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According to the Boltzmann distribution assumption of solitons, in thermal equilibrium, there is the most
probable soliton whose average kinetic energy per site equals the thermal energy k5T '. Based on the momentum
excitation method, the soliton can be numerically excited in the static Fermi-Pasta-Ulam (FPU) chains. By
associating the excited soliton with the corresponding most probable soliton, the temperature dependence of
the velocity of solitons in thermal equilibrium can be numerically evaluated. The results agree very well with
the temperature dependence of the sound velocity of energy transfer. This confirms that solitons are promising
candidates for energy carriers in FPU chains. Moreover, the validity of the Boltzmann distribution assumption
of solitons in FPU chains is also confirmed. This work sheds light on how to numerically (even experimentally)

investigate solitons in thermal equilibrium.
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I. INTRODUCTION

In the Fermi-Pasta-Ulam (FPU) B chains, the divergence of
thermal conductivity with the length of the chain was numer-
ically discovered [1]. This indicates that although Fourier’s
law of heat conduction is obeyed ubiquitously in the three-
dimensional bulk materials, it can break down in the low-
dimensional momentum-conserving nonlinear lattices. The
so-called anomalous energy transport has been experimen-
tally observed in various low-dimensional lattices in recent
years [2-5].

In the past two decades, numerous works have been de-
voted to elucidating the underlying mechanism leading to
anomalous energy transport (see, e.g., the review articles
[6-8]). It has been proved that anomalous energy transport
is closely related to anomalous energy diffusion [9]. Whether
in the case of nonequilibrium diffusion or equilibrium dif-
fusion, in the low-dimensional momentum-conserving non-
linear lattices that exhibit anomalous energy diffusion, two
characteristic side peaks will appear in the spatiotemporal
correlation function for some conserved quantities. These
two characteristic side peaks are symmetric about the origin
and can be predicted on the basis of nonlinear fluctuating
hydrodynamics (NFH) [10-14] or the Lévy walk assumption
of the energy carriers [15-22]. The side peaks correspond to
the sound modes in NFH. They move outward at a constant
supersonic velocity. This characteristic velocity is referred
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to as the sound velocity of energy transfer and has been
conventionally used to identify the energy carriers [23—-30].

Because both the phonon theory [27] and the soliton theory
[26] can predict perfectly the sound velocity of energy transfer
in FPU chains, the debate about whether the energy carriers
are solitons [23-26,31-35] or effective phonons (renormal-
ized phonons) [27-30,36,37] is not resolved yet. Nevertheless,
the supersonic solitons have been numerically observed in
a wide variety of lattices [24,34,35,38-51] and, intriguingly,
have been experimentally demonstrated in crystalline solids
(the corresponding solitons were referred to as strain solitons
or acoustic solitons) [52-59]. The connection between the su-
personic solitons and the supersonic characteristic side peaks
has naturally attracted widespread interest [23-26].

However, only in the Toda chain, the characteristic side
peaks have been hitherto confirmed to be contributions from
solitons [23,24]. In the FPU chain, there is not enough ev-
idence to distinguish whether the characteristic side peaks
originate from solitons or effective phonons. Although the
excellent agreement between the average velocity of solitons
and the sound velocity of energy transfer has been provided
in our previous work [26], the results are only achieved based
on the approximate analytical soliton solutions and the Boltz-
mann distribution assumption of solitons. Direct numerical
simulations are required to prove the analytical results. The
validity of the Boltzmann distribution assumption also needs
to be verified through numerical simulations. However, in
thermal equilibrium, solitons cannot be detected directly in
FPU chains because they are masked by thermal fluctua-
tions. Solitons are hitherto always numerically studied in the
static nonlinear chains based on the method of momentum
excitation [24,34,35,47—49]. Therefore, it seems impossible
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to numerically evaluate the temperature dependence of the
velocity of solitons in FPU chains.

