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Spatiotemporal instability in a diffusively relaxed dynamics
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The diffusion equation fails to offer a satisfactory description of dynamics when the correlation between
successive motions of dispersive particle is large. Further, the equation is associated with the pitfall of predicting
the infinite propagation speed of the diffusive particles. Both limitations arise as the Brownian picture (on which
the equation is based on) does not take into account the inertia of the diffusive particles. This could be overcome
by introducing a delay in the diffusive flux. The resultant delay-diffusion equation may be converted to an
ordinary differential equation by linearizing the flux with respect to the delay, a technique valid in general for
small delays. In this article I show that the condition for a spatial bifurcation induced by diffusive delay in the
delay differential model is significantly different from the condition derived in an earlier work modifying the
reaction-telegraphic equation based on a microscopic approach. The latter necessitates criteria not realizable in
common reaction-diffusion models and therefore effectively rules out such kinds of instability in these models.
I show here that the instability condition derived with the original nontruncated version of the delayed reaction-
diffusion equation does not impose any constraint on the model kinetics, but only requires the diffusive memory
to be large enough. Numerical simulation with three well-known reaction-diffusion models corroborates with
the predictions of the linear analysis and ensures the that spatiotemporal structure generated is stable in the long
term.
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I. INTRODUCTION

The diffusion equation is universally employed to describe
the dynamics of particles moving under Brownian motion and
is associated with the pitfall of predicting a zero relaxation
time for the flux and, consequently, infinite propagation speed
of the diffusing particles. This is evident from the Gaussian
solution of the said equation given as

F (r, t ) = 1

(4πDt )
1
2

exp

(
− r2

4Dt

)
,

which ensures nonzero value of particle density F (x, t ) at
any distance from the origin, at any arbitrary time instant,
however small, even if all the particles were initially localized
at the origin. Such discrepancy originates for not taking into
account the inertia of the Brownian particles and therefore can
be eliminated through invoking a nonzero relaxation time of
the flux in the original Fick’s law of diffusion (the Cattaneo
modification [1]),

J (r, t + τ ) = −D
∂u(r, t )

∂r
. (1)

The resultant delay differential equation can then be reduced
to ordinary differential equations expanding the flux in Taylor
series truncating at the linear term,

J (r, t ) + τ
∂J (r, t )

∂t
= −D

∂u(r, t )

∂r
. (2)

Originally proposed to eliminate the paradox of instanta-
neous propagation of energy in the case heat of transport,
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the Cattaneo modification of Fick’s law has already been
extensively applied to a wide range of processes involving
both mass and energy transports. Instances include propaga-
tion of shock waves in rigid heat conductor [2], oscillatory
Rayleigh-Benard convection [3], and evolution of viscous
cosmological models [4–6]. In general, the diffusion equation,
which is based on a Brownian picture of motion, fails to
offer an accurate description of the dynamics when the dis-
persion of particles are not mutually independent and the in-
dividuals have well-defined velocities. The delay in the flux
equation may be viewed as a measure of the correlation
between successive movement of the diffusing particles. The
correlation depends on the mean free path of collision; the
larger the mean free path, the stronger the correlation (for a
detailed discussion see Ref. [7]). In liquids, where the mean
free path is small, only a fraction of the molecular diameter,
the inertia, or the temporal correlation of the instantaneous
velocities are negligible even on mesoscopic scales, and the
velocities are not accurately defined in the molecular scales.
Dispersal dynamics is then governed by random motions
of the particles and the reaction-diffusion equation offers a
fairly satisfactory picture of chemical reactions in aqueous
solutions. However, for particles dispersing in dilute gases,
the mean free path could be several orders of magnitude
larger than the molecular diameter, so the inclusion of finite
memory seems to be necessary. Also since micro-organisms
and animals have the tendency to continue moving in the
same direction in successive time intervals, models including
nonzero relaxation gives a better description for spatial spread
of population than the often-used diffusion equation. Furth [8]
applied his theory of delayed diffusive flux to experiments on
the motion of bacteria.
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Combining Eq. (2) with reaction kinetics, we obtain the
reaction-telegraphic or the reaction-Cattaneo equations,

τ
∂2u(r, t )

∂t2
+ [1 − τf ′]

∂u

∂t
= D

∂2u(r, t )

∂r2
+ f (u). (3)

The parameter τ , for the case of thermal conduction, char-
acterizes thermal inductance, interpreted as the time needed
for the thermal energy to accumulate before it propagates.
In the context of propagation of matter it can be understood
as the time required for the concentration gradient to induce
the diffusive flux. The range of τ widely varies; from as
low a value of 10−10 to as high as 20 or 30 s has been
observed experimentally (a discussion on the magnitude of
τ and its physical significance may be found in Ref. [9]).
The reaction-Cattaneo equation was derived without the aid
of assuming smallness of τ , under special circumstances [10],
but generally follows from the linearization of flux in Eq. (1)
and therefore is untenable if inertia is large. In that case, we
need to work with the original delayed equation. At the micro-
scopic level, the Cattaneo modification amounts to replacing
the Brownian picture of motion with a persistent random
walk. Additionally it requires the reaction at any instant to
be independent of the direction of its motion of the molecules
(isotopic random walk). This, however, leads to a situation
which does not ensure the rate of removal or where the death
of particles of a given type goes to zero as the density of these
particles vanishes. This was later modified [11] by assuming
the birth and death processes of molecules to be independent
of the direction of motion and that the daughter particle
chooses both directions with equal probabilities. Instead of
kinetics terms identical to both left- and right-going particles,
now we have for the two types of particles

f +(u+, u−) = 1
2b(u) − d(u)u+, (4)

f −(u+, u−) = 1
2b(u) − d(u)u−, (5)

with b(u) � 0 and d(u) � 0. With such a form of the kinetics,
ultimately evolution equations (but not the usual form of the
reaction-telegraphic equation, as that would additionally
require the death rates to be constant) can be derived for the
total density and the flow term of each species (i = 1,2):

