Fig. 5 as we
have made 100 realizations using the cluster initial conditions
and 100 realizations using the random initial conditions to
estimate the probability of the states. Essentially, one may
observe all the states depicted in Fig. 5 either for cluster initial
conditions or for random initial conditions, but their probabil-
ities may vary depending on the specific initial conditions that
are being used.

The unstable nature of a dynamical state can be revealed
by the null value of the probability of the corresponding state.
The probability of the states between zero and unity indicates
the multistable nature of the dynamical states. The unit value
of the probability of a state corroborates its monostable nature.
It is clear from Fig. 5 that initially the system exhibits a
monostable state with the traveling wave state as the only
stable state with its probability acquiring unit value. While
increasing the coupling strength, the system attains bistability,
where the probabilities of AC and TW take nonzero values
that are less than unity. The probability of the incoherent
death state acquires null value in the bistability region. Upon
increasing ε, the coupled Stuart-Landau oscillators exhibit
tristability between TW, AC, and MIOD states. At large
coupling limits, the probability of these states illustrates that
the system again attains a monostable state via bistability.
Transitions among the observed dynamical states are delin-
eated more clearly in the following section.

V. DYNAMICAL TRANSITIONS

In general, a multistable system has the tendency to exhibit
hysteresis during the dynamical transition between different
states [50]. To unravel the existence of hysteresis among
the observed dynamical states, we introduce a new statistical
measure for finding the average number of inhomogeneous
oscillators in a dynamical state using the relation

K = 1 −
∑N

i=1 Hyi

N
, Hyi

= �(δ − yic.m. ). (3)

Here δ is a predefined threshold value and �(·) is the
Heaviside step function. yic.m. is the center of mass of each
of the oscillators. The average number of inhomogeneous
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FIG. 6. The average number of oscillators in the inhomogeneous state (K) as a function of the coupling strength ε for the coupling range
(a) r2 = 0.16, (b) r2 = 0.28, (c) r2 = 0.34, and (d) r2 = 0.40. Lines connected by open circles (blue) and stars (red) represent forward and
reverse transitions, respectively. Other parameters: r1 = 0.01, λ = 1.0, ω = 2.0, and N = 100.

oscillators (K ) acquires null value for the traveling wave
state and unity for the incoherent death state. The value of K

between 0 < K < 1 corroborates the amplitude chimera. To
understand the nature of the transition among the observed
dynamical states, we have plotted the average number of
oscillators in the inhomogeneous state (K) as a function of the
coupling strength ε for distinct coupling ranges (see Fig. 6).
Open circles and stars in Fig. 6 denote forward and reverse
traces of the dynamical transition, respectively. The transition
among the dynamical states is plotted for a lower repulsive
coupling range r2 = 0.16 in Fig. 6(a). Increasing the coupling
strength, we found that there is a continuous transition from
the traveling wave state to the stable AC state. The dynamical
states during the forward and reverse traces are depicted as
space-time plots in panel (A) and panel (B), respectively,
of Fig. 7 for different ε. The coupled system exhibits a
traveling wave state, which is completely characterized by
homogeneous oscillations, as depicted in Fig. 7(a) for ε =
1.76. Upon increasing the coupling strength to ε = 1.77, the
system exhibits amplitude chimera as shown in Fig. 7(b),
whose dynamical states are characterized by homogeneous
oscillations along with a few inhomogeneous oscillatory states
[see Figs. 1(c) and 1(d) for homogeneous and inhomogeneous
oscillatory states]. A further increase in ε results in stable
amplitude chimera with a large number of inhomogeneous
oscillatory states as depicted in Figs. 7(c) and 7(d) for ε =
1.85 and 1.9, respectively. At ε = 1.98, there is a sudden

transition from amplitude chimera to the MIOD state, which
is completely characterized by an inhomogeneous oscillation
death state, thereby elucidating the first-order (discontinuous)
transition [see Fig. 6(a)]. The MIOD state exhibited by the
system for ε = 2.0 is shown in Fig. 7(e).

