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We consider the two-dimensional Gross-Pitaevskii equation describing a Bose-Einstein condensate in an
isotropic harmonic trap. In the small coupling regime, this equation is accurately approximated over long times
by the corresponding nonlinear resonant system whose structure is determined by the fully resonant spectrum of
the linearized problem. We focus on two types of consistent truncations of this resonant system: first, to sets of
modes of fixed angular momentum, and, second, to excited Landau levels. Each of these truncations admits a set
of explicit analytic solutions with initial conditions parametrized by three complex numbers. Viewed in position
space, the fixed angular-momentum solutions describe modulated oscillations of dark rings, while the excited
Landau level solutions describe modulated precession of small arrays of vortices and antivortices. We place our
findings in the context of similar results for other spatially confined nonlinear Hamiltonian systems in recent

literature.
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I. INTRODUCTION

Rich and complex dynamical phenomena often emerge
when nonlinear waves are subject to spatial confinement. In
the absence of dispersal to infinity, wave interactions are
reinforced for an unlimited duration of time, giving the system
ample opportunities to develop sophisticated traits in its evo-
lution. Such features are especially pronounced for systems
with fully resonant linearized spectra of frequencies. In this
case, resonant interaction may generate elaborate dynamical
phenomena for arbitrarily small nonlinearities, provided that
one waits long enough.

The two-dimensional Gross-Pitaevskii equation for a Bose-
Einstein condensate in a harmonic trap is an exemplary
representative of the type of nonlinear dynamics we have
just described. While it is of real-world significance as a
model of effective dynamics of cold atomic gases [1-3], it is
also fascinating from a purely mathematical perspective for
its combination of phenomenological complexity and rigid
algebraic structure.

The linearized spectrum of the Gross-Pitaevskii equation is
simply the perfectly resonant evenly spaced energy spectrum
of the harmonic oscillator, ensuring that significant nonlinear
effects survive down to arbitrarily small values of the cou-
pling parameter. Focusing on the small coupling asymptotics,
one applies the time-averaging method, which generates the
corresponding resonant system [4,5]. The resonant system is
a simplified infinite-dimensional Hamiltonian system accu-
rately describing the original equation in the weakly nonlin-
ear regime. It possesses extra structure and extra conserved
quantities relative to the Gross-Pitaevskii equation.

In our previous work [5], we focused on the consistent
trucation of the resonant Gross-Pitaevskii system to the lowest
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Landau level which comprises only modes with maximal
angular momenum at each energy level. We showed that the
resulting lowest Landau level equation [4,6,7] admits explicit
solutions describing a modulated precession of a single vortex
around the center of the harmonic trap. Our purpose in the
present article is to demonstrate that a similar picture emerges
for two other types of consistent truncations: first, to sets of
modes of fixed angular momentum, and, second, to excited
Landau levels.

The solutions we present are part of a bigger story that has
emerged in recent studies of weakly nonlinear dynamics of
resonant PDEs. The resonant system of the Gross-Pitaevskii
equation shares its structure [8] with various resonant systems
emerging in anti—de Sitter (AdS) space-time [9—13], in par-
ticular those studied in relation to the AdS stability problem
[14-16]. This is no coincidence as the Gross-Pitaevskii equa-
tion can be seen as a nonrelativistic limit of AdS wave equa-
tions [13]. Some of the resonant systems we have mentioned
admit special solutions very similar to the ones we shall
present in this paper and to the ones presented in Ref. [5]. This
alludes to a common underlying pattern that shall be described
elsewhere [17]. We also mention the cubic Szegd equation
introduced in Ref. [18] as an integrable model of turbulent
energy transfer. This equation is algebraically very similar to
the class of resonant systems that we focus on and possesses
extremely rich dynamics which is analytically tractable due to
its complete integrability.

We shall now proceed with our main exposition, split into
three sections. The first section reviews the Gross-Pitaevskii
equation and the construction of its resonant system, first
studied in detail in Ref. [4], while the second and third
sections present the solutions in the fixed angular momentum
and excited Landau level truncations, which are the main
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target of our work. Important identities involving Laguerre
polynomials and crucial for the construction of our solutions
are given in appendices.

II. THE GROSS-PITAEVSKII EQUATION
AND ITS RESONANT SYSTEM

The Gross-Pitaevskii equation
1,0 =1(—0; =+ x>+ Y)W+ gWP¥ (D)

describes the evolution of the Bose-Einstein condensate wave
function W(z, x, y) subject to an external harmonic potential
(x% + y?)/2 referred to as the “trap.” (It is understood that
in real-world implementations the condensate is narrowly
confined in the remaining z direction.) The condensate self-
interaction is characterized by the dimensionless coupling
constant g. We shall focus on studying this equation at small
values of the coupling 0 < g < 1 (the sign of the coupling in
fact does not affect the weakly nonlinear dynamics).

Equation (1) enjoys a large group of symmetries, known
as the Schrodinger group [19,20], which is in fact isomorphic
to the symmetry group in the absense of any potential. This
group includes boostlike generators (an analog of Galilean
boosts) that permit, for example, boosting a static solution
along classical harmonic oscillator trajectories [21]. We shall
see below that extra symmetries emerge in the weakly nonlin-
ear limit.

