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Environment-induced symmetry breaking of the oscillation-death state
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We investigate the impact of a common external system, which we call a common environment, on the
oscillator death (OD) states of a group of Stuart-Landau oscillators. The group of oscillators yield a completely
symmetric OD state when uncoupled to the external system, i.e., the two OD states occur with equal probability.
However, remarkably, when coupled to a common external system this symmetry is significantly broken. For
exponentially decaying external systems, the symmetry breaking is very pronounced for low environmental
damping and strong oscillator-environment coupling. This is evident through the sharp transition from the
symmetric to asymmetric state occurring at a critical oscillator-environment coupling strength and environmental
damping rate. Further, we consider time-varying connections to the common external environment, with a
fraction of oscillator-environment links switching on and off. Interestingly, we find that the asymmetry induced
by environmental coupling decreases as a power law with increase in fraction of such on-off connections.
This suggests that blinking oscillator-environment links can restore the symmetry of the OD state. Last, we
demonstrate the generality of our results for a constant external drive and find marked breaking of symmetry in
the OD states there as well. When the constant environmental drive is large, the asymmetry in the OD states is
very large, and the transition between the symmetric and asymmetric state with increasing oscillator-environment
coupling is very sharp. So our results demonstrate an environmental coupling-induced mechanism for the
prevalence of certain OD states in a system of oscillators and suggests an underlying process for obtaining
certain states preferentially in ensembles of oscillators with environment-mediated coupling.
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I. INTRODUCTION

Complex systems has been a very active area of research
over the past few decades, initiated by the discovery that even
systems with low degrees of freedom can show a wide range
of dynamical patterns. For instance, two or more oscillators,
when coupled to each other can show completely synchro-
nized oscillations, in-phase or antiphase synchronized oscil-
lations, oscillation quenching to homogeneous steady states
or inhomogeneous steady states, with transitions between
different dynamical behaviours obtained by parameter tuning.

In general, oscillation quenching is categorized into homo-
geneous steady state (HSS) or amplitude death (AD) and inho-
mogeneous steady state (IHSS) or oscillation death (OD) [1].
AD refers to the situation where the coupled oscillator sys-
tems, under oscillation quenching, evolve to the same fixed
point. This type of quenching is relevant in laser systems
[2–4] and is important in situations involving stabilization
to a particular fixed point. A lot of mechanisms leading to
amplitude death have been found, such as time-delay in the
coupling [5,6], coupling via conjugate variables [7], intro-
duction of large variance of frequencies [8], and coupling
to a dissimilar external oscillator [9]. However, oscillation
quenching can give rise to oscillation death, a phenomenon
that is completely different from AD. Here the oscillators
split into two subgroups, around an unstable fixed point via
pitchfork bifurcations, generating a set of stable fixed points.
Oscillation death is very relevant to biological systems, as this
oscillation quenching mechanism can lead to the emergence
of inhomogeneity in homogeneous medium. So, for instance,

OD has been interpreted as a mechanism for cellular differ-
entiation [10,11]. Thus, a lot of research effort has centered
around transitions from AD to OD [12,13], and mechanisms
that steer the dynamics to the OD state have been investigated.
For example, OD can be achieved via parametric modulation
in coupled nonautonomous system [14], parameter mismatch
(i.e., detuning of parameters) in coupled oscillators [15,16],
and the introduction of local repulsive links in diffusively
coupled oscillators [17]. In a complementary direction, some
studies have also shown how OD states are eliminated when
gradient coupling is introduced in delay-induced OD [18].

Our work here focuses on oscillation quenching mech-
anisms that give rise to inhomogeneous steady states. Our
test bed will be a group of oscillators, coupled to a common
external system, which is dynamically very distinct from the
oscillators. This common external system provides a com-
mon “environment” and allows a group of oscillators to be
indirectly coupled via an external common medium. When
uncoupled, the oscillators have equal probability to go to
either of the OD states. However, we will show that this
system displays symmetry breaking when coupled. That is, a
specific oscillator-death state is preferentially achieved. This
state selection leads to asymmetric distribution of OD states in
the ensemble of oscillators, suggesting a natural mechanism
that allows the emergence of a favored set of fixed points.
Further, we will explore the effect of the oscillator group con-
necting to the environment through links that switch on and
off. We will demonstrate that blinking oscillator-environment
connections will remarkably work toward partial restoration
of the symmetry of the oscillator-death states, though the
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presence of some blinking connections reduces the symmetry
of the dynamical equations.

