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Design strategies for generalized synchronization
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We describe a general procedure to couple two dynamical systems so as to guide their joint dynamics onto
a specific transversally stable invariant submanifold in the phase space. This method can thus be viewed as a
means of constraining the dynamics, with the coupling functions providing the forces of constraint, which results
in the coupled systems being in generalized synchronization. The required coupling functions are, however, not
uniquely defined and can therefore be chosen in order to satisfy a desired design criterion.
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I. INTRODUCTION

In recent decades there has been a surge of interest in
the study of synchronization [1,2], arguably one of the most
striking temporal patterns that coupled oscillatory dynamical
systems can exhibit. Although this is a subject that has been
investigated extensively for nearly four centuries now [3],
with the current developments in nonlinear science, the defini-
tions and scenarios that come under rubric of synchronization
have been extended considerably [1].

At the most general level of description, synchrony can
be understood as the development of strong dynamical corre-
lations between two dynamical systems [4,5]. This covers a
range of behavior, from when the dynamics of the two subsys-
tems is identical [1,2], namely, complete synchronization, to
when there is a functional dependence between the variables
of the two subsystems: this is termed generalized synchroniza-
tion [6–8]. A variety of intermediate behaviors is possible, and
accordingly, different forms of synchronization can be seen
in systems that are coupled one-way or mutually, when the
coupling is asymmetric, or when the coupling involves time
delay [1,9,10]. Furthermore, the dynamics of the combined
system in synchrony necessarily takes place in a lower dimen-
sional subspace of the phase space: the functional relationship
between the variables ensures that the dynamics lies in the
so-called synchronization manifold [11]. In most situations
the synchronized dynamics is typically not very different from
that of the isolated systems since the coupling functions that
are employed often vanish on the synchronization manifold.

Our aim in the present work is to design the coupling
between two systems so as to reach a specific state of gener-
alized synchronization, namely, one with a desired functional
dependence of the variables of one system on the other. In
other words, our objective is to determine a procedure so as
to constrain the dynamics in the coupled system to a specific
submanifold or algebraic variety [12] within the phase space.
Synchronization is thus viewed as effectively being a control
strategy whereby two systems mutually drive each other into
a correlated dynamical state (or if the coupling is one-way, the
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interaction is of the master-slave type and the slave dynamics
becomes correlated to that of the master).

Generalized synchronization [6–8] (GS) has been exten-
sively studied since the 1990s for a variety of different
scenarios [13], complex coupling topologies [14], with time
delay in the coupling [15], and so on. These studies have
mainly adopted a passive viewpoint that can be summarized
as follows: Given a specified form of the coupling, how and
when does GS result and how can it be detected?

At the same time, there has been motivation to study a
variety of linear and nonlinear coupling mechanisms [16] for
reasons that include potential applications of chaos synchro-
nization in secure communication or control [17–19]. The
possibility of achieving a required state of synchronization by
modifying the coupling function is therefore desirable from
an engineering point of view and offers a level of flexibility
and control. The role of coupling in modifying the resulting
dynamics has been studied in detail, especially since the
collective dynamics of coupled systems includes phenomena
such as amplitude or oscillation death [20], phase flip [21],
or induced multistability [22] in addition to synchronization.
Indeed, as has been noted [16], the functional form of the
coupling function can be an instrument of control. The pos-
sibility of achieving a required state of synchronization by
modifying the coupling function is therefore desirable from
an engineering point of view and offers a level of flexibility
and control.

The control framework is particularly moot when the cou-
pling between two systems is of the master-slave or skew-
product form [23]. The dynamics of the drive or master system
remains unaffected while that of the response or slave system
correlates with that of the drive. Our additional objective in
such a scenario is to determine whether there is an optimal
coupling that can achieve a specific objective, in terms of
the functional form of coupling rather than coupling strength
[24]. Within the master-slave scenario, the autonomous flow
dynamics of the enslaved system can often be completely
destroyed [25], and this level of over-design may not be
desirable. Accordingly, we present a general framework for
bidirectional coupling that offers an inherently stable pro-
cedure for synchronization and aims to affect the inherent
dynamics minimally.
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There is overlap between the objectives of the present
work and of synchronization engineering [26], the technique
for controlling phase dynamics by tuning coupling functions
in an ensemble of oscillators. Further, there is also overlap
between the present work and the techniques used in projec-
tive synchronization [25,27–30], although our approach that
is outlined in Sec. II is more general. Particular attention
is paid to the question of stability, and it is shown how
the coupling functions can be selected to ensure stability in
directions that are transverse to the desired synchronization
submanifold. We then present specific results for the case
of two coupled chaotic Lorenz oscillators and show how the
coupling can be arranged for specific choices of the synchro-
nization submanifold in Sec. III. The paper concludes with
a summary and discussion in Sec. IV. It should noted that
while the discussion and presentation in this paper is for two
coupled systems, it is a simple matter to extend this to larger
sets of coupled oscillators with different coupling topologies.
Explicit consideration of such systems will be taken up in
subsequent work.