The linearized problem (g = 0) corresponding to (1) is an
ordinary two-dimensional isotropic harmonic oscillator with
eigenvalues E, = n 4 1 and normalized eigenfunctions (see,
e.g., Ref. [22]) given by

[1((n —|m)/2)! 2
W= ;—EEZ+:Z:;§2;!r'""L‘iﬂim%(rz)e”ﬂe”""’. )

Here the energy level index n is a non-negative integer and the
angular-momentum index m € {—n, —n +2,...,n —2,n}.
The generalized Laguerre polynomials L% (x) can be defined
through the generating function

Ix

e 11

(1 _t)a+l' )

Golt,x) =Y t"L(x) =
n=0

They are orthogonal with the weight x*e™ on the interval
0<x <o0.

As noted in the Introduction, because the linearized solu-
tions oscillate with integer frequencies, there are many reso-
nances and effects of nonlinearities survive down to arbitrarily
small coupling values. In such situations, naive expansion of
solutions in powers of g leads to growing “secular” terms that
invalidate the naive perturbative expansion at times of order
1/g. In order to capture the interesting weakly nonlinear dy-
namics, which happens precisely on timescales of order 1/g,
an alternative treatment is needed, and the time-averaging
method [23] provides a convenient framework. We shall only
present a quick practical summary of the time averaging here,
referring the reader to Ref. [23] for justification and proofs.
One starts by expanding the exact solution W in terms of the

linearized solutions

W(t,r, @)=Y (1) e E Wy (1, ). )

Substituting (4) into (1), one gets

da .
. nm. E mmymoms =, —iEt
l dt =8 Cnnlnzng a’llmlanzmzan3m3e ’ (5)
ni,ny,n3 =0
m-+my =my +m3

where £ = E, + E,, — E,, — E,, and we have introduced

mmiymayms __
Cnnlnzn3 - / "Ijnmqln]m]\pnzmz \Ijmm3 rdr d¢, (6)

which quantify the mode couplings and shall be called the
interaction coefficients. The terms with £ = 0 correspond to
resonant interactions while those with £ £ 0 are nonresonant.
Time-averaging amounts to introducing the slow time T = gt
and discarding in (5) all nonresonant terms, which oscillate
rapidly in terms of 7. The resulting equation (called the time-
averaged or the resonant system) takes the form

T — Z c

n—+np =ny+n3
m+m; =my +m3

mmmoyms ~
nninans anlmlanzmzansms ’ (7)

where from now on an overdot denotes d/dt.

Standard mathematical results on time averaging [23] guar-
antee that solutions of (7) approximate solutions of (1) with
arbitrarily high precision on timescales of order 1/g for suf-
ficiently small coupling. (By contrast, on longer timescales,
for example, 1/g2, the two equations do not have to agree,
and this is what leaves room for simplifications in the time-
averaged system relative to the original equations.) While
textbook discussions such as Ref. [23] typically phrase their
proofs in the context of finite-dimensional systems, a mathe-
matical analysis of the validity of time-averaging specifically
adapted to nonlinear Schrédinger equations (of which the
Gross-Pitaevskii equation is an example) can be found in
Ref. [24]. General properties of the resonant system (7) have
been analyzed in Ref. [4]. In particular, it was shown in
Ref. [4] that (7) enjoys many conservation laws, some of
which have no counterparts for the original equation (1),
and hence they are only approximately conserved by (1),
though the precision of their conservation becomes arbitrarily
good for small coupling. We shall see below the restrictions
imposed by these general conservation laws on the specific
truncations of (7) we are interested in.

We note that because the n- and m-conservation conditions
present in the sum in (7), the equation can be consistently
truncated to any set of modes satisfying An + Bm = C with
arbitrary numbers A, B, C. If only modes satisfying this
relation are nonzero in the initial state, then no other modes
will get excited in the course of evolution. We are specifically
concerned with two types of such truncations. First, we can
retain only modes of some fixed angular momentum m = p,
which without loss of generality we shall assume to be non-
negative. Second, we can retain modes with n —m = 2L,
where L is referred as the “Landau-level” number. (The
lowest Landau level has previously received a good amount
of attention, including treatments along our present lines in
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FIG. 1. Truncations of the tower of modes of the two-
dimensional Gross-Pitaevskii equation to fixed angular momentum
(vertical groups of modes) and Landau levels (diagonal groups of
modes).

Refs. [5,7].) The two types of truncations are depicted in
Fig. 1.

III. SOLUTIONS FOR ANGULAR
MOMENTUM TRUNCATIONS

To deal with the resonant system (7) truncated to modes
of angular momentum p, we introduce the following notation
for the relevant modes:

|
B = ” (n_’;l_—u)' Qpt2n, s (8)

while setting all other modes to zero. With these specifica-
tions, (7) reduces to

oo n+j

ZZSW n+j— kﬂ]ﬂkﬂn+] ks 9

Jj=0 k=0

(ﬂ+u)'

where
o0

Snjki = / dp e p* L (p)LY (0)L] (0)LE (). (10)
0

(Throughout the article, we ignore in (9) and further equations
derived from it purely numerical factors that can be absorbed
in a redefinition of time.)