II. OSCILLATORS COUPLED VIA COMMON
ENVIRONMENT

In the context of many real-world systems, interactions
can occur through a common medium. For instance, chemi-
cal oscillations of catalyst-loaded reactants have been found
in a medium of catalyst-free solution, where the coupling
is through exchange of chemicals with the surrounding
medium [19]. Similarly, in the context of genetic oscillators
coupling occurs by diffusion of chemicals between cells and
extracellular medium [20–23]. Further, in a collection of
circadian oscillators, the concentration of neurotransmitter
released by each cell can induce collective behavior [24,25].

In general, such cases occur due to the common medium,
referred to as a common environment, interacting with the dy-
namical systems. So a model system mimicking this scenario
consists of N identical oscillator systems xi , i = 1, . . . , N

coupled through a (possibly time-varying) environment, de-
noted by variables u, whose most general dynamical equations
is given as

ẋi = fx(xi ) + εext g(u) (1)

and

u̇ = fu(u) + εext h(x1, x2, . . . , xn), (2)

where xi and u are the variables of the oscillators and the
environment, respectively [26]. For instance, in the case of
biological cells, this would be a vector whose components are
the concentrations of various biochemical species in cell and a
vector of concentrations of the relevant biochemical species in
the exterior of the cells, respectively. The coupling parameter
εext would reflect the ratio of the total intracellular volume to
the volume of the environment. The interaction of cells and
environment may occur through the diffusion and transport
of chemical species across the cell membranes or through the
effects of the activation of receptors on the cell membrane.
Now a variety of models of biochemical oscillators coupled
through an environment are described by equations of this
form [19–25,31–37]. So this framework unifies many specific
models of particular systems [26] and allows us to obtain some
basic general results which potentially apply to all of them.

Specifically in this work we will consider a collection of
Stuart-Landau oscillators [27] whose coupling is mediated via
a common external environment. The Stuart-Landau oscillator
is a generic two-dimensional oscillator of broad relevance.
Complex systems often undergo Hopf bifurcations, and suffi-
ciently close to such a bifurcation point, the variables that have
slower timescales can be eliminated. This leaves us with a
couple of first-order ordinary differential equations, popularly
known as the Stuart-Landau (SL) system.

So in this work we consider a group of N globally coupled
SL oscillators [i.e., xi = (xi, yi ) in Eq. (1)], with the oscilla-
tors within the group are coupled via the mean field x̄ of the x-
variable. Additionally, this oscillator group also couples to an
external common environment, denoted by a single-variable
u. The environment exponentially decays to zero, with decay
constant k, when uncoupled from the oscillator group, namely,

fu = −ku in the general dynamical equations. When coupled
to the oscillators, the environment provides an input to the
oscillators, as well as receives a feedback proportional to the
mean field ȳ of the y variables of the oscillators. The strength
of this feedback from the external system is given by the
coupling strength εext. So the complete dynamics of the group
of oscillators, along with the external environment, is then
given by the following evolution equations:

ẋi = (
1 − x2

i − y2
i

)
xi − ωyi + εintra(qx̄ − xi ),

ẏi = (
1 − x2

i − y2
i

)
yi + ωxi + εextu, (3)

u̇ = −ku + εextȳ.

Here ω is the angular frequency of oscillator and εintra re-
flects the strength of intragroup coupling, with x̄ = 1

N

∑N
i=1 xi

and ȳ = 1
N

∑N
i=1 yi . In this coupling scheme, q is a control

parameter for the mean-field interaction, describing the influx
and consequent influence of the mean field in the oscillator
group. A similar type of coupling mechanism was suggested
in the context of intercell communication of synthetic gene
oscillators via a small autoinducer molecule [33]. As q tends
to zero, the effect of the mean-field interaction decreases,
suppressing the oscillations of the coupled systems. The limit
q = 0 indicates no interaction between the oscillators (i.e.,
they are simply uncoupled oscillators with self-feedback),
while the limit q = 1 maximizes the interaction with the mean
field. At intermediate values of q the oscillators are driven to
AD/OD states.

So in our system the common external environment pro-
vides an indirect coupling conjoining the different oscillators
in the group, in addition to the direct coupling within the
group. Studies on the effect of an external environment on
coupled Stuart-Landau oscillators have revealed phenomena
such as the revival of oscillations in a group of oscillators
at steady state by coupling to an oscillating group via a
common environment [28], phase-flip transitions in a system
of oscillators diffusively coupled to the environment [29], and
coexistence of in-phase oscillations and oscillation death in
environmentally coupled oscillators [30].