∂Ui

∂t
+ γxi

∂Vi

∂r
= b(Ui,Ui+1) − d(Ui,Ui+1)Ui, (6)

∂Vi

∂t
+ γxi

∂Ui

∂r
= 2μxVi − d(Ui,Ui+1)Vi. (7)

Through a linear stability analysis on (6) and (7), Horsthemke
demonstrated that all the wave numbers above a given thresh-
old become unstable if the following condition is satisfied:

A11 − d
(
U 0

i , U 0
i+1

)
> 2μU1 > 0, (8)

where A11 represents the first element of the stability matrix
and d(U 0

i , U 0
i+1) the decay term in the kinetic term of the

activator calculated at the steady state (U 0
i , U 0

i+1); μ is the
probability that the direction of motion of the corresponding
species will be reversed per unit time. The macroscopic analog
of μ is the inverse of τ that appears in the reaction-telegraphic
equation. Most of the reaction-diffusion models generally
studied for pattern formation (like the Lengyel-Epstein model

which is being also employed here) has the A11 − d(x, y)
term as less than zero and hence precludes any such instability.
In this article we show that no such criteria on kinetic param-
eters limit the applicability of the analysis here when we work
with the original delayed-differential model (thus adopting a
purely macroscopic approach), and therefore the kind of insta-
bility proposed in this article is expected to manifest in many
of the available reaction-diffusion models in wider ranges
of parameter space, provided the diffusive delay is large
enough. However, while for the reaction-diffusion models that
represent ecological or epidemiological models or phenomena
in the cosmic world the diffusive delay is often fairly large,
it may not be so in the case of chemical reaction-diffusion
models. So under normal circumstances it is unlikely that dif-
fusive delay would be large enough to induce instability in the
ordinary chemical reaction-diffusion models in aqueous solu-
tions. But on macroscopic scales such as for reaction-diffusion
models that involve turbulent diffusion, the application of the
diffusion equation does not yield satisfactory results and one
needs to consider the effect of nonzero relaxation. Hence to
test the hypothesis that a memory in the diffusive flux if
large enough could interfere with the stability condition of
the dynamics of a real chemical reaction-diffusion model (like
CDIMA, the chlorine-dioxide-iodide-malonic acid model, the
one discussed here) we may require to implement a condition
of turbulent diffusion. To the best of my knowledge, the effect
of turbulent diffusion on a chemical reaction-diffusion system
has not yet been studied experimentally in the context of
spatiotemporal instability, presumably due to the difficulty of
setting up and maintaining a condition for turbulent diffu-
sion in an experimental arrangement. However, the present
study indicates that this could be an area worth exploring
in the context of CDIMA or any other appropriate chemical
reaction-diffusion model. Another model that we employ in
the study (the pigmentation model) is not phenomenological
in nature but derived by expanding the reaction terms f (u, v)
and g(u, v) around the steady state (u0, v0) and then retaining
specific terms motivated by the requirement of conservation of
certain species. The generalized structure of the model allows
the inferences derived with this model to apply over a wide
range of phenomena. For example, with this model, by just ad-
justing a couple of parameter values one may generate a struc-
ture that bears a striking resemblance to almost every skin pat-
tern observable in fish (hence we call it the “pigmentation of
fish” model). Finally, I briefly mention the results of numerical
analysis with the well-known Fisher equation. The generation
of instability in this model over a critical value of diffusive
memory demonstrates further that the scope of the instability
could be quite broad. The point to note here is that the Fisher
equation, originally proposed to explain the spread of an ad-
vantageous allele in a gene population, is one of the very basic
models of ecology and this, along with many of its variants, is
routinely employed to study the spatiotemporal distribution of
species in ecological as well as epidemiological models. The
nonzero diffusive memory in such as system implies that the
species takes finite time before responding to a population gra-
dient (according to the microscopic picture, it amounts to as-
suming that the species always continues in a given direction
by a constant distance before being ready for the next jump).
This is fairly common among living species and originally
Furth [8] put forward his theory of delayed diffusive flux to
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experiments on the motion of bacteria. Recently Alharbi et al.
[12] has investigated the critical domain problem of popula-
tion dynamics for a logistic growth model using a reaction-
telegraphic equation. Among these cases where the memory
is appreciably large I hope the method described here will be
more useful than the reaction-telegraphic equation for reasons
elaborated above. Last, it should be mentioned here that the
analysis presented in this article could point out the existence
of spatial Hopf bifurcation in a system but could not distin-
guish between supercritical or subcritical. Numerically, we
could see that the instability in the CDIMA and the pigmen-
tation models is associated with the concentration variables
oscillating in small, finite amplitudes, indicating the Hopf bi-
furcation to be supercritical in nature. With the Fisher model,
however, the oscillations once initiated keep growing indefi-
nitely and eventually diverge in the long run, suggesting that
the nature of the bifurcation is subcritical. Finally, it should be
clarified at this point that the choice of the models was not mo-
tivated by any experimental consideration but to ensure that
appropriately varying parameter space, we may choose to start
with any of a wide range of initial states [unstable Hopf (with
CDIMA model), stable homogeneous (with the pigmentation
fish model), or unstable Turing (with both)] and investigate
the effect of diffusive memory on the dynamics in all these
cases. The reference to the numerical results of the Fisher
equation is for the purpose of presenting a model which, being
representative of ecological dynamics, offers a wider range of
applicability and also to discuss a case where the bifurcation is
subcritical. The delay-differential model analyzed here offers
a generalization to the dispersal dynamics; it reduces to the
reaction-telegraphic model at small τ and Brownian motion
as τ goes to zero. Thus the noninstantaneous diffusion model
provides a unified treatment which covers the whole range of
transport, from the diffusive limit to the ballistic limit.