On the other hand, during the reverse trace by decreasing
ε, there is a continuous transition from the MIOD state to
amplitude chimera and a discontinuous (first-order) transition
from amplitude chimera to a traveling wave state as depicted
in Fig. 6(a). Thus the array of coupled Stuart-Landau oscilla-
tors exhibits hysteresis as a function of the coupling strength
ε. During the backward trace, the MIOD state [see Fig. 7(a)
for ε = 2.0 in panel B] is completely characterized by inho-
mogeneous oscillation death. Upon decreasing the value of
ε, the amplitude chimera is characterized by inhomogeneous
oscillations with a very few homogeneous oscillatory states
as in Fig. 7(b) of panel B for ε = 1.9. A further decrease
in ε leads to the amplitude chimera with a large number of
homogeneous oscillatory states as in Figs. 7(c) and 7(d) of
panel B for ε = 1.85 and 1.77, respectively. At ε = 1.76, there
is a sudden (discontinuous) transition to a traveling wave state
[see Fig. 7(e) in panel B], which is completely characterized
by a homogeneous oscillatory state. We have also noticed that
the system exhibits a similar dynamical transition for further
increase in the coupling range with variations in the hystere-
sis width. It increases up to the coupling range r2 = 0.24,
which is further decreased by increasing the coupling range

FIG. 7. Space-time plots of a dynamical transition along forward [panel (A)] and reverse [panel (B)] transition for r2 = 0.16. Panel (A): (a)
traveling wave state for ε = 1.76; (b)–(d) amplitude chimera state for ε = 1.77, ε = 1.85, and ε = 1.9; (e) multi-incoherent oscillation death
for ε = 2.0. Panel (B): (a) multi-incoherent oscillation death for ε = 2.0; (b)–(d) amplitude chimera state for ε = 1.9, ε = 1.85, and ε = 1.77;
(e) traveling wave state for ε = 1.76.
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FIG. 8. The width of the hysteresis as a function of the nonlocal
coupling range r2. The unfilled circles (black) denote the numerical
data.

[see Figs. 6(b), 6(c), and 6(d) for r2 = 0.28, r2 = 0.34, and
r2 = 0.4, respectively].

We have also estimated the variation in the width of the
hysteresis with respect to the repulsive coupling range r2 (see
Fig. 8). By increasing the coupling range, the width of the
hysteresis is found to increase up to r2 = 0.24 and attains the
maximum value at r2 = 0.24. A further increase in the cou-
pling range leads to a decrease in the width of the hysteresis
to a minimum value. Thus the width of the hysteresis forms a
bell-shaped function and it obeys a Gaussian fit as a function
of the nonlocal repulsive coupling.

To understand the dynamical transition at higher values of
nonlocal attractive coupling ranges, we have plotted a space-
time pattern and snapshot for the coupling ranges r1 = 0.4 and
r2 = 0.34 in Fig. 9. The transition to chimera death was ob-
served through AC and cluster oscillation death (COD) while
increasing the coupling strength ε. The amplitude chimera
was observed at ε = 1.7 [see Figs. 9(a) and 9(b)] with four
groups of coherent and incoherent patches. For smaller values
of attractive coupling (up to r1 = 0.07), the coherent domain
of the amplitude chimera is composed of symmetric attractors
with zero center of mass as shown in Figs. 3(b) and 3(e). On
the other hand, for higher values of r1 the coherent domains
of the amplitude chimera are characterized by asymmetric
attractors with nonzero center of mass as depicted in Figs. 9(a)
and 9(b). By increasing the coupling strength to ε = 2.0,
all the oscillators populate the inhomogeneous steady state
resulting in a coherent COD state [see Figs. 9(c) and 9(d)].
Increasing ε to much higher values leads to chimera death
where the oscillators in the clusters edges populate the upper
and lower branches of the inhomogeneous steady state as
shown in Figs. 9(e) and 9(f) for ε = 2.3. Further, to delineate
the global dynamical behavior for higher values of nonlocal
attractive coupling, we have plotted the two-parameter bifur-
cation diagram in the (r2, ε) space for two distinct values
of the attractive coupling, r1 = 0.2 and r1 = 0.4, in Fig. 10.
We have found COD and cluster chimera death (CCD) from
the amplitude chimera state instead of the MIOD state (see
Fig. 4) because of the influence of much stronger nonlocal
attractive coupling. The coexistence of COD and CCD states
is observed at strong coupling strengths depending on the
initial conditions. Moreover, the number of clusters in the
observed COD and CCD states decreases exponentially upon

FIG. 9. The space-time plots and snapshots of the variables yi

as a function of coupling strength ε displaying (a),(b) amplitude
chimera for ε = 1.7, (c),(d) cluster oscillation death (COD) for
ε = 2.0, and (e),(f) cluster chimera death (CCD) for ε = 2.3. Other
parameters: r1 = 0.4, r2 = 0.34, λ = 1.0, ω = 2.0, and N = 100.