In this work we will first explore in Sec. III the symmetry-
breaking effect of the common external environment on the
oscillatory patterns. Further, we will explore the spatiotempo-
ral effects of the time variation of the oscillator-environment
links in Sec. IV. Last, in Sec. V, we will demonstrate that
a constant common environment also leads to pronounced
symmetry breaking in the oscillator-death states, suggesting
the generality of our central result.

III. SYMMETRY BREAKING IN THE
OSCILLATOR-DEATH STATES

We first present the bifurcation sequence of the oscillators
as a function of the oscillator-environment coupling strength
εext. The values of εintra and q are fixed at 6.0 and 0.4 so
that uncoupled oscillators are in the oscillation-death state
in the absence of coupling to the environment. Here one of
the oscillator-death states has positive x and negative y, and
the other oscillator-death state has negative x and positive y

(cf. Fig. 1). We call the steady-state solution with x > 0 the
“positive state” and the steady state with x < 0 the “negative
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FIG. 1. Bifurcation diagram of x of one of the Stuart-Landau
oscillator in a group, with respect to the coupling strength εext of
the group with the environment [cf. Eq. (3)]. The diagram displays
the superposition of the system evolving from a large range of
random initial states, with xi, yi ∈ [−1, 1] and the environmental
variable u ∈ [0, 1]. The size of the circle represent the probability
of being in that state (positive or negative). Here we consider the
Stuart-Landau oscillators with parameters ω = 2.0, q = 0.4, and
εintra = 6.0 (namely, in the oscillator-death region when uncoupled
to the environment). The environmental damping constant k = 0.01
and the system size N = 20.

state.” In the bifurcation diagram in Fig. 1, the size of the
symbols represent the probability of being in that state, with
the probability estimated by sampling over a large number of
initial states.

It is evident from the figure that in the absence of cou-
pling to an external environment, the states of the group of
oscillators are symmetrically distributed between the positive
and negative states. That is, starting from generic random
initial conditions, the group of oscillators will have equal
probability to evolve to a positive state or a negative state.
So one typically observes an equidistribution of positive and
negative oscillators in a group of Stuart-Landau oscillators in
the oscillator-death regime, when uncoupled to the environ-
ment. This is evident from the bifurcation diagram, which
shows equal probability to be in either of the two OD states
at εext = 0 (as reflected by symbols of the same size in the
positive and negative states in the figure at εext = 0). This
behavior is also clear from the time series of the oscillator
group displayed in Fig. 2(a).

Interestingly, however, when the oscillator group is cou-
pled to the external environment we observe symmetry break-
ing in the oscillator-death states. Namely, the group of os-
cillators in the presence of the environment, preferentially
go to one of the oscillator-death states. So, typically we do
not obtain an equal number of positive and negative states.
Rather, there is now a pronounced prevalence of one of the
oscillator-death states.

This is evident from the bifurcation diagram, which shows
unequal probability to be in the OD states, especially at
large εext (εext > 0.1). This is reflected by symbols of the
different sizes in the positive and negative states in the figure
at large εext. Namely, it is clear that for high coupling strengths
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FIG. 2. Time series of 20 oscillators in the group (shown in
distinct colors), (a) in the absence of coupling to an external en-
vironment and (b) when the group is connected to the external
environment with coupling strength εext = 0.6, and k = 0.01.

an oscillator in the system has a much higher probability
of evolving to the negative OD state, as evident from the
significantly larger symbols for the negative states vis-a-vis
those representing the positive OD states.

This behavior is also clear from the time series of the
oscillator group displayed in Fig. 2(b), which shows the
oscillators preferentially evolving to one of the two OD so-
lutions. Interestingly, note that for a specific initial state all
oscillators may go to negative OD states in the symmetry-
broken parameter region, as seen in Fig. 2(b). Typically, for
low values of damping constant k, a large majority of initial
conditions evolve to a state where all oscillators go to one
of the OD states [cf. Fig. 2(b)], while for larger k most
initial conditions yield a state where oscillators occupy both
OD states but with one state preferentially occupied yielding
significant asymmetry as well.