Delay-differential equations have been applied to a wide
range of dynamical systems encompassing physical, chem-
ical, or biological domains over decades. Delayed feedback
loops in gene regulatory networks in many cases induce Hopf
bifurcation, leading to oscillations in various components
responsible for a wide range of processes which includes
phenomena that are both crucial to the existence of species,
like developmental patterns [13], or ones detrimental to it, as
in dynamical blood diseases [14]. Delay plays a pivotal role
in the dynamics of other kinds of networks as well, electrical
or Internet [15–17]. In the spatial domain, a delay-induced
Turing bifurcation leading to stationary patterns in reaction-
diffusion system has also been reported [18]. In all these cases
the delay appears in the source terms, generally to account for
the time taken by some steps (often unknown) not considered
in the kinetic model. Theoretical and experimental studies
have already demonstrated that introduction of a time delay
between a trigger event and the resulting pulse may result in
counterintuitive behavior in the case of a pair of diffusively
coupled chemical oscillators, like in-phase synchronization in
inhibitory pulse-coupled systems or out-of-phase oscillations
with excitatory coupling [19]. In contrast to these works,
here we consider a single chemical reaction-diffusion model
with a memory in the diffusion part of the dynamics: a
diffusive memory, which arises due to the inherent inertia of
the diffusive particles.

Spatiotemporal structures are ubiquitous in the chemi-
cal, physical, and biological worlds, with hydrodynamics,
chemical reaction-diffusion systems [20–22], epidemiology,
ecology [23], and developmental biology [13,24] offering
some of the best examples. While a number of mechanisms
have been put forward to account for the generation of these
patterns, in many cases stringent instability criteria on the ki-
netic parameters limits their applicability. The stability criteria
for the mechanism proposed here do not include any such
restraint on the kinetic parameters, only requiring diffusive
memory to be appreciable. A delayed response of the diffusive
flux to the concentration gradient, which would generate the
diffusive memory, is fairly common in practical systems, and
the current mechanism has the potential to bring a wider range
of pattern-forming phenomena into mathematical modeling.

This paper is organized in two parts; in Sec. II, I derive
the condition for spatial Hopf bifurcation on a generalized
reaction-diffusion model that includes diffusive memory in
one of the variables, without making any assumption regard-
ing the magnitude of the memory. Subsequently, in Sec. III,
the two reaction-diffusion models are simulated both in the
absence and in presence of memory; the results vindicate the
predictions of the analysis.

II. REACTION-DIFFUSION EQUATION
WITH DIFFUSIVE MEMORY

We consider the concentration of a reacting species or field
variable u(x, t ), a function of space x and time t in terms of
a reaction-diffusion system. The reaction-diffusion equation
can be constructed phenomenologically from the continuity
equation with a source term f (u),

ut (x, t ) = −Jx (x, t ) + f (u), (9)

where J (x, t ) is the flux of u(x, t ).
As explained earlier, a generalization of the reaction-

diffusion equation that includes the effect of finite memory
transport is given by Cattaneo’s modification of Fick’s law,

J (x, t ) = −Dux (x, t − τ ). (10)

Equation (10) implies that a concentration gradient at a
time (t-τ ) causes a flux at a later time t , so τ is the average
time for a particle to adjust its motion in a particular direction
in response to the concentration gradient. In the case of
any dynamics that involve memory it is always necessary to
choose between a discrete delay and a distributed delay kernel.
In the former case the dynamics at a given point depends on
the value of the concentration variables at a fixed time in the
past, while in the latter case it would depend on the entire
past history. The u(x, t − τ ) in (10) for a distributed delay has
to be replaced by the integral

∫ t

−∞ ux (τ )G(t − τ )dτ , where
G(t − τ ) is the distribution kernel for the delay. The integral
reduces to a discrete value u(x, t − τ ) when the distribution
kernel is a δ function. In this article we consider the case of
the delay to be discrete. Further, we assume it to have a fixed
value throughout the dynamics in the entire space, neglecting
all possible fluctuations in space or time. Using Equation (10)
as a modification of Fick’s law and the continuity Equation (9)
we arrive at the diffusively relaxed reaction-diffusion equation

ut (x, t ) = D∇2u(x, t − τ ) + f (u). (11)
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We now consider a two-variable reaction-diffusion equa-
tion which describes the dynamics of two field variables
u(x, t ) and v(x, t ). The time delay τ is incorporated in the
diffusion part of one of the variables, here in u,

ut (x, t ) = f (u, v) + ∇2u(x, t − τ ),
(12)

vt (x, t ) = g(u, v) + d∇2v(x, t ),

with f (u, v), g(u, v) denoting the respective reaction terms
and where d denotes the ratio of the two diffusion coefficients.
We now consider small spatiotemporal perturbations δu(x, t )
and δv(x, t ) on a homogeneous steady state (u0, v0). Subse-
quently expanding the reaction terms around this steady state
in a Taylor series up to first order, we obtain

δut (x, t ) = fuδu + fvδv + ∇2δu(x, t − τ ),

δvt (x, t ) = guδu + gvδv + d∇2δvxx (x, t ).