increasing the coupling range r2 as shown in Figs. 10(c) and
10(d). The corresponding log-log plot is depicted in the inset
of Figs. 10(c) and 10(d), which clearly elucidates that the
number of clusters in the observed COD and CCD states
obeys power-law n0 = a ∗ (r2)b as a function of r2 [51], where
b takes the values −0.613 and −0.569, respectively. The

FIG. 10. Two-parameter diagrams in (r2, ε) space, for the cou-
pling ranges (a) r1 = 0.2 and (b) r1 = 0.4. Parts (c) and (d) show an
exponential decrease of cluster size for r1 = 0.2 and r1 = 0.4 as a
function of the coupling range r2 for ε = 1.98. The corresponding
power-law fit is shown in the inset in logarithmic scale. Unfilled
circles represent the numerical data, and the corresponding best fit
is shown by a red solid line.
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FIG. 11. Two-parameter phase diagram in (r1, r2) space for ε =
1.7. TW, AC, IOD, and SYN denote the traveling wave, ampli-
tude chimera, incoherent oscillation death, and synchronized state,
respectively. Other parameters are the same as in Fig. 9.

unfilled circles correspond to the numerical data along with
the fitting denoted by solid line in Figs. 10(c) and 10(d).

The observed dynamical transitions are delineated in the
two-phase diagram (see Fig. 11) as a function of r1 and
r2 to corroborate the robustness of the unraveled dynamical
states in the coupled Stuart-Landau oscillators. The coupling
strength is fixed as ε = 1.7, while the values of the other
parameters are the same as in Fig. 9. The coupled system
exhibits only the traveling wave state as a function of the
repulsive coupling range for r1 = 0. On the other hand, the
coupled system exhibits only the synchronized state as a
function of the attractive coupling range in the absence of the
repulsive coupling. Interesting nonlinear dynamical behaviors
and their transitions are observed in the presence of both the
attractive and repulsive couplings. In particular, the stable
amplitude chimera is observed in a wide range of both r1 and
r2 as evident from Fig. 11. Further, the IOD state (a constituent
of MIOD state) is also found as a function of the attractive
coupling range for smaller values of the repulsive coupling
range. It should be noted that the IOD state always coexists
with the death states (MIOD, COD, CCD).

VI. STABILITY CONDITION FOR THE INCOHERENT
OSCILLATION DEATH STATE

Deducing exact solutions corresponding to the observed
dynamical states is extremely difficult and often impossible.
However, there always lies a boundary between the oscillatory
states and the death states (see Figs. 4, 10, and 14). By finding
the stability condition for the death (IOD) state, one can obtain
an analytical critical curve that serves as the boundary be-
tween the oscillatory and the death states. Here, we deduce the
stability condition corresponding to the critical curve above
which the IOD state, where the oscillators in the network
populate the upper and lower branches of the inhomogeneous
steady state alternately [see Fig. 3(f)], is stable. In this state,
the system has the solutions (xi, yi ) = (x, y) if i is odd and
(xi, yi ) = (−x,−y) if i is even or vice versa. On substituting
the above solutions, to obtain the analytical condition for the
critical (stability) curve, the system (1) can be reduced as

ẋ = (λ − x2 − y2)x − ωy − β1x,

ẏ = (λ − x2 − y2)y + ωx + β2y, (4)

TABLE I. The values of β1 and β2 with respect to P1 and P2.

P1 P2 β1 β2

even even ε ε

even odd ε
(

P2+1
P2

)
ε

odd even
(

P1+1
P1

)
ε ε

odd odd
(

P1+1
P1

)
ε

(
P2+1
P2

)
ε

where β1 and β2 are defined based on the odd and even
numbers of the nearest neighbor listed in Table I.

Now, the solution for the dynamical Eq. (4) can be deduced
as

x(t ) = e
1
2 γ1 t cos

(
δ − 1

2ψ1t
)

(
C − 1

4eγ1t [V0 + V1 cos(ψ1t ) + V2 sin(ψ1t )]
) ,

y(t ) = 1

ω

(−β̂

2
+ ψ1tan(ψ1t − δ)

)
x(t ), (5)

where ψ1 =
√

4ω2 − β̂2, β̂ = β1 + β2, γ1 = β2 − β1 + 2λ,
and C and δ are integration constants. The other constants V0,
V1, and V2 are