Global stability of the oscillator-death states

Now linear stability analysis shows that both the OD states
are stable, which is consistent with the bifurcation diagram in
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FIG. 3. Basin stability of the positive oscillator-death state of
coupled oscillators with εext, where groups of oscillators of different
sizes N = 40, 60, 80, 100, 120 are shown in different colors. Here
the damping constant of the external environment is k = 0.2.

Fig. 1. However, the significant question here is the following:
Which state does an oscillator in the system evolve to, starting
from initial states that are far from the state? This depends
on the relative sizes of the basins of attraction of the states.
So we need to consider the global stability of the OD states
to understand the symmetry-breaking that emerges in the
system.

To gauge the global stability of an oscillator-death state,
say the positive state, we use the concept of basin stability. We
choose a large number of random initial conditions, uniformly
spread over phase space volume. For each initial state, we
calculate the fraction f + of oscillators that evolve to the
positive OD state. The average of f + over random initial
conditions 〈f +〉 yields an estimate of the basin stability of
the positive state and indicates the probability of obtaining the
positive oscillator-death state in a group of oscillators starting
from random initial conditions in the prescribed volume of
phase space. The most symmetric distribution, namely, half
the oscillators in the positive state and the other half in
the negative state, leads to a basin stability measure of 0.5.
Deviations from 0.5 indicate asymmetry in the distribution of
oscillator-death states, with a prevalence of the positive or
negative state. So the quantity 〈f +〉 serves as an order param-
eter for symmetry-breaking of the oscillator-death states.

It is clearly evident from Fig. 3 that there is a sharp
transition from a reasonably symmetric state (where 〈f +〉 is
close to 0.5) to a completely asymmetric state characterized
by 〈f +〉 ∼ 0 as εext increases. This suggests that the external
environment plays a key role in breaking the symmetry of the
oscillator-death state, as this phenomenon emerges only when
the oscillator-environment coupling is sufficiently strong, with
the sudden onset of asymmetry in the group of oscillators
occurring at a critical coupling strength. Further, it is clear
from Fig. 3 that the symmetry breaking of the oscillator-death
states is independent of system size N , over a large range of
system sizes.

Last, we analyze the effect of this symmetry-breaking in-
duced by the external environment. Now, the external system
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FIG. 4. Environmental steady state u� with respect to damping
constant k. Here the number of oscillators in the group N = 20 and
coupling strength of oscillators with external environment εext = 0.6.

is a damped system influenced by the mean field of the group
of oscillators, and it settles down to a fixed point u� when the
OD state becomes stable. This is easily seen as follows: When
the OD state is stable, ȳ is a constant. So the steady-state
solution of u is given by εextȳ/k. Denoting the x variable of
the positive OD state by x+ and the y variable as y+, and
denoting the x variable of the negative OD state by x− and the
y variable as y−, we have

ȳ = {f +y+ + (1 − f +)y−},
yielding

u� = εext{y+(2f + − 1)}
k

.

Further, from linear stability analysis of the dynamics of
the external system one can see that u� is a stable steady state,
as the derivative of the vector field governing u̇ is −k, which
is always negative for a damped external system.

It is also clearly evident from this analysis that if the
probabilities of obtaining the positive and negative OD states
are equal, i.e., f + = 0.5, then u� = 0. If the asymmetry is
extreme and f + ∼ 0, then we have u� = −{εexty

+}/k. Since
the positive OD state has x+ > 0 and y+ < 0, u� is positive.
Also notice that the value of u� is inversely proportional
to damping constant k (cf. Fig. 4). So a strongly damped
environment evolves to u� close to zero, as is intuitive.

One can thus conclude that the state of the environment
u� is strongly correlated to the asymmetry. In fact, simply
observing u� tells us if the symmetry-breaking in the group
of oscillators is pronounced or not.

Note that the above can also be rationalized by the fact that
the damping constant k controls how fast the external system
decays. For high k, the intrinsic damping of the environment
is much more significant than the influence of the oscillator
group, and so the external system rapidly decays to u� = 0.
However, for very small damping k, the feedback from the
oscillator group drives the environmental variable to a finite
steady state (cf. Fig. 4), which in turn drives the asymmetry in
the OD state.
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IV. EFFECT OF BLINKING CONNECTIONS

In the section above we considered the effect of the external
environment on a group of oscillators, when the external
system was connected to all oscillators at all times, and we
clearly demonstrated that this leads to marked asymmetry
in oscillator-death states. This is in contradistinction to the
case where the group of oscillators are not connected to an
external system, which leads to complete symmetry in the
oscillator-death states. Now we will consider the effect of
oscillator-environment connections blinking on-off and ex-
plore the effect of such time-varying links on the symmetry
of the oscillator-death states.