Expressing spatiotemporal perturbation δu(x, t ) and δv(x, t )
in (13) by the usual forms

δu = δu0e
λt+ikx,

δv = δv0e
λt+ikx,

we obtain the dispersion relation:

λ2 + b1λ + b2 + (b3λ + b4)e−λτ = 0 (13)

with

b1 = −(gv + fu) + dk2

b2 = fugv − fvgu − fudk2

b3 = k2

b4 = −gvk
2 + dk4.

The system loses its stability to a spatial Hopf bifurcation
only when a purely imaginary solution appears at a finite
value of the wave number k. In that pursuit we insert λ = iω

into Eq. (13). Further, applying de Moivre’s theorem and then
separating the real and imaginary parts we finally obtain

cos (ωτ ) = (b4 − b1b2)ω2 − b2b4

b2
3ω

2 + b2
4

,

(14)

sin (ωτ ) = b3ω
3 + (b1b4 − b2b3)ω

b2
3ω

2 + b2
4

.

Equation (15) implies that ω must satisfy the following equa-
tion:

ω4 + (
b2

1 − 2b2 − b2
3

)
ω2 + b2

2 − b2
4 = 0, (15)

where ω is real only if either of the following conditions are
met:

(
b2

1 − 2b2 − b2
3

)
< 0, (16)

(
b2

2 − b2
4

)
< 0. (17)

The unique solution (ωτ ) of (15) could be written as

ωτ = arccos

[
(b4 − b1b3)ω2

l − b2b4

b2
3ω

2
l + b2

4

]
(18)

FIG. 1. Figure demonstrates the space-time contour of the the
variable u(x, t ) simulated numerically using Eqs. (22) for the pa-
rameter space: α = 0.899, β = −0.91, γ = −0.899, δ = 2.0 and
(a) d = 0.516, τ = 0.0; (b) d = 0.516, τ = 0.17; (c) d = 1.0, τ =
0.0; and (d) d = 1.0, τ = 0.34. Panels (a) and (c) give the concentra-
tion distribution when the diffusive memory is not considered. Panel
(a) corresponds to a Turing region, and the time is plotted along
the y axis so the perpendicular stripes represent a stationary Turing
structure. Panel (c) corresponds to a parameter space beyond the
Turing zone, marked by a uniform distribution of species in space and
time. Panels (b) and (d) are the results of simulation when diffusive
memory is considered and has a value higher than the threshold
inside the Turing region and beyond it, respectively. In both cases
the inclusion of diffusive memory induces a spatiotemporal structure,
suggesting the simultaneous occurrence of spatial inhomogeneity
and temporal nonstationarity. The nature of the temporal and spatial
structure are separately demonstrated in Figs. 2 and 3, respectively.

if sin (ωτ ) > 0 and

ωτ = 2π − arccos

[
(b4 − b1b3)ω2

l − b2b4

b2
3ω

2
l + b2

4

]
(19)

if sin (ωτ ) < 0.
Now the sequences are defined: τ

1,j

2,l and τ
2,j

2,l , for l = 1,2,

τ
1,j

2,l = 1

ωl

{
arccos

[
(b4 − b1b3)ω2

l − b2b4

b2
3ω

2
l + b2

4

+ 2jπ

]}
(20)

and

τ
2,j

2,l = 1

ωl

{
2π − arccos

[
(b4 − b1b3)ω2

l − b2b4

b2
3ω

2
l + b2

4

+ 2jπ

]}
.

(21)
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FIG. 2. Figure demonstrates the temporal evolution of the variable u(x, t ) simulated numerically using Eqs. (22) for the parameter space:
α = 0.899, β = −0.91, γ = −0.899, δ = 2.0 and (a) d = 1.0, τ = 0.0; (b) d = 1.0, τ = 0.17; (c) d = 0.516, τ = 0.0; and (d) d = 0.516,
τ = 0.34, at three arbitrarily chosen grid points. Panels (a) and (c) give the concentration distribution when the diffusive memory is not
considered. Panel (a) corresponds to a Turing region, and the concentration at the three space points eventually reaches stationarity but each at
a different value, as required for a stationary Turing structure. Panel (c), on the other hand, corresponds to parameter space beyond the Turing
zone, and the concentration reaches the same stationary value everywhere. Panels (b) and (d) are the results of simulation when diffusive
memory is considered and has a value over the threshold inside Turing region and beyond it, respectively. Evidently diffusive memory induces
a complex temporal oscillation in the concentration variables in all three cases. This suggests the diffusive memory induces a supercritical
Hopf bifurcation. The phase or the amplitudes of oscillation are not synchronized for the three space points, and therefore we get a spatial
structure that keep changing in time, such as a complicated spatiotemporal structure as demonstrated in Fig. 1.