V0 = −8

γ1
, V1 = β̂[k1 cos(2δ) + k2 sin(2δ)]

k3
,

V2 = β̂[−k2 cos(2δ) + k1 sin(2δ)]

k3
, (6)

where k1 = β2
1 + β1(β2 − λ) − β2λ − 2ω2, k2 = (β1 − λ)ψ1,

and k3 = ω2[(λ − β1)(λ + β2)] + ω2. The solution (5) is
found to be periodic when ω >

β̂

2 . In this case, we can write
the state variables x(t ) and y(t ) in the asymptotic limit as

x(t ) = cos
(
δ − 1

2ψ1 t
)

[V0 + V1 cos(ψ1 t ) + V2 sin(ψ1 t )]
1
2

,

y(t ) = −1

ω

(
β̂

2 cos(δ − 1
2ψ1 t ) − ψ1 sin(δ − 1

2ψ1 t )
)

[V0 + V1 cos(ψ1 t ) + V2 sin(ψ1 t )]
1
2

. (7)

On the other hand, the solution (5) turns out to be a
decaying solution for ω <

β̂

2 , which can be deduced as

x(t ) = e
1
2 γ1 t cos

(
δ − 1

2θ1t
)

(
C − 1

2ω2 eγ1t [W0 + W1 cos(θ1t ) + W2 sin(θ1t )]
) 1

2

,

y(t ) = 1

ω

(−β̂

2
+ θ1tan(θ1t − δ)

)
x(t ), (8)

where θ1 =
√

β̂2 − 4ω2. The other constants W0, W1, and W2

are

W0 = β̂2

γ1
, W1 = β̂[l1 cos(2δ) + l2 sin(2δ)]

l3
,

W2 = β̂[−l2 cos(2δ) + l1 sin(2δ)]

l3
, (9)

where l1 = (β1 + β2)3 + 8(λ − β1)ω2, l2 = (−β2
1 + β2

2 +
2λβ̂ − 4ω2), and l3 = −β2

1 + β2
2 − 2λ(β2 − β1) + 2(λ2 −

032301-7



SATHIYADEVI, CHANDRASEKAR, AND SENTHILKUMAR PHYSICAL REVIEW E 98, 032301 (2018)

FIG. 12. Stability curves of IOD regions for even and odd values of P1 (r1 = P1
N

) as a function of P2 (r2 = P2
N

). (a) P1 = 40, (b) P1 = 5,
and (c) P1 = 45. The shaded region corresponds to the numerically obtained IOD region.

ω2). In the asymptotic limit, x(t ) and y(t ) approach constant
values leading to a pair of steady states given by

x∗ = ∓ 1√
2

√√√√ λ̃(β̂ −
√

β̂2 − 4ω2) + 2ω2

β̂
,

y∗ = ±
β̂ +

√
β̂2 − 4ω2

2ω
x∗, (10)

where λ̃ = λ − β1 and β̂ = β1 + β2. Carrying out the linear
stability analysis of Eq. (1) around the deduced steady states
(±x∗,±y∗), depending on even or odd values of i, one can
obtain the stability conditions for the IOD state. The stability
conditions depend on the distinct pairs of odd and even values
of the nearest neighbor in the nonlocal coupling listed in
Table II. The stable region of the IOD state emerges for ε � ω

when P2 is even and ε � 2p2ω

1+2P2
when P2 is odd. The stability

curve for an even value of P1 (P1 = 40) is shown in Fig. 12(a)
as a function of P2. The stability curve is the same for all
even values of P1 as the stability condition is independent of
P1. For odd P1, P2 may be even or odd. The stable region
of the IOD state emerges for ε � 2p1ω

1+2P1
when P2 is even and

ε � 2P1P2ω
P1+P2+2P1P2

when P2 is odd. The stability curves for odd
values of P1 are shown in Figs. 12(b) and 12(c) for P1 = 5
and 45, respectively. Thus the death states are stable above the
stability curve, while the oscillatory states are stable below
the critical curve. The oscillatory states can be amplitude
chimera or a traveling wave depending on the initial condi-
tions and the parameters involved. Similarly, the death states
can be MIOD, COD, or CCD, again depending on the initial
conditions and the parameters. The shaded and the unshaded
regions in Fig. 12 correspond to the numerically obtained IOD
region and the oscillatory region, respectively, corroborating
the exact coincidence of a numerical boundary between them
and the critical stability curve deduced analytically.

TABLE II. Stability condition with respect to P1 and P2.