To model connections to the environment blinking on and
off, we consider a time-dependent oscillator-environment cou-
pling strength in Eq. (3), with the feedback from the oscillator
group to the external system given by ȳ = 1

N

∑N
i=1 gi (t )yi . If

the connection of an oscillator to the environment is constant,
gi (t ) = 1 for all t . Such a link is considered a time-invariant
nonblinking connection. If the connection of the ith oscillator
in the group and the external system periodically switches on
and off, namely, the link is a blinking connection, gi (t ) is a
square wave. When oscillator i in the group is connected to
environment gi (t ) = 1, otherwise gi (t ) = 0. So gi (t ) switches
between 0 (off) and 1 (on), with time period Tblink, which
provides a measure of the timescale at which the links vary.
Here we will principally consider rapidly switching links, i.e.,
low Tblink.

One of the most important parameters in this time-varying
scenario is the fraction of blinking oscillator-environment
connections in the group, which we denote by fblink. If all
oscillators are connected to the external, then fblink = 0 and
if all connections are blinking, then fblink = 1. Here we will
study the entire range 0 � fblink � 1 and gauge the effect of
the fraction of blinking connections on the symmetry of OD
state. Notice that the presence of connections switching on-off
in a subset of oscillators results in the dynamical equations
of the oscillator groups being less symmetric, as the group
splits into two subsets having distinct dynamics. So it is most
relevant to investigate if this lack of symmetry in the dynam-
ical equations leads to more asymmetry in the steady states.
However, what we will demonstrate in this section is the
following result: Counterintuitively, blinking links partially
restore the symmetry of the emergent oscillator-death states.

Figure 5 shows the basin stability of the positive oscillator-
death state, as a function of the fraction fblink of oscillators
with blinking connections to the environment. We find that
when there are no blinking links, namely the connections
of the oscillators to the external system are always on, the
emergent state is the most asymmetric. That is, the deviations
of the basin stability from 0.5 is the most pronounced for
fblink = 0. Increasing the number of blinking connections
reduces the asymmetry and restores the symmetry of the
oscillator-death states to a large extent, yielding states that are
almost equidistributed between positive and negative states.
The transition from the asymmetric state (where 〈f +〉 ∼ 0) to
a more symmetric state (where 〈f +〉 is significantly different
from 0) occurs sharply at a critical fraction of blinking links,
which we denote by f c

blink. Further, it is evident from Fig. 5
that the symmetry breaking dynamics of the system, and f c

blink
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FIG. 5. Dependence of the basin stability of the positive
oscillator-death state 〈f +〉, on the fraction of oscillators fblink with
blinking oscillator-environment connections in the group. Different
system sizes N = 40, 60, 64, 100 are shown in different colors.
Here the time period of the on-off blinking Tblink = 0.02, oscillator-
environment coupling strength εext = 0.5, and the damping constant
of the environment k = 0.2.

in particular, is independent of number N of oscillators in the
group.

Figure 6 shows the dependence of the basin stability of
the positive oscillator-death state on the fraction of oscillators
with blinking oscillator-environment connections fblink, and
the oscillator-environment coupling strength εext. It is evident
that for weaker coupling strengths the group of oscillators
evolve to the positive and negative OD states with almost
equal probability, i.e., 〈f +〉 is quite close to 0.5. However,
for strong coupling strengths, there is a sharp transition from
a very asymmetric situation (where 〈f +〉 ∼ 0) at low fblink,
to a more balanced situation (where 〈f +〉 is closer to 0.5) at
high fblink. Further, one observes that a system with a large
fraction of blinking connections does not become markedly
asymmetric even for large coupling strengths, i.e., 〈f +〉 is
not close to 0 even for εext close to 1. However, in a system
with few blinking connections, there is a sharp transition to
asymmetry for sufficiently high coupling strengths.

We will now focus on the effect of the dynamical features
of the common environment on symmetry breaking of the OD
state. Note that the common environment, when uncoupled
to the oscillator group, is an exponentially decaying system
u = u0e

−kt , where u0 is the amplitude at time t = 0 and k is
the damping rate.

