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Scaling of submicrometric Turing patterns in concentrated growing systems
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The wavelength of a periodic spatial structure of Turing type is an intrinsic property of the considered
reaction-diffusion dynamics and we address the question of its control at the microscopic scale for given
dynamical parameters. The direct simulation Monte Carlo method, initially introduced to simulate particle
dynamics in rarefied gases, is adapted to the simulation of concentrated solutions. We perform simulations of a
submicrometric Turing pattern with appropriate boundary conditions and show that taking into account the role
of the solvent in the chemical mechanism allows us to control the wavelength of the structure. Typically, doubling
the concentration of the solute leads to decreasing the wavelength by two. The results could be used to design
materials with controlled submicrometric properties in chemical engineering. They could also be considered as
a possible interpretation of proportion preservation of embryos in morphogenesis.
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I. INTRODUCTION

The rational design of complex materials with prede-
fined properties by controlling self-organization in far-from-
equilibrium conditions is the promise of mesoscale chemical
engineering [1–3]. Biological structures provide fascinating
examples of organization, and the concepts introduced to
model them offer a good guide in an engineering context
[4]. In particular, the ability to control the association and
denaturation kinetics of nucleic acids has been successfully
harnessed to link biological organization and material design
[5–8]. The model introduced by Turing [9] to account for
periodic spatial structures in living organisms offers another
example of mechanism inspired by biology that deserves to
be reexamined with the goal of creating functional materials
by biomimicry [10–12]. Turing proposed to model morpho-
genesis in the framework of far-from-equilibrium reaction-
diffusion systems. Remarkably, Turing introduced a small
number of processes based on a microscopic interpretation.
A so-called activator is produced by an autocatalytic reac-
tion while an inhibitor, associated with a larger diffusion
coefficient, is consumed. An inhomogeneous perturbation is
capable of destabilizing the homogeneous steady state in
favor of a periodic spatial structure, whose wavelength is
determined by the rate constants and the diffusion coefficients.
There has been a recent revival of Turing’s idea [2,4,10,13–
16], and experimental evidence of Turing mechanism during
embryogenesis has been provided [17–19]. However, the lack
of scaling properties and versatility of Turing patterns is the
main objection in biology as well as chemical engineering.
For example, a model of somitogenesis should reflect the
adaptation of vertebra size to embryo size, at constant number
of vertebrae. More generally, in a homothetic structure, the
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wavelength of the pattern should adapt to the overall size of
the embryo. Similarly, the chemical engineer expects to adjust
the wavelength of the spatial structure by monitoring an easily
controlled parameter while considering the same chemical
species.

The problem of wavelength scaling in a Turing pattern has
been addressed for many years [20–23] and remains topical
[16,24–29]. Various scaling mechanisms have been proposed,
mainly on a macroscopic scale. Partial differential equations
with concentration-dependent diffusion terms [23,27,28] or
involving an additional chemical species whose concentration
is supposed to depend on system size [20,21,24–26,29,30]
have been considered. Nevertheless, the control of a peri-
odic spatial structure at a submicrometric scale in chemical
engineering requires the design of a mechanism based on
elementary processes, compatible with the simulation of par-
ticle dynamics. We recently proposed to place the problem
of wavelength adaptation [31] in the context of molecular
crowding [32–37]. Frequently, solvent involvement in the
chemical mechanism cannot be ignored in a concentrated so-
lution [38]. We proposed a mechanism relying on microscopic
processes in which the solvent is considered as a reagent
in itself. In particular, the model does not introduce any ad
hoc spatially dependent variable. We studied the effect of the
deviation from a dilute solution on the wavelength of a Turing
pattern using partial differential equations. The perturbation
of diffusion induced by crowding has been shown to have little
effect on the wavelength of the structure [31].