It follows from here (a detailed analysis may be found
in Ref. [25]) for τ above a value given by any one of the
above sequences (20) and (21), and Eq. (15) admits positive
ω2, provided that either of the conditions given by Eqs. (16)
or (17) is satisfied. Evidently the “k4” term in b4 makes
b2

2 − b2
4 negative for large values of k which implies that

condition (17) is satisfied for any k above a minimum. The
instability does not require any additional constraint on the
kinetic parameters. Positivity of ω2 for all k values above a
threshold ensures there exist a pair of imaginary eigen value
(λ) of opposite sign for every wave number k in this range;
the condition for spatial Hopf bifurcation. Thus the diffusive
memory at a value given by any of the sequences (20) and (21)
induces a spatial Hopf bifurcation to the system irrespective
of the nature of the kinetics, and the kinetics parameters only
determine the value of τ at the bifurcation point. In contrast

to Turing instability, which is always associated with a finite
number of wave vectors (as illustrated in Fig. 4 for the model
described in Sec. III A), here all the modes above a threshold
become unstable. Horsthemke derived a similar condition for
spatial Hopf bifurcation in the case of a direction-independent
persistent random-walk model but there the instability condi-
tion additionally requires the rate of activation to be greater
than the death rate in the steady state which generally does
not occur in most of the commonly studied reaction-diffusion
models [11]. No such criterion on kinetic parameters limits
the applicability of the analysis here and therefore the kind
of instability we discuss now is expected to be manifested
by many of the available reaction-diffusion models in wider
ranges of parameter space. The kinetic parameter, however,
determines (i) the critical value of the diffusive memory [by
Eqs. (20) or (21)] above which instability is possible and
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FIG. 3. Figure demonstrates the spatial distribution of the variable u(x, t ) simulated numerically using Eqs. (22) for the parameter space:
α = 0.899, β = −0.91, γ = −0.899, δ = 2.0 and (a) d = 1.0, τ = 0.0; (b) d = 0.17, τ = 1.0; (c) d = 0.516, τ = 0.0; and (d) d = 0.516,
τ = 0.34, at three arbitrarily chosen time instants. In (a) and (c) the diffusive memory is not considered. Panel (a) corresponds to a Turing
region, the concentration is always nonuniform in space, and the distribution reaches stationarity in quick time, producing a stationary Turing
structure. Panel (c), on the other hand, corresponds to parameter space beyond the Turing zone, and the concentration reaches uniformity
throughout the space in quick time. Panels (b) and (d) are the results of simulation when diffusive memory is considered and has a value
higher than the threshold inside Turing region and beyond it, respectively. Evidently diffusive memory induces a complex spatial structure
which keep changing in time, never reaching stationarity. This suggests the memory induces a spatial Hopf bifurcation. Since the distribution
of concentration in space keep evolving in time, we get a spatial structure that keep changing in time; a complicated spatiotemporal structure
as demonstrated in Fig. 1.

(ii) the threshold wave vector [by Eq. (17)]. In the section that
follows we numerically simulate two reaction-diffusion mod-
els, commonly studied in thi context of pattern formation, in
the presence of diffusive memory in order to (i) verify how far
the analytic predictions are met through numerical simulation
and to (ii) ascertain the nature of the Hopf bifurcation, i.e.,
whether it is supercritical or subcritical.

III. NUMERICAL SIMULATIONS

The results of linear analysis strictly holds for the initial
phases of a dynamics when the perturbation is still small. The
linearization scheme fails as the perturbation grows and its
predictions often go wrong in the long-time limit. So a linear
stability analysis must always be accompanied by numerical
investigations. For dynamical models that include memory or

inertia, the numerical results are particularly important be-
cause though instances of dynamical delay inducing long-time
stable spatial structures are well known, the effect of inertia on
the dynamics often dies down in the long run. Further, a Hopf
bifurcation could be either subcritical or supercritical, where
a supercritical bifurcation is characterized by small-amplitude
limit-cycle oscillation while a supercritical one may lead to
a potentially dangerous large-amplitude oscillation diverging
away to infinity or chaos. A straightforward prescription to
ascertain whether the bifurcation is subcritical or supercritical
in nature is to numerically simulate the model to check for
the appearance of a small-amplitude limit cycle near the
bifurcation point.

In this section we present a numerical analysis on two
prototype reaction-diffusion models and compare the re-
sults both with and without diffusive memory. The model
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FIG. 4. Dispersion diagram for the model given by Eqs. (22) for
the parameter space: α = 0.899, β = −0.91, γ = −0.899, δ = 2.0,
and d as mentioned in the figure.

dynamics were simulated using XPPAUT software which
employs fourth-order Ranga-Kutta to solve both the ordinary
partial and the delayed partial differential equations. In every
case the initial conditions are set by subjecting the dynamical
variables u(x, t ) and v(x, t ) to random perturbations around
the respective steady states (u0 and v0) (random perturbations
generated by the Box-Muller algorithm).

A. Pigmentation fish model

First, we consider the generic reaction-diffusion model
proposed by Bario et al. [26], given as

ut (x, t ) = αu(1 − r1v
2) + v(1 − r2u) + δd∇2u(x, t − τ ),

vt (x, t ) = βv(1 + αr1uv/β ) + v(γ + r2v) + δ∇2v(x, t ).