In this work, one method is proposed to numerically eval-
uate the temperature dependence of the velocity of solitons
in FPU chains. According to the Boltzmann distribution as-
sumption of solitons [26], we find that in thermal equilibrium
the soliton whose average kinetic energy per site €¢; equals
the thermal energy kp7 contributes the most to the local
kinetic energy (i.e., the kinetic energy of a single particle)
of the chains. We refer to this soliton as the most probable
soliton. Because there is the characteristic peak in the auto-
correlations of the local kinetic energy [23], we argue that the
most probable soliton mainly determines the sound velocity
of energy transfer. We numerically excite the soliton in the
static FPU B chains, quartic chains, and FPU «f chains based
on the momentum excitation method. The excited soliton
is associated with the most probable soliton. The velocity
and the average kinetic energy per site €, of the soliton are
numerically evaluated. Consequently, the temperature depen-
dence of the velocity of solitons can be obtained directly by
letting T = €;/kp. Strikingly to us, the results agree very
well with the temperature dependence of the sound velocity
of energy transfer. The slightly discrepancies are attributed
to the fact that the shape of the soliton is not the precisely
sech shape which is used to evaluate ¢;. The numerical
results prove that solitons are promising candidates for energy
carriers in FPU chains. The results also indicate the validity
of the Boltzmann distribution assumption of solitons. The
activation energy of a soliton with the prescribed velocity is
just the average kinetic energy per site of this soliton. This
is consistent with the evidence that there is a threshold for the
average kinetic energy of a soliton with the prescribed velocity
[60]. Thus, the results presented in this work pave the way
for numerically (even experimentally) investigating solitons
in thermal equilibrium. We hope this work will stimulate
additional experimental and theoretical efforts to investigate
solitons in thermal equilibrium.

The rest of the paper is organized as follows. In Sec. I A
the models of the studied FPU chains are presented. The
method is also given in Sec. Il A to associate the average
kinetic energy of a soliton with the thermal energy k7. The
numerical details are presented in Sec. II B. The numerical
results are presented in Sec. III. Finally, a summary and
discussion are presented in Sec. V.

II. MODEL AND NUMERICAL DETAILS
A. Model and methods

In this work, the FPU B chains, the quartic chains, and
the FPU «f chains are investigated. Their dimensionless
Hamiltonians can be uniformly expressed as

N .
H = Z( +v<¢,> (1)

j=1

where N is the number of particles, ¢p; = u; — u;_; denotes
the relative displacement (strain) between the adjacent parti-
cles, u; is the displacement of the jth particle from its equi-
librium position, and the overdot denotes the time derivative.

The potential can be expressed as

ok s 1
Vg)) = 367+ 30) + 59} b

In this work, we choose k =1 and o = 0 for the FPU g
chains, k = o = 0 for the quartic chains, and k = o = 1 for
the FPU «f chains.

The equation of motion corresponding to the Hamiltonian
(1) is

i; =V'i(pjr1)— V'(9j). 3)

where the prime denotes the derivative of the function with
respect to its argument. This equation of motion (3) permits
the bell-shaped soliton solutions of ¢; (corresponding to the
kink-shaped soliton solutions of u ;) [38—46,49], which can be
formally expressed as

¢j(t) = ¢(j —ct) = $(2), “

where c is its velocity and z is the moving coordinate. The
bell-shaped soliton solutions can be approximately expressed
as [26]

¢(z) = Asech(qz), )
with
_ 2 2 2
. 20 + /4« ;2(c k) ‘ ©)

If A > 0, the relative displacement ¢(z) > 0 and thus the dis-
tance between the adjacent particles is stretched relative to the
equilibrium distance. The corresponding solitons are called
rarefaction (dilatational) solitons. Otherwise, the solitons are
called compressional solitons. In Eq. (5), g can be treated
as the wave vector [45] and A = 27 /q is the corresponding
wavelength.

In a thermal equilibrium state at temperature 7', the solitons
are assumed to satisfy the Boltzmann distribution and the
number of solitons with the prescribed velocity c is [26]

Fle) = Noexp (—kZ—"T) %)

where N is a constant relevant to the length of a chain, ¢ is
the activation energy, and k is the Boltzmann constant (which
is chosen as kg = 1 in this work). The activation energy ¢ is
assumed to be equal to the average kinetic energy per site of a
soliton with the prescribed velocity c. This is consistent with
the evidence that there is a threshold for the average kinetic
energy of a soliton with the prescribed velocity [60].