In this paper, we address the question of wavelength adap-
tation in a submicroscopic Turing pattern in the framework
of chemical engineering. It implies designing an algorithm
of particle dynamics simulations in a concentrated system.
Turing model requires that the activator and the inhibitor have
sufficiently different diffusion coefficients. To this goal, we
adapt the procedure developed in a dilute system with three
species of different diameters [11]. The results obtained in
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the high dilution limit reveals that, in a small system, the
wavelength may be influenced by the boundary conditions.
In particular, particle dynamics simulations of a given sys-
tem with zero-flux boundary conditions and a length slightly
smaller than two wavelengths lead to the selection of either
one-and-a-half-wavelength or two-wavelength Turing pattern
[11]. To avoid this kind of boundary effect, we take advantage
of the specific conditions chosen to model the formation of
the spine in a vertebrate embryo in a macroscopic description
[39–41]. To reproduce the growth and spatial organization
of the embryo, we started from a step function between two
steady states and generated a propagating wavefront in a
growing system. Turing pattern was developing between a
fixed boundary condition at the rostral end and a moving
front, which does not impose constraints on the wavelength
of the structure. Hence, modeling of somitogenesis suggested
appropriate boundary conditions for a problem of chemical
engineering.

The paper is organized as follows. In Sec. II, we present a
reaction-diffusion model with an explicit effect of the solvent
that fades in the high dilution limit. The particle dynamics
simulation method is presented in Sec. III. The results are
given in Sec. IV. Section V is devoted to conclusion.

II. MODEL

We consider a reaction scheme inspired by the Schnaken-
berg [42] and the Gray-Scott model [43]

A + S
kS

1−→ 2S, (1)

2A + B
k2−→ 3A, (2)

B + S
kS

3−→ 2S, (3){
R

k−3−→ B

S → R,
(4)

in which the role of the solvent S has been made explicit in
Eqs. (1) and (3) and where kS

1 , k2, kS
3 , and k−3 are rate con-

stants. The model involves two chemical species, the activator
A and the inhibitor B, playing the role of two morphogens
in somitogenesis. The reaction given in Eq. (2) consumes
the inhibitor and autocatalytically produces the activator. The
system is in contact with a reservoir R of species B, which
maintains the system far from equilibrium. The reaction given
in Eq. (4) consists of two steps, an injection of species B at
constant rate k−3 and the simultaneous removal of the solvent
S. The autocatalytic role played by the solvent in the two steps
given in Eqs. (1) and (3) is not necessary to obtain the desired
adaptability for the Turing pattern. In the framework of a
macroscopic approach [31], we proved that these steps can
be replaced by the simpler reactions A + S → R1 and B + S

→ R2, where R1 and R2 are reservoirs. This result gives some
hints to find achievable experimental validation conditions.
In the present simulation approach, autocatalysis for S is
introduced for the sake of simplicity: In the simulations, the
solvent S plays the double role of reagent and reservoir,
which avoids introducing a fourth species. Moreover, all the

reactions of the simulation model preserve the number of
particles and simply consist of changes of chemical nature,
which ensures total mass conservation for particles of same
mass. The total concentration,

C = A(x, t ) + B(x, t ) + S(x, t ), (5)

where A(x, t ), B(x, t ), and S(x, t ) are the concentrations of
species A, B, and S, respectively, is constant. In the following,
the spatial and temporal dependence of the concentrations is
implicit. In the framework of a macroscopic approach, the
system obeys the following reaction-diffusion equations:

∂A

∂t
= −k1A

[
1 − A + B

C

]
+ k2A

2B + DA

∂2A

∂x2
, (6)

∂B

∂t
= k−3 − k3B

[
1 − A + B

C

]
− k2A

2B + DB

∂2B

∂x2
, (7)

where Eq. (5) has been used to eliminate S and where the
effective rate constants k1 = kS

1 C and k3 = kS
3 C have been

introduced. The parameters DA and DB are the diffusion
coefficients associated with species A and B, respectively. In
the limit of a large amount of solvent S,

A + B

C
� 1, (8)

Eqs. (6) and (7) become

∂A

∂t
= −k1A + k2A

2B + DA

∂2A

∂x2
, (9)

∂B

∂t
= k−3 − k3B − k2A

2B + DB

∂2B

∂x2
. (10)

These reaction-diffusion equations can be associated with the
chemical scheme that provides the benchmark in the high
dilution limit:

A
k1−→ R1, (11)

2A + B
k2−→ 3A, (12)

B

k3

�
k′

−3

R2, (13)

where R1 and R2 are reservoirs and k′
−3 = k−3

R2
.