(22)

Here α, β, γ , r1, and r2 are kinetic parameters; δ de-
fines the length scale of the system; and d is the ratio of
the diffusion coefficients of the two species. The reaction
terms in this model are not phenomenological, but rather
their choice is guided by the requirement of conservation of
certain chemicals and the nonlinearity is chosen to determine
specific unstable modes to dominate for the selection of a
particular type of pattern under Turing conditions. Due to its
generalized structure, the model has been employed to study
several attributes of Turing pattern [27]. The condition α =
−γ ensures the (0,0) to be the only spatially uniform steady
state of the system while α + β < 0; αβ − γ > 0 ensures that
the homogeneous state is stable. At d > − α

β
the state loses its

stability to inhomogeneous perturbation and a Turing pattern
is formed. We intend to explore the effect of the introduction
of diffusive memory numerically on the spatiotemporal dy-
namics in both the Turing region and beyond, since condition
(17) could be satisfied at above given thresholds of k for both
the cases. Computations are performed on Eq. (22) by an
explicit Euler method on a one-dimensional grid with 100 data
points with �x = 1.0 and time step �t = 1.0 × 10−4 under
zero flux boundary conditions using the software XPPAUT.
Results of the simulation are shown in Figures 1, 2, and 3.
Figures 1(a) and 1(b) give the space-time contours of the

FIG. 5. Figure demonstrates the space-time contour of the the
variable u(x, t ) simulated numerically using Eqs. (23) for the param-
eter space: a = 18.0, b = 1.5, d = 1.6, and (a) σ = 8.0, τ = 0.0;
(b) σ = 8.0, τ = 1.0; (c) σ = 4.0, τ = 0.0; (d) σ = 4.0, τ = 1.0.
Panels (a) and (c) give the concentration distribution when the
diffusive memory is not considered. Panel (a) corresponds to a Turing
region, and time is plotted along the y axis so the perpendicular
stripes represent a stationary Turing structure. Panel (c) corresponds
to a Hopf region, and the horizontal stripes represent homogeneous
oscillations. Panels (b) and (d) are the results of simulation when
diffusive memory is considered and has a value higher than the
threshold in the Turing and Hopf regions, respectively. In both the
cases the inclusion of diffusive memory induces a spatiotemporal
structure, suggesting simultaneous occurrence of spatial inhomo-
geneity and temporal nonstationarity. The nature of the temporal and
spatial structure would be separately demonstrated in Figs. 6 and 7,
respectively.

concentration variable u(x, t ) according to Eq. (22) in a pa-
rameter zone beyond the Turing bifurcation in the absence and
in the presence of diffusive memory, respectively. Figures 1(c)
and 1(d) depict the same for a parameter region within the
Turing space. Spatiotemporal instability arises from spatially
homogeneous and inhomogeneous states respectively in the
two cases above a threshold value of the diffusive memory.
The values of τ required to switch on the spatiotemporal insta-
bility in the two cases are different (as argued in Sec. II): 0.32
and 0.17 for the unstable (Turing) and stable regions, respec-
tively. For easy understanding of the nature of bifurcation, I
plot u(x, t ) against time and space, respectively, in Figs. 2 and
3. Figures 2(a) and 2(b) correspond to the temporal evolution
in the Turing region of the parameter space, without and with
delay while Figs. 2(c) and 2(d) show the same beyond it. The
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FIG. 6. Figure demonstrates the temporal evolution of the variable u(x, t ) simulated numerically using Eqs. (23) for the parameter space:
a = 18.0, b = 1.5, d = 1.6, and (a) σ = 8.0, τ = 0.0; (b) σ = 8.0, τ = 1.0; (c) σ = 4.0, τ = 0.0; and (d) σ = 4.0, τ = 1.0, at three arbitrarily
chosen grid points. Panels (a) and (c) give the concentration distribution when the diffusive memory is not considered. Panel (a) corresponds
to a Turing region, and the concentration at the three points reaches stationarity but each at a different value, as required for a stationary Turing
structure. Panel (c), on the other hand, corresponds to a Hopf region, characterized by homogeneous oscillation in the concentration variables.
Panels (b) and (d) are the results of simulation when diffusive memory is present and has a value higher than the threshold in the Turing and
Hopf regions, respectively. Evidently diffusive memory generates a complex temporal oscillation in the concentration variables which is also
inhomogeneous in space. This suggests the diffusive memory induces a supercritical Hopf bifurcation. As the amplitudes of oscillation is not
uniform in space, we obtain a spatial structure that keep changing in time; a complicated spatiotemporal structure as demonstrated in Fig. 5.

temporal oscillation observed in Figs. 2(b) and 2(d) indicates
a Hopf bifurcation. Similarly, Figs. 3(a) and 3(b) correspond
to the spatial variation of u(x, t ) in the Turing region, without
and with memory; while Figs. 3(c) and 3(d) show the same
beyond it. Evidently delay induces a spatial structure in both
cases. Notably, the irregular nature of the spatial structure in
presence of memory reflects the presence of a large number of
unstable modes [by condition (17) all modes above a threshold
k are unstable in the presence of delay]. This is in sharp
contrast to the regular Turing structures indicative of a finite
number of unstable modes (a typical dispersive behavior is
demonstrated in the Fig. 4). Thus the inclusion of a diffusive
memory in the dynamics is capable of inducing a spatial Hopf
bifurcation to a model which otherwise never shows any kind
of temporal instability. Further, a spatial inhomogeneity is
generated here in spite of the ratio of the diffusion coefficients
being unity (a condition necessary for spatial structures to be

formed according to Turing’s theory). Earlier studies on the
model did show generation of spatial patterns under such a
condition but only in the presence of external fields [27].