It should be recalled that there is a characteristic peak
in the autocorrelations of the local kinetic energy (i.e., the
kinetic energy of a single particle). This peak originates
from solitons [23]. According to Eq. (7), the contribution
of the soliton with velocity ¢ to the local kinetic energy
is €xNo exp(—e€x/kpT)/N. Therefore, the soliton with ¢; =
kT contributes most to the local kinetic energy and thus the
characteristic peak in the autocorrelations of the local kinetic
energy. The soliton is referred to as the most probable soliton.
We argue that the sound velocity of energy transfer is mainly
determined by the most probable soliton.

The same as the other kind of nonlinear excitations
which are referred to as discrete breathers (intrinsic localized
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modes) [61], the activation energy of a soliton is expected to
be the same in static lattices and in lattices at thermal equi-
librium. Therefore, a soliton excited in the static chain can be
associated with the most probable soliton in the chain at ther-
mal equilibrium. The temperature can be evaluated from the
average kinetic energy per site of the soliton as 7 = ¢,/ kp.
The temperature dependences of the velocity of solitons can
thus be numerically obtained from solitons excited in the
static lattices. Strikingly to us, the results agree very well with
the temperature dependences of the sound velocity of energy
transfer. This confirms that solitons are promising candidates
for energy carriers in FPU chains. In addition, the results
also confirm that the Boltzmann distribution assumption of
solitons is valid and the corresponding activation energy is
just the average kinetic energy per site of the soliton.

B. Numerical details

The momentum excitation method [24,34,35,47-49] is em-
ployed to excite solitons directly in the static lattices. We
choose the initial conditions as

ujzpéj,l, Mj:O forallj:l,Z,...,N, (8)
where & denotes the Kronecker delta. This means that the
first particle is kicked at t = 0 as u; = p. Thereafter, the
kick will be transported along the chain in the course of
time. To investigate the transport of the kick along the chain,
the implicit midpoint algorithm [62] is used to integrate the
equations of motion with the free-boundary condition. In our
calculation, we find that when |p| is higher than a certain
momentum threshold, a supersonic soliton separating from
the spreading radiation can be clearly observed in the chain.
This is consistent with Ref. [48]. We also find that the fastest
soliton is a rarefaction soliton with ¢; > 0 when p < 0 but
is a compressional soliton with ¢; <0 when p > 0. This
can be explained according to Eq. (4). It is obtained that
u(z) = —cu/(z) for the traveling soliton solution, where u'(z)
corresponds to the strain, i.e., the relative displacement ¢(z).
Therefore, the right-moving (i.e., ¢ > 0) rarefaction solitons
can be excited with p < 0 and the right-moving compres-
sional solitons can be excited with p > 0.

Once the soliton is excited, its velocity can be numeri-
cally evaluated directly. Benefiting from the bell shape of
the soliton for the relative displacement, the position of the
soliton is determined by the peak position of the relative
displacements. Eventually, the velocity of the soliton can be
numerically evaluated based on the conventional linear least-
squares-fitting method [63].

To numerically evaluate the temperature dependence of
the velocity of the soliton, the soliton is treated as the most
probable soliton. Its average kinetic energy per site can be
associated with the temperature by the equation 7 = ¢;/kp.
To calculate the average kinetic energy per site of a soliton
€, the total kinetic energy E; and the width of the soliton W
should be evaluated first. The width of a soliton is determined
as follows. The soliton is assumed to be sech shaped as shown
in Eq. (5). Its width is chosen as the wavelength W = A =
27 /q [26]. Then the bell-shaped soliton is symmetrically
located between z = —m/q [¢(z) = Asech(rr)] and z = /g
[¢(z) = Asech(r)] in the moving coordinates. The peak

position of the soliton is z = 0 [¢(z) = A]. Therefore, the
width W can be numerically evaluated by counting the num-
ber of particles with ¢; /¢; > sech(sr), where j. is the parti-
cle position corresponding to the soliton peak. For the solitons
which can be clearly recognized in our numerical investiga-
tions, their widths are always narrower than 30. Therefore,
the total kinetic energy of a soliton can be evaluated as E; =

]].‘:/.15_15 uf /2. The average kinetic energy per site of it is thus
€ = E k/ w.