For appropriate parameter values, Eqs (6) and (7) admit a
stable homogeneous steady state,

A0 = 0, (14)

B0 = C

2

(
1 −

√
1 − 4

k−3

k3C

)
, (15)

and a steady state (AT ,BT ) given in the Appendix, evolv-
ing into a Turing pattern in the presence of inhomogeneous
perturbations. The two steady states depend on the total
concentration C and the rate constant ratios k1/k2, k3/k2, and
k−3/k2.
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Our aim is to characterize the impact of the deviation from
the dilution limit,

δ ≡ A0 + B0

C
= 1

2

(
1 −

√
1 − 4

k−3

k3C

)
, (16)

on the wavelength of the pattern. In a concentrated system, δ

does not vanish and the system is described by the reactions
given in Eqs. (1)–(4). In the high dilution limit, δ vanishes and
the mechanism is given by Eqs. (11)–(13).

We perform a linear stability analysis of Eqs. (6)
and (7) around the state (AT ,BT ). To this goal, the
Fourier transforms Aq (t ) = ∫ ∞

−∞ A(x, t )e−iqxdx and Bq (t ) =∫ ∞
−∞ B(x, t )e−iqxdx are introduced, where q is the Fourier

mode. In the Fourier space, the linear stability operator M is
given by

M =
(

k2α − DAq2 k2M12

k2M21 k2β − dDAq2

)
, (17)

with

d = DB/DA, (18)

α = k1

k2

(
1 − BT

C

)
, (19)

β = − k−3

k2BT
+ k3B

T

k2C
, (20)

M12 = k1A
T

k2C
+ AT 2

, (21)

M21 = k3B
T

k2C
− 2

k1

k2

(
1 − AT + BT

C

)
, (22)

where the steady states (A0, B0) and (AT ,BT ) are given in
Eqs. (14) and (15) and Eqs. (A24) and (A25) of the Appendix,
respectively. For appropriately chosen parameter values, the
largest eigenvalue of the operator M ,

μ+ = 1
2

(
k2(α + β ) − DA(1 + d )q2

+
√

[k2(α − β ) − DA(1 − d )q2]2 + 4k2
2M12M21

)
,

(23)

is real and positive. Equation (16), relating δ and C, is used to
introduce the dependence on the deviation from the dilution
limit in the expression of the eigenvalue. The steady state
(AT ,BT ) is then unstable with respect to inhomogeneous
perturbations and the mode qmax, which maximizes the eigen-
value μ+, is the most unstable Fourier mode:

qmax =
√

k2

DA

√
β − α

d − 1
+ d + 1

d − 1

√
−M12M21

d
. (24)

The wavelength of the periodic structure is then given by

λ = 2π

qmax
. (25)

In Eqs. (6) and (7), time can be scaled by 1/k2 and space by√
DA/k2. Figure 1 shows the variation of the scaled eigenvalue

μ+/k2 with respect to the square of the scaled Fourier mode
DAq2/k2 for two values of the deviation δ from the dilution
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FIG. 1. (a) Scaled positive eigenvalue μ+/k2 of the linear stabil-
ity operator given in Eq. (23) versus square of the scaled Fourier
mode DAq2/k2. Red dotted line: dispersion relation in the high
dilution limit (δ = 0). Black solid line: dispersion relation for δ =
0.05. The square of the most unstable modes q2

max are indicated
by vertical dashed lines. (b) Maximum value of the scaled positive
eigenvalue μmax/k2 versus the deviation δ from the dilution limit.
The parameters take the following values: k1

k2
= 2.9 × 104, k3

k2
=

2.2 × 104, k−3
k2

= 8.8 × 106, d = 10.

limit. Interestingly, the most unstable mode qmax depends on
δ. As the solution becomes more concentrated, qmax increases,
i.e., the wavelength λ decreases. Moreover, the maximum
eigenvalue μmax = μ+(q2

max) decreases revealing that the de-
viation from the dilution limit tends to destabilize the Turing
pattern.

The goal of the paper is to reexamine these properties at
the microscopic scale using particle dynamics simulations.
Following the results given in Fig. 1, the effect of the deviation
from dilution limit on a Turing pattern will be explored in the
range 0 � δ � 0.05.