Figure 7 shows the probability of obtaining the positive
oscillator-death state, as the fraction of oscillators with blink-
ing connections is varied, for different environmental damping
constants k. It is evident that at high environmental damping
rates, the effect of environment is less pronounced, and the
oscillator-death states are selected with almost equal proba-
bility. However, there is pronounced asymmetry in OD states
when the damping rate of the environment is low, with critical
f c

blink tending to 1 as k increases.
Further we estimate the probability of an oscillator to be in

the positive oscillator-death state, for the case of the subgroup
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FIG. 6. Basin Stability of the positive Oscillator Death state,
(a) as a function of fraction of oscillators with blinking oscillator-
environment connections fblink, for coupling strength εext = 0.2
(green dotted) and εext = 0.6 (blue solid), and (b) as a function
of oscillator-environment coupling strength εext, for fblink = 0.25
(green solid) and fblink = 0.75 (blue dotted). Here the time period
of blinking Tblink = 0.02, the damping constant of the environment
k = 0.2 and N = 64.

of oscillators with blinking links to the environment [see
Fig. 8(a)], and for the case of the subgroup of oscillators
with static links to the environment [see Fig. 8(b)]. For low
environmental damping rates, there is a sharp boost in the
probability of oscillators to be in the positive OD state in the
subgroup of oscillators with blinking oscillator-environment
connections, at a critical f c

blink (e.g., f c
blink ∼ 0.3 for k = 0.2

and f c
blink ∼ 0.9 for k = 0.1.). For the case of the subgroup

of oscillators with static oscillator-environment connections,
the probability of obtaining the positive oscillator-death state
remains quite invariant. This implies that the subgroup of
oscillators with blinking connections to the environment is the
group that is vital to the restoration of symmetry.

Figure 9 shows the dependence of the fraction of oscillators
in the positive oscillator-death state on the damping con-
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FIG. 7. Basin Stability of the positive Oscillator Death state on
the fraction of oscillators with blinking connections fblink, for envi-
ronmental damping constant k = 0.1 (red dashed), k = 0.2 (green
solid) and k = 1.0 (blue dotted). The time period of blinking Tblink =
0.02, oscillator-environment coupling strength εext = 0.5 and num-
ber of oscillators in the group N = 64. To estimate the Basin
Stability we randomly sampled u0 ∈ (0, 1], for each k.

stant k of the environment, for different fractions of blinking
connections. It is evident that at low damping constants,
there are very few oscillators in the positive OD state. On
increasing the damping constant of the environment there is
a sharp jump in the fraction of oscillators in the positive OD
state. So there is a sudden transition from a very asymmetric
state, where the fraction of oscillators in the positive OD
state is close to zero, to a more symmetric state, where this
fraction is close to half. The critical k where this jump occurs
depends upon the number of blinking oscillator-environment
links. When there is a higher fraction fblink of blinking
connections in the system, the critical k is lower, i.e., the
jump to a more symmetric situation occurs at lower damping
constants.

Further, we estimate the value of damping constant k where
〈f +〉 crosses a threshold value of 0.1 (with no loss of general-
ity), denoted by kc. This critical value indicates the damping
constant below which significant symmetry-breaking of the
oscillator-death states occurs. Figure 10 shows critical kc

as a function of the fraction of blinking connections fblink.
The critical damping kc decreases with increasing fraction
of blinking connections fblink. Specifically, in a large range
of fblink we find that kc decreases linearly with fblink (see
Fig. 10). This demonstrates that low environmental damping
favours enhanced asymmetry, while more blinking connec-
tions tends to restore the symmetry of the OD states.

The fraction of oscillators in the positive oscillator-death
state, in the parameter space of k and εext, is displayed
in Fig. 11, for different fraction of blinking oscillator-
environment connections. The black regions in the figures
represent the asymmetric state. Clearly, low environmental
damping k and high oscillator-environment coupling εext

yields the greatest asymmetry in the emergent oscillator-death
states.
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FIG. 8. Probability of obtaining the positive Oscillator Death
state for the sub-group of oscillators with (a) blinking oscillator-
environment connections, denoted by p+

blink, and (b) static oscillator-
environment connections denoted by p+

static, as a function of the
fraction of oscillators with blinking connections fblink. Here the time
period of blinking Tblink = 0.02, the oscillator-environment coupling
strength εext = 0.5, number of oscillators in the group N = 64, and
the environmental damping constant k = 0.1 (red dashed), k = 0.2
(green solid) and k = 1.0 (blue dotted).