The integral in (10) can in principle be evaluated by
substituting explicit expressions for the Laguerre polynomials
given by

Loy = (-1
k=0

Ko=)k +0)!” (1n

and evaluating the remaining integrals of the form
[dpp*e™ . The resulting expression is, however, a
quadruple sum with summation ranges depending on n,
j» k, and I. We have not been able to bring this sum to
a manageable form that could be employed in explicit
derivations. Instead, our subsequent analysis will rely directly
on the integral representation (10) and identities satisfied by
the Laguerre polynomials.

Note that the fixed angular-momentum truncation to wave
functions of the form W(r,t)e'*? is equally valid in the

Gross-Pitaevskii equation (1). This is in contrast to the lowest
Landau-level truncation of Ref. [5], and the excited Landau
level truncations we shall consider below, which hold exactly
only within the resonant system (7). One simply substitutes
W(r, 1)et*? into (1), which results in a radial Gross-Pitaevskii
equation with the effective potential 7> 4+ u?/r2, sometimes
referred to as the “pseudoharmonic oscillator” potential [25].
The two-dimensional Gross-Pitaevskii resonant system (9)
can be alternatively viewed as the resonant system of this
effective one-dimensional radial equation. We remark paren-
thetically that all the formulas we present below hold for any
real positive values of p (even if only integer values arise
starting from the two-dimensional Gross-Pitaevskii equation),
provided that factorials x! are replaced by the gamma func-
tions I'(x + 1).

As follows from general considerations of Ref. [4], the
resonant system (9) respects conservation of the following
quantities: the particle number

(n + u)
N = Z 1B, (12)
the “linear energy”
(n+M)
E = Z( + D= 1Bul’. (13)
n=0
the Hamiltonian
oo n+j
H=Y"" SycntjkBBiBibBurjt: (14
n,j=0 k=0
and
n+14+pw)!
= , 15
; G Dyr P (15)

Motivated by considerations of similar systems in

Refs. [5,12,13], we shall now look for special solutions
of (9) and (10) in the form
a(t)n
Bu(t) = [b( )+ T][p( i, (16)

where a, b, and p are complex-valued functions of time.
While it is by no means obvious that this ansatz provides a
consistent truncation of (9) and (10), this can be demonstrated
with the use of the following identities:

%S' P G0 L G ANV T DL
k=0 N TR TR
S Sy g = CL WG WD) g
k=0 njk.n+j—k = 22u+1 (M!)zn!j! T
n+j
>k + j = K)Sujkns ik
k=0
_Cw! (4w + )
= Dot (untj!
y |:(n+])(n+] — 1) 142 nj} .
s AT+ )

Proofs of these identities are given in Appendix A.
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Substituting (16) into (7) and using the above summation
identities results in a statement that two quadratic polynomials
in n equal each other. Equating the coefficients of these
polynomials results in three first-order ordinary differential
equations for the three functions a(t), b(t), and p(7):

1 8ib
(1 +p) (14 y)y>n

|b? , __}
=8 TSy U@ bo-tdb
[(1 + )1 +y)+( +Q2+w)y)lal”+abp+abp

+ ap2+ w1+ labp + 2+ 3+ wylal*l,
(20)
8ia

2 TIbI
+ @G+ 6,00 + 2+ wylal” + }
I1+y
2h

8ip =ua b +A+pwyap|, (22)
I+y

(14 y)y>tr

where we have rescaled the time v — (2u)!/[22%F1(u)]t
and introduced an auxiliary quantity

. |p|?
1—|pl?
Within the ansatz (16) the conserved quantities take the
form:

(23)

N
(1 + p)(1 + y)y>+r

= (abp + abp) + (1 + (1 + 2)y)lal*

(I+w)(A+y)
E
(14 p)d 4 y)>+#
1+ +w)y

= a2+ b+ abs
T 00 1y + 2+ @+ wyl@bp +abp)

+ 24+ @ +4p)y + 6+ 51+ pHy al’,  (25)

Z —-{ LI
C+rwd+ye  Plerwa+y ~ 7

+ [2+(3+M)y]|a|2}

1+ @2

+ 2+ wpy a 26)
C+w)d+y)

The Hamiltonian can be expressed as

2u)! 2
ZL N2_i52 , 27)

P R IO
where

S =1+ + plal’. (28)

Using the above conservation laws, one can simplify the
system (20)—(22) to the form

8ib =8Nb+2 + wWp(l + y)E=N + S)—(1+p)yZla,

(29)
81+ wyia =[A10+8u)N — 3+ w)E
+ (A1 +w@+wpZla, (30)
81 +y)ip=z— EXSTRN 31)
1+ p

This system can be integrated by first solving equation (31)
and then substituting p(7) into Egs. (30) and (29), which
yields two linear equations for a(7) and b(t). Here we write
only the solution for y(t), which is remarkably simple. It
follows from (31) that

¥ = (14 yY[Im(Zp)P. (32)

Using the conservation laws, we find that the right-hand
side of (32) is a quadratic function of y with coefficients
depending of N, E, and S. The equation thus looks like energy
conservation of a harmonic oscillator in the y direction and is
integrated as

y(r) = Asin(Qt 4+ 0) + B, (33)

with

_ VSN = SUE = N)(E + pN) — 2+ p)S?]
N 32(1 + p)32Q2

B (1+u)NE—N+S)+2S[E—N — 2+ n)S]
B 64(1 + 1 )?Q?
1 8+4un
Q=- N2+ — "2
8\/ (14 p)?