II. CONSTRAINED DYNAMICS

Consider two independent systems x ∈ Rm, y ∈ Rn

wherein the flows are specified by

ẋ = F1(x),

ẏ = F2(y). (1)

This may be written compactly in terms of X ≡ [x y]ᵀ ∈
Rm+n as

Ẋ = F(X), (2)

with F defined appropriately.
Regardless of the precise form of synchrony (namely

complete, phase, lag, etc. [1]), one can identify a lower-
dimensional subspace M in the coupled system on which
the synchronized dynamics is effectively confined: this is the
synchronization manifold [11]. In principle, all specific types
of synchronization can be seen as special cases of generalized
synchronization, namely, to have the variables functionally
dependent on each other [6],

x = �x (y) and y = �y (x), (3)

or equivalently through the relationship [31] �(x, y) = 0,
where the functional � typically specifies an algebraic variety
and is defined by a set of N < n + m functional relations or
constraints, each of which is an algebraic relationship of the
form

φi (x, y) = 0, (4)

all of which should be distinct and independent, and � =
[φ1 φ2 . . . φN ]ᵀ.

Our objective is to couple the systems in order to achieve
a specified state of GS, along with two additional related
requirements in order that the synchronization is stable. The
synchronization manifold must be an attractor of the dynam-
ics, at least locally, and, furthermore, this subspace should be
stable under transversal perturbations in order for synchrony
to be observed. Our approach here is to incorporate these

FIG. 1. Schematic of our general strategy. The surface represents
the target synchronization manifold M(�). The points X0, XA are on
M(�), and also shown is Ni , a normal to the surface. The coupling
is designed to bring nearby trajectories (from XB , say) onto this
submanifold in the phase space. Subsequently, the additional terms
in the coupling keep the flow on M(�) (as indicated at XA) and,
furthermore, constrain it to this surface.

features in our design strategy. Since the variables of the two
are functionally related to each other, the subsystems need
to be coupled in a manner so as to ensure that trajectories
in the system are asymptotically attracted to the submanifold
M(�) = {X ∈ Rm+n : �(X) = 0} or, equivalently, that

lim
t→∞ φj (X(t )) → 0 ∀j, and therefore lim

t→∞ �(X(t )) = 0. (5)

In order that the submanifold specified by �(x, y) = 0 is
invariant, namely, that a trajectory that is in M(�) remains
in it, we require that the flow direction be orthogonal to the
normal vectors at any point X of �; see Fig. 1. The normals
are given by

Ni (X) = ∇xφi (x, y) ⇒ N ≡ ∇ᵀ
x �(X)

= [N1 N2 · · · NN ]ᵀ, (6)

and thus we have the condition

Nᵀ
i (X)F(X) = 0 ∀X ∈ M(�) ⇒ N(X)F(X) = 0. (7)

If the additive coupling terms for each of the flows are given
by ς i (X), the coupled system is given as

ẋ = F1(x) + ς1(X),

ẏ = F2(y) + ς2(X). (8)

It should be pointed out that the coupling functions ς i are
defined only up to addition; one can include terms in the
coupling, namely, ς i → ς i + χ i , with the requirement that
the χ i should vanish on the synchronization manifold:

χ i (X) = 0 ∀X ∈ M(�). (9)

This does not affect the formalism, but the additional sta-
bilizing terms χ ≡ [χ1(x, y) χ2(x, y)]ᵀ may be required
in order to ensure that the manifold is made attracting. The
variable coupling strength can also be included here.

The requirement of invariance for such a system on the
submanifold gives

N(F + ς ) = 0 ⇒ Nς = −NF, (10)

where ς ≡ [ς1(x, y) ς2(x, y)]ᵀ.
For the synchronization submanifold to be transversally

stable, perturbations should decay so that the trajectory returns
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to M(�). Consider a local perturbation about a point X0 on
M(�) as ξ (t ) = X(t ) − X0. Linearizing Eq. (2) gives

ξ̇ = F(X0) + ∇ᵀ
x F(X0)ξ + higher order terms. (11)

Expanding the perturbation in the normal and tangent sub-
spaces, namely, as ξ = ∑

i αiNi (X) + ∑
i βiTi (X) about X0,

we get

ξ̇ = F(X0) + ∇ᵀ
x F(X0)

[ ∑
i

αiNi (X0) +
∑

i

βiTi (X0)

]
.