B. CIMA model

Now I consider the case of the well-known chlorite-iodide-
malonic acid model. The model is given in terms of two
concentration variables and can be described by the following
pair of partial differential equations:

ut (x, t ) = a − u − 4uv

1 + u2
+ ∇2u(x, t − τ )

vt (x, t ) = σ

[
b

(
u − 4uv

1 + u2

)
+ d∇2v(x, t )

]
, (23)

where u(x, t ) and v(x, t ) represent the dimensionless con-
centrations of the species chlorite and iodide. By changing
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FIG. 7. Figure demonstrates the spatial distribution of the variable u(x, t ) simulated numerically using Eqs. (23) for the parameter space:
a = 18.0, b = 1.5, d = 1.6, and (a) σ = 8.0, τ = 0.0; (b) σ = 8.0, τ = 1.0; (c) σ = 4.0, τ = 0.0; (d) σ = 4.0, τ = 1.0, at three arbitrarily
chosen time instants. In (a) and (c) the diffusive memory is not considered. Panel (a) corresponds to a Turing region, the distribution is
always inhomogeneous in space, and initially nonstationary but eventually evolves to an equilibrium distribution producing a stationary Turing
structure. Panel (c) corresponds to the Hopf region of parameter space, and the concentration reaches a uniform value throughout the space
and this value periodically changes in time. Panels (b) and (d) are the results of simulation when diffusive memory is present and has a value
higher than the threshold in the Turing and Hopf regions, respectively. Evidently diffusive memory in each of the cases generates a complex
spatial structure that keeps changing in time, never reaching stationarity. This suggests the memory induces a spatial Hopf bifurcation. Since
the spatial distribution of concentration continually evolve in time, we get the complicated spatiotemporal structure demonstrated in Fig. 5.

the value of the parameter σ which denotes the concentration
of starch present in the reaction medium, one can switch
between pure Hopf and pure Turing modes. Historically, a
Turing pattern was first experimentally demonstrated in this
chlorite-iodide-malonic acid model [28–30] thanks to the
model fulfilling the instability criteria of inhibitor diffusing
faster than the activator due to the formation of a starch-iodide
complex which renders the iodide slow-moving compared to
chlorite [31]. Since then, this model has been extensively
applied both for theoretical and experimental studies, like in
the investigation of Turing patterns under external influence
[32–35], the appearance of spirals [36], generation of spatial
periodicity [21] or the existence of Hopf-Turing mixed modes
[37]. Here we consider the effect of diffusive memory on the
dynamics at two different parameter regions, corresponding to
a pure Hopf and pure Turing, respectively. In both the cases

it is always possible to satisfy the condition (17) above a
threshold value of k. [It is worthwhile to mention here that
the direction-independent reaction-walk model precludes the
spatial Hopf instability in this model since here the required
condition A11 − d(u0, v0) can never be satisfied.] Numeri-
cally, we solve Eqs. (23) using XPPAUT in a one-dimensional
grid of 100 data points with �x = 1.0 space points and time
steps �t = 0.05 under zero flux boundary condition. The
results of the simulation are presented in Figs. 5, 6, and 7.
Figures 5(a) and 5(b) give the the space-time contours of the
concentration variable u(x, t ) according to Eq. (23) in the pure
Hopf region of parameter space, in the absence and in the
presence of memory, respectively. Evidently homogeneous
oscillation gives way to complex spatiotemporal structures in
the presence of memory indicating the occurrence of spatial
Hopf bifurcation. The values of τ required to switch on the

032218-9



SYED SHAHED RIAZ PHYSICAL REVIEW E 98, 032218 (2018)

0

10.4

 0 50

0 1 

0

10.4

 0 50

0 0.1 

(a) (b)

FIG. 8. Figure demonstrates the space-time contour of the the variable u(x, t ) simulated numerically using Eqs. (25) for the parameter
space: r = 0.5, ak = 0.1, d = 0.5 along with (a) τ = 0, (b) τ = 1.0. Panel (a) corresponds to a parameter space beyond the Turing zone,
marked by a uniform distribution of species in space and time. Panel (b) gives the concentration distribution in the same parameter region with
the delay switched on. Thus the inclusion of diffusive memory induces a spatiotemporal structure on an otherwise homogeneous distribution,
this suggests the simultaneous occurrence of spatial inhomogeneity and temporal nonstationarity induced by the memory. The nature of the
temporal and spatial structure are separately demonstrated in Figs. 9 and 10, respectively.
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FIG. 9. The time evolution of the the variable u(x, t ) simulated numerically using Eqs. (25) for the parameter space: r = 0.5, ak = 0.1,
d = 0.5 along with (a) τ = 0 (b) τ = 1.0. Panel (a) corresponds to a stable zone of the parameter space, marked by the species reaching
stationarity at same value in all the three arbitrarily chosen space points. Panel (b) gives the time evolution of u(x, t ) in the same parameter
region with the delay switched on. Evidently diffusive memory induces a complex temporal oscillation in the concentration variables in all the
three cases. This suggests the diffusive memory induces a Hopf bifurcation. The phase or the amplitudes of oscillation are not synchronized for
the three space points, therefore we get a spatial structure that keeps changing in time, a complicated spatiotemporal structure as demonstrated
in Fig. 8.
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FIG. 10. Figure demonstrates the spatial distribution of the the variable u(x, t ) simulated numerically using Eqs. (25) for the parameter
space: r = 0.5, ak=0.1, d = 0.5 along with (a) τ = 0 (b) τ = 1.0 at three arbitrarily chosen time instants. Panel (a) corresponds to a stable
zone of the parameter space, marked by the species reaching uniform value throughout the space. Panel (b) gives the spatial distribution of
u(x, t ) in the same parameter region with the delay switched on. Evidently diffusive memory generates a complex spatial structure that keeps
changing in time, never reaching stationarity. This suggests that the memory induces a spatial Hopf bifurcation. Since the spatial distribution
of concentration continually evolves in time, we get the complicated spatiotemporal structure demonstrated in Fig. 5.