Through the conservation laws (24), (25), and (28), the pe-
riodic behavior of y(¢) is transferred to |a(?)|?, |b(¢)|?, and
Re(abp) and hence to the mode spectrum

2 Re(ab al?
#;1 + %n2]|p|2ﬂ. 37)
Ipl Ipl

A (34)

(35)

(36)

1Bul* = [|b|2 +

The turning points of the oscillations of y(¢), given by yy =
B + A, provide lower and upper bounds for the inverse and
direct cascades of energy, respectively. Using (34) and (35),
and following the strategy of Ref. [12], we obtain a rough
bound,

1 6421\ >
+y+<( + M>’ (38)

T+y. “\1+u
which proves that the transfer of energy to high modes is
uniformly bounded.

The special case A = 0 corresponds to stationary solutions
for which |8,|? are constant. For such solutions,

Bu(r) = A, e idmemr, (39)

where the amplitudes A, are time independent and the param-
eters A and w are real valued. Within the ansatz (16) they take
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the form

b(t) = Be ",

—i(A—w)T

a(t) =ye p(r) = ge'"

(40
Thanks to the phase rotation symmetries of the resonant
system (9) B, — €%, and B, > €"?B,, one can assume
without loss of generality that the parameters 8, y, g are real
valued. Substituting (40) into the system (20)—(22), we get
an algebraic system which has four two-parameter families of

solutions:

(@ B=c,

1—
(b) ﬁquv Yy =—C ]_:,’v
A= 24,
- 4(1 q2)‘+" (1+ll)2 )

(cx) B =511+ G +2m)q* £«],
y = —cq(l —q%),

hi = e [8 — (9 + p)g? & BHHIC )

w=0, r= <

r=0 (ERLE

e

Wy = m(l'H] tk),

where k = /g* — (10 +4u)g? + 1 and ¢, g are real-valued
parameters. For the solutions (a) and (b) the range of g is
0 < ¢ < 1, while for the solutions (¢) 0 < g2 <2u+5—
24/ 1% + 51 + 6. The stationary states (a) and (c, ) bifurcate
at ¢ = 0 from the n = 0 single-mode state, while the states
(b) and (c_) bifurcate from the n = 1 single-mode state.

We note that the families of stationary solutions (a) and (b)
are nothing else but the symmetry orbits of the single-mode
states B0 = 8,07 and BV = 8,672 respectively,
generated by the symmetry B, — e¢”B,, where D is the
Hamiltonian vector field associated with the conserved quan-
tity Im Z, given by

DB, :={ImZ,B,} =nf,—1 — (n+ pu+ 111 41)

[The Poisson brackets are evaluated with respect to the
symplectic form i Y, dB, A dB,(n + p)!/n!.] On the three-
dimensional invariant subspace (16) this symmetry can be
shown to act as follows:

p +tanh & a
> — = . >
1+ ptanh& (cosh& + psinh &)3+u
b(1 + ptanh &) —a(l + ) tanh &
(1 4+ ptanh&)(cosh& + psinh &)1+

Applying this transformation to the single-mode states g
(for which b = e™'",a =0, p = 0) and BV (for which b =
0,a = e 237 p = 0), we obtain (modulo rescaling) the
stationary states (a) and (b) with g = tanh &, respectively.

Transformations generated by N, E, Z can in fact be used
to convert the stationary states (c+) (for which Z = 0) into
dynamical solutions within the ansatz (16). Indeed, solutions
(c+) have two parameters ¢ and g, quantifying the overall
scale of a and b, and the absolute value of p, respectively.
By acting with the above transformations generated by Im Z
and the following transformations generated by Re Z,

b

(42)

p —itanhp a
., at T s
1 +iptanhp (cosh i + ip sinh )3+~
b(l +iptanhn) —i(1 + w)a tanhp
H 9

(1 4 ip tanh n)(cosh n + ip sinh n)!++

p =

(43)

one can adjust the magnitude and phase of the ratio a/b.
Thereafter, the phase rotation symmetries f, — ¢’ 8, and
B, — "B, (generated by N and E) can be used to freely
adjust the overall phase of b + an/p and, independently, the
phase of p. This construction of dynamical solutions naturally
explains the periodicity of y we observed by solving (32)
directly through the simple periodicity of p in the stationary
states (C).

The state (a) is the ground state in the sense that it is a
maximizer of H for fixed N, which follows within the ansatz
(16) from (27). Hence it is orbitally stable [4] (cf. Ref. [26]
for the proof of the analogous result for the cubic conformal
flow on S*). The question of stability of the stationary states
(b) and (cy) is open. Another interesting open problem is the
classification of all stationary states of the resonant system
(9) (see Refs. [7] and [27] for analysis of the corresponding
problem for the LLL equation and the cubic conformal flow
on S3, respectively).