For transverse stability it is necessary that the perturbation
should decay along the normal directions,

ξ̇ · αiNi < 0 ∀i = 1, 2, . . . , N.

The tangential component vanishes since the flow on the
submanifold is always along the surface as already ensured
by Eq. (7):[

F(X0) + ∇ᵀ
x F(X0)

∑
i

βiTi (X0)

]
· αiNi = 0.

Hence the stability criterion is equivalent to the requirement
that ξ̇ decays along the normal directions:

∇ᵀ
x F(X0)

∑
i

αiNi · αiNi < 0; ∀i = 1, 2, . . . , N. (12)

This can be ensured by requiring that along the trajectory the
real parts of all eigenvalues of the Jacobian remain nonposi-
tive. At every point X on the submanifold, if the eigenvalues
{λi} of the Jacobian matrix given by

J = N∇ᵀ
x F(X)Nᵀ (13)

satisfy the condition

∀X ∈ M(�), λi < 0 ∀ i, (14)

stability is ensured. More generally, one may require that the
transverse Lyapunov exponents should be negative: this is
the condition that is employed in projective synchronization
[14,27].

Equations (7), (10), and (14), along with the constraints
specifying M(�) represent our strategic equations for achiev-
ing the desired synchronization between the two systems
given by Eq. (1). The stabilizing functions χ can be included
in the dynamics so as to make the manifold transversally
stable in the following manner. Defining

χ ≡ ε�(X), (15)

where ε is a matrix which can be chosen suitably (and need
not be constant), one obtains

∇ᵀ
x χ = ε∇ᵀ

x �(X) + ∇ᵀ
x ε�(X). (16)

Note that the second term on the right vanishes on the syn-
chronization manifold, and therefore

∇ᵀ
x χ = εN. (17)

By varying the coupling strength (which is included in ε) there
is complete control on making the synchronization manifold
attractive, and this is applicable in all cases of generalized
synchronization. Note that the systems of equations are not
overdetermined, and in fact there is considerable flexibility in

the choice of both χ and ς . This will be explicitly illustrated
in the examples we discuss below.

III. APPLICATIONS

For simplicity, we present applications of the present pro-
cedure for constraining the dynamics in a system of coupled
chaotic Lorenz oscillators [32]. Each of the subsystems is a
flow in R3:

ẋ1 = σ (x2 − x1), ẏ1 = σ ′(y2 − y1),

ẋ2 = x1(ρ − x3) − x2, ẏ2 = y1(ρ ′ − y3) − y2,

ẋ3 = x1x2 − βx3, ẏ3 = y1y2 − β ′y3, (18)

σ, ρ, and β (and their primed counterparts) being parameters.
Writing this compactly as

Ẋ = F0(X), (19)

one can see that the Jacobian of the intrinsic flow of the Lorenz
systems is

∇ᵀ
XF0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−σ σ 0 0 0 0
ρ − x3 −1 −x1 0 0 0

x2 x1 −β 0 0 0
0 0 0 −σ ′ σ ′ 0
0 0 0 ρ ′ − y3 −1 −y1

0 0 0 y2 y1 −β ′

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(20)

We take the Lorenz systems to be identical, σ = σ ′, ρ =
ρ ′, β = β ′ in the three examples of designed synchrony pre-
sented below.

A. Modified projective synchronization

The first example we consider is the case of modified
projective synchronization [25], where we take as the target
submanifold the three-dimensional subspace within the six-
dimensional phase space given by the conditions y1 = ax1,
y2 = bx2, and y3 = cx3, which can be written as y = Sx with

S =
⎡
⎣a 0 0

0 b 0
0 0 c

⎤
⎦.

Expressing the constraints simply as (y1 − ax1) =
0, (y2 − bx2) = 0, (y3 − cx3) = 0 effectively describes the
constraint as �(X) = y − Sx. Defining N as a matrix of
dimension 3 × 6,

N = [S −1],

where 1 is a unit matrix of order 3, a straightforward calcula-
tion gives

Nς =
⎡
⎣ (b − a)σx2

(a − b)ρx1 − acx1x3 + bx1x3

abx1x2 − cx1x2

⎤
⎦. (21)

There are several possible algebraic solutions for ς i that
will satisfy the constraint of keeping the dynamics on the
invariant submanifold M(�). Here we choose the following
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FIG. 2. Projective synchrony in bidirectionally coupled Lorenz
systems for a = 2.6, b = 1.8, c = 3.6. (These values are arbitrary:
any scale factors can be achieved with this form of the coupling and
the desired a, b, and c.) The x dynamics is shown in black, while the
y dynamics is in blue. The axes are labeled only by the x variables.

bidirectional coupling:

ς1 =
⎡
⎣ σy2/a

(ρy1 − y1y3)/b
y1y2/c

⎤
⎦, ς2 =

⎡
⎣ σax2

ρbx1 − bx1x3

cx1x2

⎤
⎦.