Stability conditions for IOD state
P1 P2 condition

even even ε � ω

even odd ε � 2p2ω

1+2P2

odd even ε � 2p1ω

1+2P1

odd odd ε � 2P1P2ω

P1+P2+2P1P2

VII. EFFECT OF THE NONISOCHRONICITY
PARAMETER AND NOISE INTENSITY

Nonisochronicity-induced stable amplitude chimera was
reported recently by Premalatha et al. in a locally coupled
Stuart-Landau oscillator [39]. Now, we investigate the effect
of the nonisochronicity parameter on the stable amplitude
chimera. The dynamical behavior of the system in the pres-
ence of the nonisochronicity parameter is shown as space-
time plots and the center of mass of the dynamical variables
yi in Fig. 13 for the nonlocal coupling strength ε = 2.7.
Initially, the system exhibits a multi-incoherent death state
for lower values of the nonisochronicity parameter as shown
in Figs. 13(a) and 13(b) for c = 0.1. By increasing the non-
isochronicity parameter, the emergence of stable amplitude
chimera is observed at c = 0.5 [see Figs. 13(c) and 13(d)].
Upon increasing the nonisochronicity parameter further to
c = 0.8, the system exhibits a coherent traveling wave state,
which is depicted in Figs. 13(e) and 13(f). Interestingly, in

FIG. 13. The space-time plots and time average of the variable
yi of each of the oscillators: (a),(b) MIOD for c = 0.1, (c),(d) AC
for c = 0.5, and (e),(f) TW state for c = 0.8. Other parameters: r1 =
0.01, r2 = 0.22, ε = 2.7, ω = 2.0, λ = 1.0, and N = 100.
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FIG. 14. Two-parameter bifurcation diagram in (c, ε) space. TW,
AC, and MIOD represent the traveling wave, amplitude chimera, and
multi-incoherent oscillation death state, respectively. Other parame-
ter values are the same as in Fig. 1.

contrast with the earlier findings, in this case we found a
reverse dynamical transition effect that is from an incoherent
death state to a coherent traveling wave state via a stable
amplitude chimera state as a function of the nonisochronicity
parameter.

The global behavior with respect to the nonisochronicity
parameter and the coupling strength is also illustrated in
Fig. 14 in the (c, ε) parametric space. The traveling wave state
is found to be stable in the entire range of c for lower values
of ε, whereas there is a transition from a multi-incoherent
death state to a traveling wave state via stable amplitude
chimera as a function of c for higher values to ε. Multistability
between the dynamical states is also observed in the boundary
of TW-AC and AC-MIOD states.

We have also analyzed the transient nature of the dy-
namical states with respect to the nonisochronicity parameter
(see Fig. 15) for the nonlocal coupling strength ε = 2.7. The
shaded region in Fig. 15(a) represents the stable amplitude

FIG. 15. (a) Transient time (ttr) of distinct dynamical states as
a function of nonisochronicity parameter c. Transient amplitude
chimera at ε = 2.7 for the nonisochronicity parameter, (a) c = 0.1
and (b) c = 0.65.

FIG. 16. Space-time plot for ε = 4.1 for (a) c = 1.0, imperfect
breathing chimera I and (b) c = 2.5, imperfect breathing chimera II.
Other parameter values are the same as in Fig. 1.

chimera. The emergence of a stable MIOD state through tran-
sient AC is found for lower values of c, and the corresponding
plot is shown in Fig. 15(b) for c = 0.1. At the MIOD region,
the transient time increases with an increase in the non-
isochronicity parameter, which is then stabilized to amplitude
chimera at the critical value c = 0.16. Increasing the value of
c further, destabilization of the amplitude chimera is observed
and the system exhibits a stable traveling wave state through
transient AC. In this region, the transient time decreases with
an increase in the nonisochronicity parameter, and a sudden
emergence of stable amplitude chimera is observed at c =
0.47, which is again destabilized by increasing c. Beyond
c = 0.62, we found the existence of a stable TW state through
transient AC [see Fig. 15(a)]. The transient AC observed in
the traveling wave region at c = 0.65 is shown in Fig. 15(c),
which clearly depicts that the oscillators in the coherent and
incoherent domains merge to become a completely coherent
domain resulting in the coherent traveling wave state.