IV. SOLUTIONS FOR LANDAU-LEVEL TRUNCATIONS

Truncation of (7) to the excited Landau levels n — m =
2L is in principle completely straightforward. However, the
explicit form of linear wave functions (2) is rather incon-
venient for this purpose, since both positive and negative
values of m are present within each excited Landau level
(see Fig. 1) and hence the absolute values of m present in
(2) make dependencies on index numbers rather awkward. To
remedy this unwelcome feature, we shall start by rewriting
(2) in a slightly different form using identities satisfied by the
Laguerre polynomials.

From (11), remembering that factorials of negative num-
bers are infinite, one gets

(n+a)!

Li(p) = (1 2o LS, () (44)

for any 1nteger a. (Note that L, does not contain any powers
of p below p*.) Using this formula, we obtain

((n —m|)/2)!

|m|/2 [m|
G mpnt L)
om0 = m)/2)!
= (—1)20m—ImD m/Zszlm 4
(—1) eIl (). (45)
We then define
Bo= (=D s (46)

with n running from 0 to co. The sign factor inserted com-
pensates for the sign factor in (45), simplifies the subsequent
expressions, and brings our sign conventions in accord with
Ref. [4] for the remainder of our treatment. Truncating (7) to
the above set of modes results in

00 n+m

= Z Z SIImk,n-Fm—kBmﬂkﬂn-f-m—k, “@n

m=0 k=0

with
o) 2 n+m—2L
Snmkl = / dp 672'0 U:O—
0 Vnlm!k!l!
x Ly o)L M (o)L (o)L (p). (48)
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We caution the reader that the letters 8 and S in this and the
previous section refer to similar quantities in two different
truncations of (7) and should not be identified. As before, S
can be computed explicitly using (11), but such expressions
contain multiple sums and are of little practical use. Our
derivations will rely on identities satisfied by the Laguerre
polynomials and not on awkward explicit expressions for S.
We note the following simple generating function, derived
explicitly in Appendix B, for the sequence of polynomials
appearing in (48):

X on S(a — AL
Guls.p) =Y —Li " (0) = # (49)
n=0 " ’

Equation (47) respects the following conserved quantities, in
agreement with Ref. [4]:

N =18 (50)

J= mez, (51

n+m

00
Z Z nmk,n+m—k511Bmﬁk.3n+nz—ka (52)

k=0
= Z Vi + 1 Bus1 B (53)
n=0

It turns out that (47) is rather similar to the lowest Landau-
level equation [4,5,7] and admits solutions of the form

1[ a(t)
Vn! p(7)

The closure of the ansatz relies on the following three sum-
mation identities, which we prove in Appendix B:

ﬂnz

}[p(f)]”- (54)

”*Z’" nim! ¢ QL)! .
—_ nmk,n+m—k — ﬁ
— \ ki +m — k) 22L+I(LY)
%k n!m!
—Snmk,nw#mfk
— \ ke +m — k)
_ QL) n+m
T2 2 ©6)
n+m n'm'
> k(n+m—k) K10 L — 1 Sk
k=0
_QeL) L—1 .
=y | apL " Tmetm =D
+ L (57)
2L — lnm .

Substituting (54) into (47) results (in a repetition of a pattern
encountered in the previous section) in a statement that two
quadratic polynomials in n equal each other. Equating the
three coefficients of these polynomials results in three first-
order ordinary differential equations for a, b, p.

It is convenient to present the equations for a, b, p in a
compact form that takes into account the conservation laws.
Within the ansatz (54), the conserved quantities are as follows:

N = e [IbP + (1 + |pP)lal® + (abp +abp)l,  (58)

T =ePP[IplPIbl> + (1 +3[pl* + | pl*)lal?
+ (1 + |pI*)abp + abp), (59)

Z =" plbPR 4+ 2+ IpP)lal® + abp)
+ (1 + |p»)ab}. (60)

There are two distinct cases to consider. First, for L = 1,
on time rescaling T — Wr the equations for a, b,
p are written in the form

p =0, (61)
ia =—Na/2, (62)
ib=—Nb/2. (63)

All solutions of this system are stationary and of the form
Bu(t) =[b(0) + a(o)l’l][p(())]”e”vf/z.

For L >1, we perform the time rescaling © —
! - .
%r to obtain

8ip=2Z—Np. (64)

.. 7L —3
8ia=|\Zp—J+ N )a, (65)

L—-1

.7 8L —4

8ib=2Za+(Zp—J+——N)b. (66)

The equation for p is independent of L, as are the conserved
quantities (58)—(60) within the ansatz (54). Hence, |b|?, |a|?,
Re(abp), and p have exactly the same behavior for any L > 1
as they do for the lowest Landau level L = 0, and so does
the spectrum |8, |2. Since solutions at the lowest Landau level
have already been treated in detail in Ref. [5], we shall not
repeat the derivations here.

V. DISCUSSION

We have considered truncations of the Gross-Pitaevskii
resonant system (7) to sets of modes at fixed angular mo-
mentum and fixed Landau level (Fig. 1) and demonstrated that
such truncations admit special analytic solutions similar to the
ones previously seen specifically for the lowest Landau-level
truncation [5]. The construction of our new solutions relies
on sophisticated nonlinear identities satisfied by Laguerre
polynomials and analyzed in the appendices. Similar solu-
tions have recently appeared in the context of a number of
other resonant systems [12,13], while the general underlying
theory has been developed concurrently with this article in
Ref. [17].