With this choice of ς , it happens that the eigenvalues of the
corresponding Jacobian matrix (13), namely,

J =

⎡
⎢⎣

−σa2 − σ 0 0

0 −b2 − 1 0

0 0 −c2β − β

⎤
⎥⎦, (22)

are by construction all negative, additional stabilizing func-
tions are superfluous. The fact that this matrix is diagonal
indicates that at each point any perturbation will decay along
the normals, naturally ensuring the stability of the synchro-
nization manifold. Incidentally, this solution is valid for all
real values of a, b, and c, and a particular realization is
illustrated in Fig. 2.

Owing to the bidirectional coupling, though, while the
subsystems are synchronized, the original flow has been
partly modified since the coupling does not vanish on the
synchronization manifold. This can be avoided by choosing
a master-slave form for the coupling. Given the form of the
matrix N, master-slave or one-way coupling can be ensured,
for example, by making ς1 the null vector. One choice for ς2
that has been made earlier [14] is

ς2 =

⎡
⎢⎣

(σb/a − 1)y2 − (σ − 1)y1

−x1x3/b + ρ(a/b − 1)y1 + y1y3

x1x2/c − y1y2

⎤
⎥⎦, (23)

FIG. 3. Master-slave coupling in two Lorenz systems achieves
the desired functional relationship, y3 = x2

3 , between the master
and slave subsystems. The form of the coupling is, however, quite
complex. As in Fig. 2, the axes are labeled by the x variables whose
trajectory is shown in black, while the y dynamics is in green. Note
the logarithmic scale on the vertical axis.

while a simpler possibility is clearly [33]

ς2 =

⎡
⎢⎣

σ (a − b)x2

(b − a)ρx1 + (ac − b)x1x3

(c − ab)x1x2

⎤
⎥⎦. (24)

B. Nonlinear scaling

As a second example, consider the choice y1 = x1, y2 =
x2, y3 = x2

3 for the equations of constraint in the coupled
Lorenz system. In matrix notation this can be written as y =
S(x)x where S is not constant but depends on the position
along the trajectory. The matrix of vectors that are normal to
the constraint surface is

N =
⎡
⎣−1 0 0 1 0 0

0 −1 0 0 1 0
0 0 −2x3 0 0 1

⎤
⎦.

In order to keep the fidelity of the Lorenz dynamics, we
choose to couple the two oscillators in the master-slave config-
uration with ς1 being the null vector. This gives, following the
procedure outlined above [see Eqs. (10) and (21)], the highly
nonintuitive coupling

ς1 =
⎡
⎣0

0
0

⎤
⎦ ς2 =

⎡
⎣ 0

−x3y1 + x1x
2
3

−x1x2 + 2x1x2x3 − βx2
3

⎤
⎦

that (see Fig. 3) ensures that the dynamics of the original
master Lorenz oscillator is maintained, and that of the slave
Lorenz has the desired relationship, namely, y3 = x2

3 . The
stability matrix for this arrangement is not constant and is

032217-4



DESIGN STRATEGIES FOR GENERALIZED SYNCHRONIZATION PHYSICAL REVIEW E 98, 032217 (2018)

FIG. 4. Trajectory on the synchronization submanifold. The
parabolic dependence of y3 on x3 is quite evident.

given by

J =

⎡
⎢⎣

−2σ σ 0

2
(
ρ − x3 − x2

3

) −2 −4x1x
2
3 − x1

2x3x2 + x2 + 4βx2
3 − 4x1x2x3 2x1 −4βx1x2x3 − β

⎤
⎥⎦.

In the given range of parameter values the eigenvalues of
the above matrix are all negative, and thus it is not required
that additional stabilizing forces be added. A view of the
synchronization manifold is provided in Fig. 4.