III. PARTICLE DYNAMICS SIMULATIONS

We use the direct simulation Monte Carlo method
(DSMC), introduced by Bird [44,45], to simulate the dynam-
ics of a dilute gas. The method relies on a kinetic Monte Carlo
algorithm and consists of a direct simulation of the Boltz-
mann equation including fluctuations. We already adapted the
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method to the simulation of hard spheres with different diam-
eters to reproduce sufficiently different diffusion coefficients
for the activator and the inhibitor [11]. Obtaining different
binary mutual diffusion coefficients requires a third type of
encounter, whose role was played by the reservoir. Here, the
reservoir plays also the role of the solvent involved in the
chemical scheme.

Particles are hard spheres of mass m = 1 with continuous
positions and velocities. The initial velocity of the particles
is sampled from a Maxwellian distribution with kBT = 1.
During a time step, particle positions are updated according to
their velocities. Updating of positions is performed along the
x axis, whereas velocities are treated in a three-dimensional
space. The treatment of the collisions requires space dis-
cretization. Only the particles belonging to the same spatial
cell are susceptible to collide. Pairs of colliding particles are
randomly chosen in a cell, according to the probability of
collision. The latter is proportional to the relative velocity of
the colliding pair, in agreement with the collision integral
of the Boltzmann equation. Collisions are supposed to be
elastic and the post-collision relative velocity is randomly
chosen according to isotropic scattering.

We recall the procedure followed to obtain sufficiently
different diffusion coefficients for species A and B in a ternary
mixture of A, B, and S [11]. If the collisions A-B can be
neglected with respect to the collisions A-S and B-S, i.e., if

SDAB � ADBS + BDAS, S � B, S � A, (26)

where DXY is the mutual diffusion coefficient in a binary
mixture of X and Y, then the diffusion coefficients in the
ternary mixture at local equilibrium obey [11,46]

DA 	 DAS = 3

8(A + S)(rA + rS )2

√
kBT

πm
, (27)

DB 	 DBS = 3

8(B + S)(rB + rS )2

√
kBT

πm
, (28)

where m is particle mass and rX is the radius of particles
X = A,B, S. The choice

rA = 2.2rS, (29)

rB = rA + (1 −√
d ′)rS√

d ′ , (30)

where d ′ = d C−AT

C−BT , obeys the conditions given in Eq. (26)
for a ratio d = 10 of the diffusion coefficients [11]. In the
following, the radius of the solvent particles is set to rS = 0.5.
According to Eq. (30), the radius rB slightly varies with the
chosen total concentration C, i.e., with the deviation δ from
the dilution limit.

During a collision, a chemical reaction may occur accord-
ing to the mechanisms described in Eqs. (1)–(4) for δ 
= 0
and Eqs. (11)–(13) for δ = 0. A collision between appro-
priate species is reactive with a probability proportional to
the corresponding rate constant imposed by a steric factor.
To save computation time, we only perform the collisions
between species susceptible to react: we omit A-A, B-B, and
S-S collisions that would have no effect on the chemical
evolution of the system. The two chemical steps given in

Eqs. (1) and (3) are standard binary reactions. For example,
a collision A-S leads to the change of chemical nature of the A
particle into a S particle at a frequency proportional to k1. The
exchanges with the reservoir R given in Eq. (4) are treated as
follows: in each cell, randomly chosen S particles are turned
into B particles at the constant rate k−3, which simulates both
the creation of a particle B and the simultaneous removal
of a particle S at constant rate. We follow a well-accepted
procedure [47] to treat the ternary reaction given in Eq. (2).
The reaction is divided into two steps, the rate-limiting binary

step, A + B
k2−→ AB, and the instantaneous reaction of the

complex AB, AB + A → 3A. The formation of the complex
AB is treated as a standard reactive binary collision with
a condition on the relative velocity of the colliding pair.
Considering that each cell is homogeneous, we evaluate the
probability that the closest particle to the complex AB is of
A type at A/C. Hence, the B particle is turned into an A
particle with a probability equal to A/C. Consequently, the
rate constant of the ternary reaction is given by

k2 = 4(rA + rB )2

C

√
πkBT

m
. (31)

It is worth noting that the total concentration C is related to
the deviation δ from the dilution limit according to Eq. (16).
Hence, the rate constant k2 is affected by the dilution of
the system. As already mentioned, the steady states (A0, B0)
and (AT ,BT ) only depend on the ratios k1/k2, k3/k2, and
k−3/k2. Consequently, we choose to assign constant values
to these ratios, so that the steady states deduced from the
simulations are expected to be identical to the steady states
of the macroscopic description for all the studied values of δ.
In all the simulations, the rate constant ratios and the diffusion
coefficient ratio are set to

k1

k2
= 2.9 × 104,

k3

k2
= 2.2 × 104,

k−3

k2
= 8.8 × 106, d = 10. (32)