In the earlier reports, the emergence of imperfect breathing
chimera was reported for large values of the nonisochronic-
ity parameters [39]. The system (1) also exhibits imperfect
breathing chimera (see Fig. 16) as observed in the earlier re-
ports but as transients. The imperfect breathing chimera states
manifest as a traveling wave while increasing the transient
time. The emergence of imperfect breathing chimera I and
II as transient is evident from Figs. 16(a) and 16(b), which
are stabilized to a traveling wave state upon increasing the
transient time [39]. The nonisochronicity parameter is known

FIG. 17. Two-parameter bifurcation diagram in (r2, ε) space for
the noise intensity (a) D = 0.001 and (b) D = 0.1. TW, AC, and
MIOD represent the traveling wave, amplitude chimera, and multi-
incoherent oscillation death state, respectively. Other parameter val-
ues are the same as in Fig. 4.
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FIG. 18. Transient time of AC as a function of noise intensity
D for (a) r2 = 0.16 and ε = 1.8, (b) r2 = 0.28 and ε = 1.9. Other
parameters are the same as in Fig. 4.

to induce either a death state or a desynchronized state. In
contrast, we found that it favors a traveling wave state from
the death state via stable amplitude chimera.

The robustness of the stable amplitude chimera is also
analyzed by introducing the Gaussian white noise into the
system (1). Two-parameter bifurcation diagrams in (r2, ε)
space for the noise intensities D = 0.001 and 0.1 are depicted
in Figs. 17(a) and 17(b), respectively. It is evident from the
figures that traveling wave, amplitude chimera and MIOD
states are intact in a large range of the parameter space even in
the presence of a significant level of noise intensities thereby
elucidating their robustness against noise.

Further, the transient time of the amplitude chimera is de-
picted as a function of the noise intensity D in Figs. 18(a) and
18(b) for two distinct repulsive coupling ranges and for the
coupling strengths ε = 1.8 and 1.9, respectively. The shaded
region corresponds to the stable AC state, while the unshaded
region corresponds to the transient AC state. It is evident from
Figs. 18(a) and 18(b) that the stable amplitude chimera state
loses its stability above the noise intensity 10−5 and 10−3 for
the coupling ranges r2 = 0.16 and 0.28, respectively, which
then manifests as a traveling wave. It is also evident from the
figure that the transient time (ttr ) decreases upon increasing
the noise intensity D [38]. Further, it is also observed that
the amplitude chimera at the smaller and larger coupling
ranges loses stability even at smaller noise intensities than the
amplitude chimera in the midrange of r2, where the spread
of the amplitude chimera is large (see Fig. 4). Thus the
amplitude chimera at the midrange of r2 is more stable than
the amplitude chimera at both extremes.

VIII. SUMMARY

In this work, we have investigated the emergence of sta-
ble amplitude chimera in a paradigmatic model of Stuart-
Landau oscillators that are coupled nonlocally with combined
attractive and repulsive couplings. The dynamical behavior
of the considered system was analyzed for distinct initial
conditions. We have reported the stabilization of amplitude
chimera due to the presence of nonlocal repulsive coupling.
In contrast with the earlier findings, the emergence of a stable
amplitude chimera state was reported even for a random
initial state while the stability of the corresponding dynamical
state was also analyzed using the Floquet multipliers. Further,
the transitions among the observed dynamical states were
delineated by finding the average number of inhomogeneous
oscillators. We have also reported that the transition among
the dynamical states displays hysteresis behavior as a function
of the coupling strength. The width of the hysteresis follows
a bell-shaped function with a Gaussian fit as a function of
the repulsive coupling range. The multistability regions were
analyzed using the probability of states with respect to distinct
initial states. We have also deduced the analytical stability
curve that delineates the oscillatory (amplitude chimera and
traveling wave) states from the death (multi-incoherent oscil-
lation death, cluster chimera death, cluster oscillation death)
states. Further, we have investigated the influence of the
nonisochronicity parameter and noise intensity on the stable
amplitude chimera. Increasing the nonisochronicity parameter
favors the stabilization traveling wave from incoherent death
via the stable amplitude chimera state. The stable AC loses its
stability while increasing the noise intensity, and the transient
time of AC decreases with an increase in the noise intensity.
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FIG. 19. Snapshots of stable amplitude chimera emerging from the network of different sizes for ε = 1.7. (a) N = 500, (b) N = 1000, (c)
N = 2500, and (d) N = 5000. Other parameters are the same as in Fig. 9.
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APPENDIX: STABLE AC FOR DIFFERENT
SIZES OF THE NETWORK

Snapshots of the variable xi are depicted in Fig. 19 for
different sizes N of the network to elucidate that the observed
stable amplitude chimera state is independent of the size of the

network. Further, even the structure of the amplitude chimera
(two-cluster amplitude chimera) remains unaffected by the
increase in the number of oscillators in the network, as is
evident from Figs. 19(a)–19(d) for N = 500, 1000, 2500, and
5000, respectively.
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