In most of our simulations, the number of particles is set
as N = 8000 and the simulation time is set as 2000. When
the soliton is very slow with its velocity approaching 1, the
simulation time is set as 10 000 and the number of particles is
set as N = 15000 to clearly recognize it. When the velocity
of a soliton is very high, the number of particles is also set as
N = 15000, but the simulation time is kept as 2000 to avoid
the scattering by the boundary of the chain. In our simulations,
the velocity and €, are always averaged in the last 1000 time
intervals. When multiple solitons are excited simultaneously,
the fastest soliton (the most front soliton) is studied. We
have also checked the slower solitons. The dependence of the
velocity of the slower solitons on the corresponding €;/kp
agrees also with the temperature dependence of the sound
velocity of energy transfer.

III. NUMERICAL RESULTS

A. The FPU g lattice

The FPU g lattices with k = | and o = 0 are investigated
in this section. Because of the symmetry of the interaction
potential of the FPU 8 lattices, the initial excitation momen-
tum =£|p| will excite two kinds of solitons (the compressional
soliton with ¢; < 0 and the rarefaction soliton with ¢; > 0)
with the same velocity and the same shape in spite of opposite
amplitudes. Therefore, only the results of the compressional
solitons (corresponding to the positive p) will be shown in
this section.

To investigate the solitons with different velocities, we let
p increase from 0.1 to 30 in steps of 0.1. When p > 0.8,
the compressional solitons can be clearly recognized. As an
example, the result of p = 0.8 is shown in Fig. 1. At time
10 000, we observe that a compressional soliton separates
from a long phonon tail. This is the typical character of the
FPU § lattices [34,35].

The velocity of the soliton increases with p. The depen-
dence of the velocity of solitons on the temperature 7 =
€/ kp is shown in Fig. 2. The numerical results are shown
with symbols. For comparison, the prediction of NFH for the
dependence of the sound velocity of energy transfer on the
temperature is also depicted as the solid line. The symbols
agree very well with the solid line. This indicates that the
sound velocity of energy transfer can be numerically obtained
from solitons directly. This reveals two things. First, the soli-
tons are promising candidates for energy carriers in the FPU
B chains. Second, the Boltzmann distribution of solitons (7) is
valid. The activation energy is just the average kinetic energy
per site of the soliton. This is consistent with the evidence
that there is a threshold for the average kinetic energy of the
soliton with a prescribed velocity [60].
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FIG. 1. Snapshot of the compressional soliton in the FPU g chain
at time 10 000. The initial excitation momentum is p = 0.8.

In Fig. 2, one can see that there are slight discrepancies
between the numerical results and the predictions of NFH.
This can be attributed to the fact that the shape of our
numerically obtained soliton is slightly narrower than the sech
shape [64]. Therefore, for the soliton with a specific velocity
(the ordinate), the corresponding precise €,/ kp (the abscissa)
should be slightly larger than our numerical result.

B. Quartic lattice

The quartic lattices with k = o = 0 are investigated in this
section. As in the FPU g lattices, we only represent the results
of the positive p here. We also let p increase from 0.1 to 30 in
steps of 0.1. The solitons can be excited when p = 0.1. The
results are shown in Fig. 3. In contrast to the results of the
FPU g lattices, a compressional soliton separates from a tail of
several small rarefaction solitons rather than the phonon tail.
This is consistent with the fact that phonons are not admissible
in a quartic lattice [35,45,65]. We thus expect that even an

x Numerical Results
NFH

oo

Velocity

0.01 0.1 1 10 100
T (ex/kp)

FIG. 2. Velocity of solitons vs €;/kp for the one-dimensional
FPU g chain. The symbols correspond to the numerical results. The
solid line corresponds to the prediction of NFH for the dependence
of the sound velocity on the temperature 7.
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FIG. 3. Snapshot of the solitons in the quartic chain at time 2000.
The initial excitation momentum is p = 0.1.

arbitrarily small p can also excite a soliton in the quartic
lattices.