The different orders of magnitude of the rate constants reflect
their different units. For example, k1/k2 scales as the square
of a concentration. Hence, for k1/k2 	 104, the terms k1A and
k2A

2B of the rate equation given in Eq. (9) have the same
order of magnitude when the concentrations are in the order
of 102. We have chosen units fulfilling this condition and such
that the concentrations are simply given by the number of
molecules in a spatial simulation cell of unit volume.

For a minimum chemical mechanism with only two chem-
ical species, the emergence of a Turing pattern requires very
different diffusion coefficients for the activator and the in-
hibitor [39]. However, the group of De Kepper demonstrated
the possibility to experimentally stabilize Turing patterns
using a complexing agent, typically long polymer chains, able
to form a complex with the activator and sensitively decrease
its diffusion coefficient [48]. Such a third heavy reagent, able
to bind with the activator A, has been successfully introduced
in molecular dynamics simulations of Turing patterns [12].
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In the concentrated system of interest, the smallest mean
free path,

� = 1√
2Cπ (rA + rS )2

, (33)

is associated with the collisions A-S. In dilute gases, cell
length �x is chosen smaller than the mean free path. Here,
this condition would lead to prohibitive computation times.
To reach a sufficient spatial resolution, we choose �x = λ

50 ,
where the wavelength λ of Turing pattern is evaluated accord-
ing to Eq. (25). The variation of the concentration between
two cells is sufficiently small to legitimate the choice of a cell
length larger than the mean free path. Following the DSMC
method [44,45], we impose the time step �t = τ

5 where τ =
�
v̄

is the mean free time and v̄ = 2
√

2kBT
πm

is the mean speed.
The system size is set at L = 10λ. For a given value of the
deviation δ from the dilution limit, the total concentration C

is deduced from Eq. (16). The macroscopic initial condition
is a step function between the steady state (AT ,BT ) in the
first 50 cells on the left and the steady state (A0, B0) in the
remaining cells. The concentration of the solvent S is deduced
from the conservation relation given in Eq. (5). The initial
numbers of particles A, B, and S in each simulation cell are
the nearest integers to the corresponding real concentration
values. Typically, for δ = 0.02, we find the following initial
numbers of particles in each cell prepared in the steady state
(AT ,BT ):

N0
AT = 194, N0

BT = 148, N0
ST = 20 058. (34)

In these conditions, a Turing pattern develops behind a wave
front propagating to the right. The propagation of the wave
front is not disturbed by bulk nucleation. Indeed, the chemical
mechanism given in Eqs. (1)–(4) involves a reservoir of
species B but not of species A. Contrary to species B, species A
is not injected into the system, which ensures the existence of
a steady state with a vanishing number of particles A per cell.
Hence, the system prepared in the steady state (A0, B0) cannot
produce A particles, neither due to reaction nor injection,
implying that the system remains in the state (A0 = 0, B0)
even in the presence of large fluctuations.

Cells that are more than 50�x to the right of the wavefront
are not updated to save computation time. Zero-flux boundary
conditions are imposed which results in extremum concentra-
tions for A and B species on the left boundary when a Turing
pattern has developed. The simulation is stopped as the front
traveled 0.75L.

In the next section, we examine how the wavelength of
the Turing pattern deduced from the simulations varies with
the deviation δ from the dilution limit. The results will be
compared to the macroscopic predictions.