Now we focus on the line of transition from high 〈f +〉 to
low 〈f +〉, shown in Fig. 12. We find that k is proportional
to ε2

ext along the lines of transition, with the proportionality
constant depending on the fraction of blinking oscillator-
environment connections (see inset). Interestingly, comparing
Fig. 10 and the inset of Fig. 12 reveals that both have the same
dependence on fblink, and the proportionality constant is equal
to 4kc. This implies that the line of transition to asymmetry in
the space of k-εext is given by

k = 4kc ε2
ext, (4)

where kc is inversely proportional to the fraction of blinking
connections fblink.

0.0 0.2 0.4 0.6 0.8 1.0
k
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0.3

0.4

0.5

f
+

FIG. 9. Basin Stability of the positive Oscillator Death state, as a
function of the damping constant k of the environment. Here time
period of blinking Tblink = 0.02, oscillator-environment coupling
strength εext = 0.5 and the number of oscillators in the group N = 64
and the fraction of blinking oscillator-environment connections are:
fblink = 0.25 (red dotted), fblink = 0.50 (green solid) and fblink =
0.75 (blue dashed).

The environmental steady state u� with respect to the
fraction of oscillator-environment blinking connections, is
shown in Fig. 13, for different damping constants. It is clear
that as the fraction of blinking connections tends to one,
the state of the environment u� tends to zero. Consequently,
the symmetry of the system is restored and the two OD
states are almost equally preferred when almost all links are
blinking.
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FIG. 10. Critical value of damping constant kc vs. fraction of
blinking oscillator-environment connections fblink. Here the time
period of blinking Tblink = 0.02, oscillator-environment coupling
strength εext = 0.5 and number of oscillators in the group N = 64.
The data points from numerical simulations are in blue, and the curve
given by equation: kc = k0

c − c fblink, for k0
c ≈ 0.26 and c ≈ 0.16, is

shown in red.
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FIG. 11. Basin stability of the positive oscillator death in the
parameter space of oscillator-environment coupling strength εext

and environmental damping constant k. The fraction of blinking
oscillator-environment connections are: (a) fblink = 0.0 (i.e., the
static case), (b) fblink = 0.25, (c) fblink = 0.50, (d) fblink = 1.0. The
time period of blinking Tblink = 0.02 and the number of oscillators in
the group N = 64.

Effect of the frequency of blinking on oscillation death

In the results discussed above the time period of the
blinking connections was small, i.e., the links switched on-off
rapidly. Now we will investigate the influence of the time-
period Tblink of the blinking oscillator-environment connec-
tions on the dynamics. Figure 14 displays the effect of increas-
ing blinking time-period on the state of the oscillators. It is
evident from the time-series of the oscillators [cf. Fig. 14(a)]
that after a critical blinking time-period the system starts to
oscillate and the OD steady state is destroyed. That is, slow
blinking of links leads to oscillation revival. This is also quan-
titatively demonstrated in Fig. 14(b), which shows the ampli-

0.1 0.2 0.3 0.4 0.5 0.6
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0.0

0.1
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0.3

0.4

k 0.00 0.25 0.50 0.75 1.00
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0.25

0.50

0.75

1.00

1.25

a

FIG. 12. Transition line in Fig. 11, fitted to the curve (solid
lines): k = aε2

ext, where the different curves correspond to fblink =
0.0, 0.25, 0.50, 0.75, 1.0 from top to bottom. The inset shows the
variation of a with fblink.

0.0 0.2 0.4 0.6 0.8 1.0
fblink

0

2

4

6

8

10

u

FIG. 13. Environmental steady state u� with respect to the
fraction of oscillator-environment blinking connections, for damp-
ing constant k = 0.08 (red dotted), 0.12 (green solid), 0.16 (blue
dashed). Here the number of oscillators in the group N = 64 and
coupling strength of oscillators with external environment εext = 0.5.

tude of the oscillators. Clearly up to Tblink ∼ 0.1 the amplitude
is zero and one obtains a oscillator-death state. However, when
Tblink increases further, the amplitude grows from zero to a
finite value, indicating the emergence of oscillations whose
amplitude increases with Tblink. After a large value Tblink (∼10)
the amplitude of the oscillations saturate to a maximum value
[cf. Fig. 14(b)]. We find that this maximum amplitude is the
difference between the steady state solution of the oscillator
for the case of εext = 0 (i.e., when uncoupled from the external
system) and the steady state arising for εext > 0 (i.e., when
the oscillator group is coupled to a common environment).
So the oscillator moves periodically between the two steady
state solutions when the blinking is slow enough to allow the
system to reach the two distinct steady states during the on
and off period, respectively.