The dependence of the velocity of solitons on €;/kp is
compared with the temperature dependence of the sound
velocity of energy transfer in Fig. 4. Good agreement is
achieved again. This proves again that the Boltzmann distribu-
tion assumption of solitons is valid and solitons are promising
candidates for energy carriers in the quartic chains.

C. The FPU «f lattice

The FPU « lattices with k = o = 1 are investigated in this
section. Contrary to the FPU g lattices and the quartic lattices,
the initial excitation momenta =£|p| will excite the rarefac-
tion soliton and the compressional soliton with the different
velocities. For the compressional solitons and the rarefaction
solitons, the temperature dependences of the velocities are
also different [26].

We let p decrease from —0.1 to —30 in steps of —0.1 to
excite the rarefaction solitons and let p increase from 1.1 to 30

x Numerical Results
9 | NFH

Velocity

0.001 0.01 0.1 1 10 100
T (Fk./]{?3>

FIG. 4. Velocity of solitons vs €;/kp for the one-dimensional
quartic chain. The symbols correspond to the numerical results. The
solid line corresponds to the prediction of NFH for the dependence
of the sound velocity on the temperature 7.
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FIG. 5. Snapshot of the solitons in the FPU «f chain at time
10 000. The initial excitation momentum is p = 2.6. The inset shows
a close-up of the solitons.

in steps of 0.1 to excite the compressional solitons. The
rarefaction solitons can be excited when p = —0.1. However,
because we can only numerically recognize the compressional
soliton with its velocity higher than 1, the compressional
solitons can be clearly detected when p = 2.6. The results are
shown in Fig. 5. According to Eq. (6), when the velocity of a
compressional soliton approaches 1, its amplitude approaches
—4/m. In Fig. 5, the amplitude of the compressional soliton is
—1.21. It indeed approaches —4 /7.

According to our previous work [26], the sound velocity
can be obtained from the velocities of the rarefaction soli-
tons and the compressional solitons. We thus only represent
the numerical results of the velocities of these two kinds
of solitons in Fig. 6. The numerical results are compared
with the corresponding analytical results calculated by using
the method of Ref. [26]. Good agreement is obtained. This
indicates that the temperature dependence of the velocity of
solitons can be numerically obtained. Therefore, this proves
again that the Boltzmann distribution assumption of solitons is
valid and solitons are promising candidates for energy carriers
in the FPU «f chains.

IV. CONCLUSION

In summary, in thermal equilibrium, there is a most prob-
able soliton with ¢, = kpT according to the Boltzmann dis-
tribution of the solitons. Based on the momentum excitation
method, the solitons can be excited in the static FPU 8 chains,

s Numerical Results
Numerical Results
— — . Compressional Solitons
—— Rarefaction Solitons

Velocity

0.001 0.01 0.1 1 10 100

FIG. 6. Velocity of solitons vs €;/kp for the one-dimensional
FPU «p chain. The triangles correspond to the numerical results of
the compressional solitons. The squares correspond to the numerical
results of the rarefaction solitons. The dashed line and the solid line
represent the corresponding analytical results of the dependences of
the velocities on the temperature 7.

quartic chains, and FPU «f chains. The excited soliton can be
associated with the most probable soliton. The average kinetic
energy per site of a soliton €, can thus be associated with
the thermal energy kz 7. The dependences of the velocity of
solitons on €,/ kg agree very well with the temperature depen-
dences of the velocities of solitons as well as the temperature
dependences of the sound velocity of energy transfer. The
slight discrepancies are attributed to the fact that the shape of
the soliton is not precisely sech shaped. The numerical results
prove that solitons are promising candidates for the energy
carrier in FPU chains. In addition, the results also prove that
the Boltzmann distribution assumption of solitons is valid.
The corresponding activation energy is just the average kinetic
energy per site of the soliton.

The numerical method presented in this work provides an
idea for the numerical investigation of solitons in thermal
equilibrium. Because solitons have been experimentally ob-
served in crystalline solids [52-59], we hope this work will
stimulate additional theoretical and even experimental efforts
to investigate solitons in thermal equilibrium.
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