IV. RESULTS

Instantaneous spatial profiles associated with species A and
B are given in Fig. 2 in the case of a concentrated system for
a deviation δ = 0.05 from the dilution limit. The numerical
solution of the reaction-diffusion equations given in Eqs. (6)
and (7) and the simulation results for the chemical mechanism
given in Eqs. (1)–(4) are compared for the same parameter
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FIG. 2. Concentration profiles deduced from the numerical so-
lution of Eqs. (6) and (7) (blue) and number of particles per cell

in simulations (red) versus scaled spatial coordinate x
√

k2
DA

for

Eqs. (1)–(4), for a given deviation δ = 0.05 from the dilution limit,
at scaled time k2t = 6986. Snapshot of the profiles for species A (a)
and B (b). The value of the other parameters is given in Sec. III.

values. As expected, a Turing pattern has developed behind a
wave front and the wavelengths obtained for the macroscopic
description and the simulations agree well. The position of
the wave front deduced from DSMC differs from the position
of the wave front solution of the deterministic equations.
Fluctuations of the position of the wave front deduced from
particle dynamics simulations are expected. However, for all
the considered parameter values, the wave front deduced from
the simulations is always located on the right of the wave
front solution of Eqs. (6) and (7), with a greater or lesser
advance. This result confirms that pushed fronts or trigger
waves, associated with a cubic kinetics like in the Schlögl
or Schnakenberg model, are accelerated in the presence of
fluctuations [49]. We expect that the mean position difference
between the wave fronts associated with the two approaches
vanishes as the mean number of particles per cell increases in
the simulations [49].

The macroscopic predictions of the steady state (AT ,BT )
given in Eqs. (A24) and (A25) are compared to the spatially-
averaged numbers 〈NAT 〉 and 〈NBT 〉 of particles A and B
deduced from the simulations. The average is performed over
four wavelengths. The results are displayed in Fig. 3 for
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FIG. 3. Macroscopic prediction of the steady state concentra-
tions AT (solid line) given by Eq. (A24) and BT (dotted line) deduced
from Eq. (A25) versus the deviation δ from the dilution limit. Squares
(triangles, respectively) give the mean number of A (B, respectively)
particles per cell in the region of the simulated Turing pattern. For
δ 
= 0, the mechanism given in Eqs. (1)–(4) is used whereas the
mechanism given in Eqs. (11)–(13) is used for δ = 0. The value of
the other parameters is given in Sec. III.

different values of the deviation δ from the dilution limit. The
simulation results are not displayed for δ = 0.01 due to the
prohibitive computation time necessary for the wave front to
reach 7.5L. The total number NC of particles per cell to be
considered dramatically increases as δ → 0. For example, NC

reaches 40 400 for δ = 0.01.
The mechanism involving the solvent as a reactive species

given in Eqs. (1)–(4) has been used to perform the reactive
collisions for δ 
= 0. The mechanism associated with the high
dilution limit given in Eqs. (11)–(13) has been used to treat
the reactive collisions in the case δ = 0, for which the total
concentration C can be arbitrary chosen since the solvent is
chemically inert. We have checked that the mean numbers of
particles 〈NAT 〉 and 〈NBT 〉 do not change in the explored range
7 980 � NC � 19 950 of total number NC of particles values.
As a result, increasing δ widens the gap between the stationary
values AT and BT . The very good agreement between the
macroscopic and simulation results can be considered as a test
of the simulation procedure. However, the simulation results
systematically slightly underestimate the gap between 〈NAT 〉
and 〈NBT 〉. The numerical cost prevents us from computing
spatially averaged numbers of particles for a sufficient number
of wavelengths far enough from the wave front. As shown
in Fig. 1, the front associated with species A has a negative
gradient. Thus, NA decreases at the wave front whereas NB

increases. Consequently, the mean number 〈NAT 〉 is slightly
underestimated whereas 〈NBT 〉 is slightly overestimated. The
agreement between macroscopic and simulation results con-
firms that the simulation method correctly reproduces the
ratios k1/k2, k3/k2, and k−3/k2 of the rate constants for all the
considered values of the deviation δ from the dilution limit.
This result a posteriori legitimates the choice of the cell length
�x for which the standard requirements of DSMC have not
been strictly obeyed.
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FIG. 4. Macroscopic prediction of the scaled wavelength of the
Turing pattern given by Eqs. (24), (25), (27), and (31) (solid line) and
scaled wavelength deduced from the simulations (squares) versus
deviation δ from the dilution limit. For δ 
= 0, the mechanism given
in Eqs. (1)–(4) is used, whereas the mechanism given in Eqs. (11)–
(13) is used for δ = 0. The value of the other parameters is given in
Sec. III.