Further, notice that there are two distinct transitions to
oscillation revival. This first occurs around Tblink ∼ 0.1, with
fixed states transitioning to nonzero amplitude oscillations,
saturating around amplitude ∼0.2. The second transition com-
mences around Tblink ∼ 2π/ω, where the amplitude starts
to grow rapidly again, from amplitudes around 0.2, to the
maximum amplitude.

V. CONSTANT COMMON ENVIRONMENT

We have shown the effect of exponentially decaying exter-
nal environment on the OD state and the effect of blinking
connections. This mimics a situation where the external envi-
ronment is a small bath, and so the dynamics of the oscillator
group affects the dynamics of the common environment. In
this section, we will consider a common external environ-
mental system mimicking a large bath, where the external
environment does not get affected by the oscillator group.
Rather it acts as a constant drive, which we denote by uc. The
strength of this oscillator-external drive connection is given
by the coupling strength εext. So the complete dynamics of the
group of oscillators is now given by the following evolution
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FIG. 14. (a) Time series of one of the oscillators in group for
Tblink = 0.02 (red), 200.0 (blue), and (b) amplitude of the x-variable
for different Tblink. Here N = 20, fblink = 0.1, εext = 0.6, and
k = 0.01.

equations:

ẋi = (
1 − x2

i − y2
i

)
xi − ωyi + εintra(qx̄ − xi ),

ẏi = (
1 − x2

i − y2
i

)
yi + ωxi + εextuc, (5)

where x̄ = 1
N

∑N
i=1 xi .

Figure 15 shows the fraction of oscillators in positive
oscillator-death state, in the parameter space of uc and εext.
Different panels correspond to different fraction of blinking
connections, and the black regions in the figures represent
the asymmetric state. It is evident that even for the case of
constant drive, the symmetry of the oscillator-death state is
broken, and the system moves preferentially to the negative
state. Interestingly, for constant negative drive, i.e., uc < 0,
the positive oscillator -death state is preferentially selected.
This further indicates the generality of our observations, and
emergence of symmetry-breaking in a group of oscillators due
to coupling to a common external system.
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FIG. 15. Basin stability of the positive oscillator-death state in
the parameter space of coupling strength εext and constant environ-
ment (uc), with fraction of blinking oscillators (a) fblink = 0.0, (b)
fblink = 0.25, (c) fblink = 0.50, (d) fblink = 1.0. Here the time period
of blinking T = 0.02 and the number of oscillators in the group
N = 64.

VI. CONCLUSION

We investigated the impact of a common external system,
which we call a common environment, on the oscillator-
death states of a group of Stuart-Landau oscillators. First,
we consider external systems that exponentially decay to
zero when uncoupled from the oscillator group. Note that a
group of oscillators yield a completely symmetric oscillator-
death state when uncoupled to the external system, i.e., the
positive and negative OD states occur with equal probability,
and so in a large ensemble of oscillators the fraction of
oscillators attracted to the positive or negative state is very
close to half. However, remarkably, when coupled to a com-
mon external system this symmetry is significantly broken.
This symmetry breaking is very pronounced for low envi-
ronmental damping and strong oscillator-environment cou-
pling, as evident from the sharp transition from the sym-
metric to asymmetric state occurring at a critical oscillator-
environment coupling strength and environmental damping
rate.

Further, we consider a group of oscillators with time-
varying connections to the common external environment. In
particular, we study the system with a fraction of oscillator-
environment links that switch on-off. Interestingly, we no-
ticed that the asymmetry induced by environmental coupling
decreases as a power law with increase in fraction of such
on-off connections. This suggests that blinking oscillator-
environment links can restore the symmetry of the oscillator-
death state.

Last, we demonstrated the generality of our results for
a constant external drive, i.e., a constant environment, and
found marked breaking of symmetry oscillator-death states
there as well. When the constant drive is large, the asymmetry
in OD-state is very large, and the transition between the
symmetric and asymmetric state, with increasing oscillator-
environment coupling, is sharp.
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In summary, we have shown the existence of a pro-
nounced breaking of symmetry in the oscillator-death states
of a group of oscillators induced by a common external
environment. So our results demonstrate an environment-

mediated mechanism for the prevalence of certain states in
a system of oscillators, and suggests an underlying process
for obtaining certain states preferentially in ensembles of
oscillators.
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