It is instructive to examine the position space form of
our solutions. For fixed angular-momentum truncations within
the ansatz (16), one finds (omitting an irrelevant overall
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FIG. 2. Snaphots of the condensate density |/ (¢, x, y)|*> for resonant solutions in the fixed angular-momentum sector with ;1 = 0 (upper
row) and u = 4 (lower row). For both, the initial data used are a = 0.5, b = 0.5, p = 0, and the coupling is g = 0.01. The limits of the axes
and their labels are identical to the first plot of each row. Time points are, from left to right, t = 201, 3832.1, 7663.9, 11501.4 for the upper

row and t = 219.9, 22003, 43999.4, 66001.7 for the lower one.

phase factor)

(n + /’L)' —i n
W g, 1) =Dy e 0 9)
n .

i an .
= r/l-ellb(qb—l)e—rz/z Z (b + ?>pne—21nlll};(r2).
n

(67)
Using (3), one obtains
W = plelh@=Der/2 <b + %sag)G,L(g, ) e
B PherODe T
(1 —s)ntl

A Da(gt gt)r?
« |bgner ¢ PA D@D a@Dr ]

1—s (1—s)?

where s(t) = p(gt)e‘z”, and a, b, p are functions of the

slow time g¢, as explicitly shown. (We have absorbed the u-
dependent time-rescaling factor mentioned under (22) into the
modified coupling g.) This represents rapidly oscillating rings
of wave-function density with the superposed slow periodic
parameter modulations.

For nonzero angular momentum (¢ > 0 in our conven-
tions), the wave function vanishes at r = 0 because of the
usual angular-momentum barrier. More interestingly, there is
at most one more value of the radial coordinate where the
wave function has a node; such a node appears if the ex-
pression in parentheses in (68) has a zero for positive r2.
Otherwise, there is not quite a node but just a dip in density.
Snapshots of the condensate density of representative solu-
tions can be seen in Fig. 2. In the literature, such objects have
been referred to as “ring dark solitons,” see, e.g., Ref. [28].

They have been mostly studied, however, in the presence of
strong nonlinearity, where the solitons are supported by non-
linear effects and the harmonic trap is merely a perturbation.
In contrast, in our weakly nonlinear regime, the “solitons” are
mainly supported by the harmonic trap, with the nonlinearities
giving rise to slow modulation of the parameters; see, e.g.,
Refs. [29,30] for discussions of other dark solitons near the
linear regime.

Stability of dark rings with static ring profiles (i.e., time-
independent |¥|?) has been extensively studied in the liter-
ature on Bose-Einstein condensates [31-33]. There are in-
teresting instabilities trigerring pattern formation. While our
solutions given by (68) also feature dark rings, the ring radius
rapidly oscillates with the trap frequency, and there is no
immediate mathematical relation to the dark rings with static
profiles. Stability of our oscillating rings would be an inter-
esting, if not obvious, question to investigate. In Ref. [29],
the question of stability is treated for related oscillating dark
solitons for the one-dimensional Gross-Pitaevskii equation in
a harmonic trap. In Ref. [30], analogous oscillating dark shells
in three dimensions are studied by predominantly numerical
methods, with evidence for their stability at sufficiently small
coupling.

Turning to the excited Landau levels, we use (2), (4), (45),
(46), (49), and (54) to find (omitting an irrelevant overall
phase factor)

Lie a ’
Wit @) =4/ — 0 <b+;$35>GL(S,r)Is=pz, (69)

where z = re! @ Direct evaluation yields

efrz/zep(gt)z
VL!m
x {[b(g1) + a(gt)zllp(gt) —z) +a(g)L},  (70)

U= (p(gt) — )=
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FIG. 3. Snaphots of the condensate density |/ (t, z)|? for resonant solutions in the excited Landau level sector at L = 4. The representation
is in the maximally rotating frame and the visible movements represent slow modulations described by our resonant solutions. In the laboratory
frame, the whole picture rapidly rotates around the origin. The initial data used are a = 0.5, b = 0.5, p =2, and the time points are
T =0, 7.8, 15.6, 23.4. The limits of the axes and their labels are identical to the first plot of the sequence.

where we have explicitly displayed the dependence of a(gt?),
b(gt), p(gt) on the slow time g¢. (Again, the L-dependent
time-rescaling factor mentioned above (64) has been absorbed
by introducing g instead of g.) This expression describes
periodically modulated (due to slow time dependence of a,
b, p) precession around the origin of an array consisting of
a degree L — 1 antivortex at z = p and a vortex-antivortex
pair whose location is given by the two zeros of the second
line of (70),

(z+b/a)z—p)=L. 71)

Snapshots of the corresponding wave-function density are
given in Fig. 3. The three defects we mentioned (two antivor-
tices and a vortex) in fact always lie on the same straight line.
This can be seen by taking the imaginary part of (71),

Im |:z (p + 2) + p_b:| =0, (72)
a a

which defines a straight line to which all roots of (71) belong.
Since z = p evidently satisfies the above equation, it lies on
the same straight line.