The simulation method being validated, we now report
on the main issue of the paper: the ability of tuning the
wavelength of a Turing pattern by controlling the dilution
of the system. The simulation model leads to non trivial
dependences of the dynamical parameters on the deviation δ

from the dilution limit. As shown in Eqs. (27) and (31), the
diffusion coefficient DA and the rate constant k2 depends on
the total concentration C and, hence, on δ. Nevertheless, the
ratios d, k1/k2, k3/k2, and k−3/k2 remain constant in the sim-
ulations, regardless of the deviation δ from the dilution limit.
According to Eqs. (24) and (25), the dimensionless quantity

λ

√
k2
DA

associated with the macroscopic description depends

on the constant ratios and δ in the same way as the correspond-
ing quantity deduced from the simulations. Figure 4 presents

the scaled wavelength λ

√
k2
DA

of the Turing pattern versus the

deviation δ from the dilution limit. The macroscopic results
are deduced from Eqs. (24) and (25) for λ and Eqs. (27) and
(31) for DA and k2. Whereas the macroscopic prediction of the
wavelength λ computed according to Eqs. (24), (25), (27), and

(31) diverges in the limit δ → 0, the scaled wavelength λ

√
k2
DA

tends to a finite value as shown in Fig. 4. The simulation
results are obtained for the mechanism given in Eqs. (1)–(4)
for a nonvanishing value of the deviation δ from the dilution
limit and for the mechanism given in Eqs. (11)–(13) for δ = 0.
The same spatial averaging over four wavelengths has been
applied to compute the scaled wavelength deduced from the
simulations as for the determination of the steady states. The
agreement between the macroscopic and simulation results
about scaled wavelength versus δ is satisfactory. Nevertheless,
the simulation results fluctuate more as δ increases. This result
was expected due to the reduced stability of Turing structure
observed in Fig. 1 when δ increases. Varying the dilution of
the system enables adjusting the scaled wavelength of the
Turing pattern. A 10% variation is reached when switching
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FIG. 5. Same as described in the caption of Fig. 4 but without
scaling of the wavelength.

from δ = 0 to δ = 0.05, but only a 5% variation is obtained
from δ = 0.02 to δ = 0.05.

However, the simulation results may be interpreted in a
different way, in particular, in the perspective of chemical
engineering. If we assume that it is possible to find an exper-
imental chemical system obeying Eqs. (1)–(4) with the same
dependencies of the dynamical parameters as in the chosen
simulation model, then the wavelength of the observed Turing
pattern will follow the non scaled dependence on the deviation
δ from the dilution limit. The results shown in Fig. 5 mimic
the results that could be deduced from such an experimental
system. As already mentioned, the wavelength λ diverges as
δ → 0. The variation between the wavelength values as δ

increases from 0.02 to 0.05 reaches 67%. For such a large
sensitivity of the wavelength to dilution, the fluctuations have
a negligible effect and the simulation results perfectly agree
with the macroscopic predictions. This excellent agreement
between DSMC results and a macroscopic approach, which
neglects the effect of the deviation from the dilution limit on
diffusion, confirms that the main effect on the wavelength is
induced by the perturbation of the reaction in a concentrated
system. The simulation results have been given in arbitrary
units. However, it is easy to evaluate the order of magnitude
of the wavelength in nanometers. Typically, the simulations
involve 350 particles A and B for 8500 particles in a cell
in the case of a deviation δ = 0.05 from the dilution limit.
For small molecules A and B in water S, it amounts to
total concentrations of the order of C = 2.2 mol/L, i.e., 1.4
particles per nm3. The sum of the radii of the particles A and S
is estimated at rA + rS = 0.6 nm. Using Eq. (33) for the mean
free path � and taking into account that we impose λ 	 500�,
we find that the wavelength of the Turing pattern is in the
order of 200 nm. The results of DSMC simulations including
an explicit effect of the solvent in the chemical scheme show
that varying dilution allows us to control the wavelength of a
submicrometric spatial structure.

V. CONCLUSION

In this paper, we present a reaction-diffusion model based
on elementary processes that enables the control of a spatially

periodic pattern at the microscopic scale. The DSMC method
has been extended to the simulation of concentrated solutions
with the aim of generating Turing patterns with a tunable
wavelength at a submicrometric scale. The wavelength of
Turing pattern is imposed by dynamics and we show that the
deviation from the dilution limit can be harnessed to adjust
the wavelength to a selected value. Often, the role of the
solvent as a reactive species cannot be ignored in concentrated
solutions [38]. DSMC has been successfully used to show
the possibility to monitor submicrometric Turing patterns by
controlling the total concentration, provided that the chemical
mechanism takes the solvent into account. In the high dilution
limit, the considered reaction-diffusion equations converge
to the equations associated with the chemical mechanism
without explicit role of the solvent. We demonstrate that
increasing the total concentration by a factor 2 is sufficient
to obtain a wavelength reduction of the same factor.