C. Crossed signals

The concept of constraining systems to a desired sub-
manifold can be extended beyond the conventional sense of
synchronization that has been discussed so far. In the final
example presented here, we require that the coupling “flips”
two of the variables, namely, the constraint function is

�(X) =
[
x1 − y2

x2 − y1

]
= 0, (25)

which is a two-dimensional submanifold, since no constraint
has been set on the variable y3 of the slave. The procedures to
be followed are standard, and choosing master-slave coupling

ς1 =
⎡
⎣0

0
0

⎤
⎦, ς2 =

⎡
⎢⎣

σ (y1 − x1) + (ρ − z1)x1 − y1

σ (y1 − x1) − (ρ − z2)y1 + x1

0

⎤
⎥⎦,

we find the stability matrix involves the variable z2:

J = 2

[−1 (ρ − z2)
σ −σ

]
. (26)

Since the eigenvalues are not necessarily negative (as re-
quired) an additional stabilizer function ς2 is needed in order
to ensure the stability of the submanifold in the range of the

FIG. 5. Flipped synchrony, with x1 = y2 and y1 = x2, which
automatically constrains x3 to be identical to y3. Trajectories are
shown in projection, with the axes being labeled by the x variables
whose trajectory is shown in black, while the y dynamics is in green.

attractor. Choosing the variable coupling strength

χ2 =
⎡
⎣ 0

(ρ − y3)(x2 − y1)
0

⎤
⎦ (27)

effectively destroys a part of the original Lorenz system; we
consider the alternate additional linear function with static
coupling that gives negative eigenvalues

χ2 =
⎡
⎣σ (x1 − y2)

0
0

⎤
⎦. (28)

The efficacy of the procedure is apparent; see Fig. 5.

IV. DISCUSSION AND SUMMARY

Generalized synchronization has been studied extensively
in various settings, which include a range of topologies such
as complex networks [34], with or without time delay [15],
Hölder continuity [14], the Lipschitz condition [35–37], etc.
The condition of GS can be verified through analytical as well
as numerical approaches such as the auxiliary system method
[14,23,38], normal hyperbolicity [39], development of error
systems, and Lyapunov function stability [8].

It is natural to consider any form of synchronization be-
tween two coupled dynamical systems in terms of invariant
manifolds [11]. Additionally if the synchronization manifold
is k-hyperbolic [40], then the synchronization will be stable.
In the present paper, we implement a set of procedures in
an active approach to achieve these objectives, by first speci-
fying the desired synchronization manifold and then reverse
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engineering the required coupling function to guarantee k-
hyperbolicity. Our approach is constructive in the sense that
we first introduce effective forces of constraints that keep
the dynamics on the manifold, and then introduce transverse
stabilization so that the desired synchronization manifold (or
here, more properly, an algebraic variety) is also the attractor
of the dynamics. This geometric approach addresses the two
conditions, Eqs. (7) and (14), independently. There is con-
siderable flexibility in how the dynamics can be stabilized
on the desired synchronization manifold, and there is also
considerable choice in the coupling functions that will ensure
that the manifold is attracting.

The present methodology has been illustrated in a system
of two coupled chaotic Lorenz oscillators, where a number
of different objectives were specified. The variables of the
two oscillators were required to depend on each other in a
specified way and both linear and nonlinear dependences were
considered. Synchronization forces the dynamics onto the
desired low-dimensional submanifold, but given the latitude
with which the coupling can be chosen, the dynamics of the
original systems may or may not be retained. In the usual
forms of coupling that have been studied in the literature, the
coupling is often selected so as to vanish on the synchroniza-
tion manifold. Here this cannot always be guaranteed, and in
extreme cases, the dynamics in the coupled system can be
quite different from that in the original. It is well known, for
instance that within the master-slave scenario, the coupling
can seriously alter the intrinsic flow of the slave system [25].
At the same time coupling functions that are over-designed
may not have a simple action, and additional stabilizing terms
(that vanish on the synchronization manifold) may be needed
to achieve stability. The fact that the solution of the residual

flow equation is not unique offers flexibility in the choice of
coupling, starting with whether one desires unidirectional or
bidirectional interactions. There will thus be several coupling
options that are inherently stable for synchronization.

Our procedure complements the synchronization engineer-
ing [26] wherein a systematic design linear and nonlinear
feedback (possibly with time delay) is implemented in order to
achieve a number of different collective states such as cluster
synchronization, desynchronization, and chimeric dynamics.
Control strategies for achieving different collective dynamical
states are clearly of importance not just in the engineering
context [26] but in biology as well [41]. In the examples we
have considered here, the constraints are separable, but clearly
an important extension of the present methodology is to the
case of nonseparable constraints. Further, in the examples pre-
sented here both the uncoupled flows are identical; this is not
a limitation, and the formalism goes through quite easily for
nonidentical systems as well as to extended systems, namely,
ensembles of oscillators with complex coupling topologies.
However, not all constraints are possible to implement: there
appear to be intrinsically nonsynchronizable conditions that
depend on the details of the systems [42], and it will be
important to examine the limitations of the present approach
in this context.
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