Small arrays of vortices have been studied in the litera-
ture on Bose-Einstein condensates with variational methods
[34-36] and have even been created experimentally [37].
In our context, special configurations in this class can be
accessed by rigorous asymptotic methods, and we provide
exact analytic solutions for the vortex dynamics. A significant
improvement is thus achieved over the conventional varia-
tional techniques.
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APPENDIX A: IDENTITIES FOR THE INTERACTION
COEFFICIENTS OF ANGULAR-MOMENTUM
TRUNCATIONS

We shall now demonstrate how one can derive (17)—(19).
The possibility to perform these sums explicitly ultimately
relies on the following relation satisfied by the generating
function (3):

Go(t, x)Gp(1, y) = Gaypr1(t, x + ).

Expanding in powers of ¢, one obtains the summation identity

(Al)

Y LELL () =Ly, (A
k=0

Hence, it follows from (10) that

n+j 00
D Sujknsjok = f dp e p™ LI (p)LY (o)L (2p).
k=0 0

(A3)

We shall need below the values of Laguerre polynomials and
their derivatives at the origin. From (3),

1 1 r 1
L) = —0—| = M’ (A4)
" Q=0 |_, ~ nll(@+1)
1 t r 1
L) = —~op | - TeterD
n! (1 =12 _, n—D'T'(a+2)
(A5)
1 12 r 1
IO LI S R (R % £
M A —0e3|_y~ (n—2)T(a+3)
(A6)

From (A4), we infer that

T(n+ e+ DUG 4+ 1)
n T (n + D2

L,’l‘(p)L’;(,O) = +oPuyj1(p),

(AT)

where P, ;_; is a polynomial of degree n + j — 1. Since

L+ are orthogonal with respect to the measure p*+1e=7,
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one concludes that

n+j

F(n+u+1)l“(j+u+1)/ 20 2 2t
Sniknti—k = d PO LET(2p). A8
D Sujkntiok TG+ DF pe S (2p) (A8)

The following integration identity can be derived from (3):

o0 1 o e i
dpepPL%(p) = —a"/ dp pf ————
/0 pe o Ly(p) =20 T

Once the integral in (A8) has been thus evaluated, one obtains (17).
The next identity we have to prove, which is (18), in fact follows from (17) if one recalls the symmetry of S under permutation
of the third and fourth indices [17]. We shall nonetheless derive it directly in a way that parallels the above derivation of (17).
We first notice that

_TAD,, |

B+ DI a—B+n)
0 onl A= neP '

n! (e — B) (A9

19,Gy(t,x) = (¢ + D)tGyyr1 — xtGyqr. (A10)
Hence,
[13,Go(t, )Gp(t, y) = (ot + Dt Garpa(t, X +y) = xtGospi3(t, X + ) (Al1)
and
STKLEOLE () = (@ + DL 4 y) = xLEH P (x4 ), (A12)
k=0
Therefore,
sl *© 2u+2 2u+3
> kSujntjk = fo dp e p* L (o)L (0)[(n + DL 2p) — pLy T (20)]- (A13)
From (A4) and (AS),
''n+p+DIG+u+1) n-+j
L*(p)L"(p) = 1— 2Puijia(p), Al4
n (L)L (p) 2T+ D 1 + " Puyj—2(p) (Al4)

where P, ;_» is a polynomial of degree n + j — 2. Since L are orthogonal with respect to the measure p“e™”, one obtains

n+j

I‘(n—i—u—l—I)I‘(j—i—u,—i—l)‘/'oo 2 2 n+j 2p+2 2u+3
kSpjknvj—k = d Ppo 1 — —= DL (2p) — pL22  (2p)]. (A15
> kSujknti AT+ DF | dpep T [(w+ DL 2p) — pLy (20)]. (A15)

With (A9), this is evaluated to yield (18).
To prove the last summation identity (19), we observe that

[13, Gy (t, )13, Gp(t, )] = (& + DB+ D12 Goipi3(x+y) — [(B+Dx + (@+DY12Gorpia(x + ) + x312Goipys(x+y).
(A16)

Expanding in powers of ¢ gives

Y k(n — KLY LY () = (@ + DB+ DLy TP @+ 3) = 1B+ Dx + (a + DYILy ™ e+ 3) + xy Ly 06+ ).

(A17)

Hence,

n+j

oo
D k(4§ = K)Sujensjk = f dp e p™ LI ()L (0)[ (1 + 1Ly 525, (2p) = 2p( + DL, (20) + p° L1525 (20)].
k=0 0
(A18)

From (A4)—(A6),

F(n+u+1)F(j+M+1){ ot +[ nj =D+ (-1
AT+ DI 1?2 T 2+ D +2)

where P, ;_3 is a polynomial of degree n + j — 3. Substituting this into (A18), dropping all terms involving P, ;_3 on account
of orthogonality, and evaluating by (A9) gives (19).