The proposed scenario, involving a strengthening of
molecular crowding in smaller embryos, could be considered
to support the observed scaling of spatial structures in biology,
for example, the adaptation of somite size to embryo size and,
more generally, the preservation of proportions in morphogen-
esis [50]. The results give some hints to design a chemical
scheme enabling the formation of a tailored Turing pattern in
mesocale chemical engineering.
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APPENDIX

The Appendix is devoted to the derivation of the steady
state (AT ,BT ):

0 = −k1

k2
AT

[
1 − AT + BT

C

]
+ AT 2

BT , (A1)

0 = k−3

k2
− k3

k2
BT

[
1 − AT + BT

C

]
− AT 2

BT , (A2)

associated with the mechanism given in Eqs. (1)–(4). It reads

BT = (k1/k2)(C − AT )

(k1/k2) + AT C
, (A3)

aAT 4 + bAT 3 + cAT 2 + dAT + e = 0, (A4)

where

a = −k1

k2
C, (A5)

b = k1

k2

(
k3

k2
− k1

k2
+ C2

)
, (A6)

c = −k−3

k2
C2 − k1

k2

(
2
k3

k2
− k1

k2
C

)
, (A7)
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d = k1

k2

(
k3

k2
C2 − 2

k−3

k2
C

)
, (A8)

e = −k−3

k2

k1

k2

k1

k2
. (A9)

Following the Ferrari method [51], we introduce

z = AT + b

4a
, (A10)

p = −3b2

8a2
+ c

a
, (A11)

q = b3

8a3
− bc

2a2
+ d

a
, (A12)

r = −3

(
b

4a

)4

+ b2c

16a3
− bd

4a2
+ e

a
, (A13)

and we write Eq. (A4) in the form

z4 + pz2 + qz + r = 0. (A14)

It is sufficient to find a root of the third-order equation,

8y3 − 4py2 − 8ry + 4pr − q2 = 0, (A15)

to find the roots of Eq. (A14). Following the Cardan
method [51], we introduce

a′ = 8 ; b′ = −4p ; c′ = −8r ; d ′ = 4rp − q2,

p′ = − b′2

3a′2 + c′

a′ ; q ′ = b′

27a′

(
2b′2

a′2 − 9c′

a′

)
+ d ′

a′ ,

and the discriminant of Eq. (A15) reads

�3 = −(4p′3 + 27q ′2). (A16)

For the parameters given in Eq. (32), the discriminant �3 is
positive and Eq. (A15) has three real solutions, one of which

obeys

y0 = u + ū − b′

3a′ , (A17)

with u = (
−q ′+i·

√
�3
27

2 )
1/3

. The quartic polynomial given in
Eq. (A14) can be factorized in two quadratic polynomials
associated with the following discriminants:

�
(1)
4 = −2y0 − p + 2q√

2y0 − p
, (A18)

�
(2)
4 = −2y0 − p − 2q√

2y0 − p
. (A19)

The four solutions of Eq. (A4) are given by

AT (1) = 1

2

( −
√

2y0 +
√

�
(1)
4

) − b

4a
, (A20)

AT (2) = 1

2

( −
√

2y0 −
√

�
(1)
4

) − b

4a
, (A21)

AT (3) = 1

2

(√
2y0 +

√
�

(2)
4

) − b

4a
, (A22)

AT (4) = 1

2

(√
2y0 −

√
�

(2)
4

) − b

4a
. (A23)

The solution sought must converge toward the known ex-
pression of the steady state [11] in the limit of a diluted
system with C � A + B. Only AT (4)

obeys the previous
requirement. We find

AT = 1

2

(√
2y0 −

√
�

(2)
4

) − b

4a
, (A24)

BT = (k1/k2)(C − AT )

(k1/k2) + AT C
. (A25)

Equations (A24) and (A25) are used to draw Fig. 3.
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