spatiotemporal instability in the two cases are different [due
to the dependence of threshold τ on the kinetic parameters by
Eqs. (20) and (21)]; 0.8 and 0.3 for the unstable (Hopf) and
unstable (Turing) region, respectively. Figures 5(c) and 5(d)
depict the spatiotemporal distribution of concentration for a
parameter region within the Turing space. Here a spatiotem-
poral structure is produced induced by the diffusive memory at
the cost of the stationary spatial pattern. For easy understand-
ing of the nature of the nature of bifurcation, I have plotted the
value of u(x, t ) against time and space, respectively, in Figs. 6
and 7. Figures 6(a) and 6(b) corresponds to the temporal
evolution in the Hopf region of the parameter space, without
and with delay, while Figs. 6(c) and 6(d) show the same in a
Turing space. The temporal oscillation observed in Figs. 6(b)
and 6(d) is a clear indicator of a Hopf bifurcation. Similarly,
Figs. 7(a) and 7(b) correspond to the spatial variation of
u(x, t ) in the Turing region, without and with delay, while
Figs. 7(c) and 7(d) show the same beyond it. Evidently delay
induces a spatial structure in both cases.

C. Fisher model

Before we conclude this section, here I briefly mention
the results of numerical analysis with the well-known Fisher
model. Originally proposed for propagation of an advanta-
geous allele in the distribution of genes, the Fisher model and
its many variants have found wide applicability in fields rang-
ing from ecology, physiology, combustion, crystallization,
plasma physics, and in general phase transition problems. The
one-variable Fisher model consists of a birth-death process
with logistic population growth term for the species along
with the diffusion

ut (x, t ) = ru(1 − u/k) + d∇2u(x, t ). (24)

Here r denotes the linear growth rate and k the carrying
capacity of the species. Considering memory in the diffusion

(which implies these species require a finite time to respond
to a gradient of population density) we write

ut (x, t ) = ru(1 − u/k) + d∇2u(x, t − τ ). (25)

Equation (25) is now solved by an explicit Euler method on
a one-dimensional grid with 50 space points with �x = 1.0
and time step �t = 1.0 × 10−4 under zero flux boundary con-
dition using the software XPPAUT. Results of the simulation
are shown in the Fig. 8. Figures 8(a) and 8(b) give the space-
time contours of the concentration variable u(x, t ) according
to Eq. (25) in a parameter zone that corresponds to a stable
state in the absence of memory. Figures 9 and 10 describe the
temporal and spatial variation of the concentration variable
respectively. Spatiotemporal instability arises out of spatially
homogeneous state above a threshold value of the diffusive
memory. (I did not produce any more detailed results of the
model in other parameter regions for fear of repetition).

IV. CONCLUSION

Cattaneo’s modification of Fick’s law of diffusion is in
general based on linearization of the delayed flux around
the current time and therefore not always applicable when
the inertia is large. Instead, here we start with the form
of reaction-diffusion model, which includes a memory in
the diffusion part, to arrive at a condition for spatial Hopf
bifurcation, induced by the diffusive memory. Analysis sug-
gests the system loses stability due to all the wave vectors
above a minimum crossing the instability threshold, when the
diffusive memory (that is the inertia) is sufficiently large. The
stability criteria does not impose any restriction on the kinetic
parameters (which only determines the critical value of the
diffusive memory and also the minimum wave vector) and
therefore can easily be realized in common reaction-diffusion
systems. This is in contrast to an earlier work by Horsthemke
[11] which employs a microscopic approach to demonstrate
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that such a spatial Hopf instability would be suppressed by the
kinetics in most of the commonly studied reaction-diffusion
models. The results of the analysis in our case is vindicated
by numerical investigation with three prototype reaction-
diffusion models which includes a real chemical, a general-
ized pattern forming, and one ecological model. In all the
cases inclusion of diffusive memory leads to spatiotemporal
oscillations; in the first two models the oscillations at each
space point stabilize to finite small amplitude limit cycles
suggesting the Hopf bifurcation involved to be supercritical in
nature. In the other model the oscillations keep growing and
eventually the dynamics diverge in the long run, which indi-
cates that the instability is subcritical Hopf. The oscillations
in different space points are not synchronized to each other
and the simultaneous occurrence of temporal oscillation and
spatial inhomogeneity produce a spatial structure which keeps
changing in time. The irregular structure of the spatiotemporal
distribution at any time instant here reflects the presence of a
large number of unstable modes, in contrast to regular Turing

patterns which are characterized by only a few unstable wave
vectors. Spatiotemporal structures are a common occurrence
in a wide range of chemical, physical, and biological models.
While a number of mechanisms have been put forward to
account for the generation of these patterns, in many cases
stringent instability criteria on the kinetic parameters limits
their applicability. The significantly lenient stability criteria
for the mechanism proposed here therefore could bring a
wider range of pattern-forming phenomena to mathematical
modeling.
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