Liy(p)LY (p) = } }~I—p Pyij-3(p), (Al9)
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APPENDIX B: IDENTITIES FOR THE INTERACTION COEFFICIENTS OF LANDAU-LEVEL TRUNCATIONS

We start by establishing (49) as a consequence of (3):

oo oo v

_ n L _ s" e -
Gi(s, p) = Z () = I 3 Oamt B

n=| O n=

L L—1 —te=n e'(s — p)*
= Ea, (A== ]| _, = — (B1)

The last equality can be obtained by first noticing that 3/ ((1 — t)L_le’%) att = 0 is a polynomial of degree L in x. Computing
its derivatives at x = 0 straightforwardly shows that the first L — 1 derivatives vanish, while the Lth derivative is L!(—1)E.
Hence the polynomial is simply (—x )%, which gives the desired result.

From the above expression,

N pk=L(oypN-k—L 1
Z T “(p)Ly (p) _3N[GL(s,p)]2|s:0

KN — k)] N1 e (s — p)* 1ls=0- (B2)

2Ys
pre NI(LY)

n+m n'm! g Ood oL L L 1 gt 2s—p) oL
nm m—k = nrm—sbopn— L n+m §— .
kX:; o m oy Sk fo pp E L) s s 0 oo

Since the s derivatives act on an expression that only depends on s — p, each 9, can be identically traded for —d,,, after which s
is straightforwardly set to O (independently of the remaining p differentiations). This yields

’% n'm! S . :/oodp pn+m72LLn—L(p)Lm—L( )(_ )n+m n+m( —2p ZL) (B3)
i —k'(n Tm— k)' nmk,n+m— 0 L L ( +m )y P

Integrating by parts (n + m) times gives

- n'm! S ood 20 2L 1 gn+ +m—2L L L 4
—_ mk.n-m— — - nm nm-— LVL— Lm— . B
k§=0 Kl o o1 Sk /O e i [p THOLT ()] (B4)

The (n 4+ m) derivatives now act on a polynomial of degree (n + m) in p, and hence the only nonvanishing contribution can
come from the highest power of p, which in turn comes from the highest powers of p in L’z_L (p)and L7 ~L(p), which are both
(—=1)EpL/L!, independently of n and m, as one can read off (11). Hence,

n+m
nlm! o0 1 1 00
nm I d —2p 2L n+m n+my _ / d —2p 2L'
Z\/ K1+ m — 1 ek = /0 P g e W= o, AT

Evaluating the last integral gives (55).
The next identity (56) in fact follows from (55) due to the symmetries of S [17], but we shall prove it explicitly for
completeness. One has

Hence,

N k—L N—k—L
LL ()O)LL (p) 1 N 1 2s 2L—1
gk ky(N _ k)' N,as [GL(S ,O)sa GL(S p)]|s =0 = N'(L‘)z S ( (S ,0) S(L + 5 — p))ls:O
and
= nim! o grme2L ) . o) -
k| ———————Sumkntm—tk = dp ——L7}~ L'~ arm — S7P) (s — “(L+s— s=0-
g Kl(n +m — k)~ rmhertm=h /0 L PEL (0T =) ple s =p) (LA = p)li=0

(BS)

The strategy is to remove all p factors outside the 9, derivatives, so that the latter act on an expression depending exclusively of
s — p and can be traded for —4,,, as in our proof of the first identity. This yields

thmk n'm! S OOd n+m—2LLn7L meL (_ )'H‘m 8n+m =2p 2L L
2 TSt = [ oL L ) e L = )

(_ )Il+m n+m 72/) 2L—1
a, "[e (L—=p). (B

00
_ d n+m72L+1Ln—L Lm—L
]0 0P L (PLY (p)—(nJr 1o
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We need terms of degrees 2L and 2L — 1 in the product L’l_L (p)L',f_L (p), which are

2L—-1

L (o)L (p) = 2

(L!)?

po—m+m)L)+---, B7)

as follows from (11). Then, integrating by parts (n 4+ m) times and evaluating the remaining elementary integrals yields (56).

For the last identity (57), we write

N k—L N—k—L
L, "(p)L} () 1 .y 2 1 N2 2s 22 2
;k(zv —O N T = i G PP im0 = T 5% (s = p) (L s = p) i
Hence,
s nlm!
g k(n +m —k) msnmk,n-‘rm—k
o0 pn+m—2L
= f dp mLﬁ*%p)L’z*%ma;’*m{[(s — PP 4200 — p) + p*1*C s — p)F (L +5 — p)Plls=0-  (BY)
0 .

By processing identical to the above examples,

n+m

Sk m =Sk = [ o L oy o) g
par kK\(n+m — k)t = L L n+m) ”
— medp pn+m72L+1Ln—L(p)Lm—L(p) (_1)n+m aner [672;0’02L71(L_p)2]
0 L L (n+m)! "

00
+ f d,O pn+m—2L+2Liz—L(p)L121—L(p)
0

(_l)ner n+my_—2p 2L—2 2
map [e™"p™ (L —p)]
(B9)

One again integrates by parts (n 4+ m) times, but now we need terms of degree 2L, 2L — 1 and 2L — 2 in the product

L} (p)L} " (p), which are extracted from (11) as
L2
(L')?

Putting everything together yields (57).

Ly (p) Ly (p) =

{pz—(n+m)Lp+#

[n2+m2—(n+m)]+L2nm}+--- (B10)
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