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Surface gap solitons in exciton polariton condensates
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A gap soliton is a solitonic state existing inside the band gap of an infinite-periodic exciton-polariton
condensate (EPC). The combination of surface states and gap solitons forms the so-called surface gap solitons
(SGSs). We analyze the existence of SGSs near the interface between uniform and semi-infinite periodic EPCs.
We find that SGSs exist only when the system is excited by a pump with a smaller width. As the width of the
pump increases, SGSs become unstable.
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I. INTRODUCTION

Solitons, nonspreading localized waves [1], are created
when the nonlinear focusing dynamics compensates the
spreading due to dispersions. The bright gap soliton, which
is a solitonic state existing inside the band gap of infinite-
periodic systems, was observed in periodic photonic [2,3]
and matter-wave [4,5] band structures. Solitons in laser cav-
ities based on planar waveguides exhibit two types of soli-
tons: hyperbolic-secant-type and hyperbolic-cosecant-type
solitons, when the complex Ginzburg-Landau equation has
modified to contain background linear loss and locally applied
gain [6]. The dissipative gap solitons in optical cavities with
a periodic modulation of the refractive index, self-defocusing
nonlinearity, gain, and saturable absorption are also studied
using the complex Ginzburg-Landau equation [7]. Stable dis-
sipative gap solitons could exist if the periodic modulation
of the refractive index is larger and gain has an intermediate
strength.

In recent years, exciton-polariton condensates (EPCs) cre-
ated in semiconductor microcavities [8] have been the sub-
ject of intensive research because of their potential advances
towards a new generation of low-threshold lasers and ul-
trafast optical amplifiers and switches at room temperature
[9]. The EPC in a static [10,11] or tunable [12,13] periodic
potential has been realized to study the s- and p-type wave
functions, which could have different energies, symmetry,
and spatial coherence. Understanding the properties of EPCs
in a periodic potential is of importance towards developing
quantum simulation on which many researchers have been
working with cold atoms or ion traps [14]. The solitonic gap
states were observed by using a laser pump aimed at the
barrier region of the one-dimensional periodic potential [15],
which was produced by laterally modulated micrometal wires.
The defocusing nonlinearity is balanced by the anomalous
dispersion relation in the formation of a bright gap soliton
in EPCs [16]. The resonantly excited gap solitons were also
observed in a two-dimensional square lattice [17,18]. A mech-
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anism for self-localization of EPCs was theoretically proposed
due to effective potentials induced by the exciton-polariton
flows [19]. Dark gap solitons were also shown to be possible
in EPCs [20]. Nevertheless, the studies of surface solitonic
modes, named surface gap solitons (SGSs), in EPCs are
scarce nowadays. SGSs are polaritonic waves that combine
surface states and gap solitons into nonlinear localized states
near the interface between uniform and semi-infinite periodic
EPCs. The polaritonic SGSs can be in analogy to the optical
nonlinear Tamm states [21–23].

In this paper, the effects of spatial localized SGSs of EPCs
are investigated by exciting the system via pumps with various
powers and widths. We demonstrate that there are stable SGSs
inside the first and second band gaps induced by the periodic
potential if the width of the pump profile is smaller.

II. THEORETICAL MODEL AND FORMALISM
OF LOCALIZED SGSS IN EPCS

In the theoretical modeling of the EPC, we rely on the
mean-field complex Gross-Pitaveskii equation introduced by
Keeling and Berlo [24], incorporating the external potential,
interparticle interactions, pump, and loss:

ih̄
∂�

∂t
= − h̄2

2m

∂2�

∂x2
+ Ṽ (x)� + U |�|2�

+ i(γeff − �|�|2)�, (1)

where � is the wave function, and h̄ and m are Planck’s
constant and exciton-polariton mass, respectively. Ṽ (x)
is a one-dimensional external potential given by Ṽ (x) =
Ṽ1sin2(πx/a) and Ṽ (x) = Ṽ2 if x � 0 and x < 0, respec-
tively. Here a is the lattice constant of the periodic po-
tential, and U is the strength of repulsive interactions be-
tween exciton-polaritons. γeff represents the linear net gain
describing the balance between the stimulated scattering of
exciton-polaritons into the condensate and the linear loss of
exciton-polaritons out of the cavity. � is the coefficient of gain
saturation.

Let the timescale be 1/ω, where ω = 4h̄/ma2. Choosing
lengths in units of a/2, energies in units of h̄ω, and the wave
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FIG. 1. Energy dispersion relations without pump and loss ef-
fects for V1 = 2 and V2 = 3. Energies of E1(k = 0), E1(k = π/2),
and E2(k = π/2) are 0.900, 1.710, and 2.707, respectively.

function � → √
h̄ω/U� with respect to U , the steady states

of Eq. (1) are obtained by taking the wave function �(x, t ) =
ψ (x)e−iEt , where E is the chemical potential or excitation
energy of the system. Then Eq. (1) becomes

1

2

∂2ψ

∂x2
+ [E − V (x)]ψ − |ψ |2ψ − i[α(x) − σ |ψ |2]ψ = 0,

(2)

where σ = �/U . The external potential V (x) is given by
V (x) = V1sin2(πx/2) and V (x) = V2 in the regions x � 0
and x < 0, respectively, where V1 = Ṽ1/h̄ω and V2 = Ṽ2/h̄ω.
Polaritons are affected by the uniform and periodic external
potentials on the left-hand side and right-hand side of the
one-dimensional system, respectively. Hence, the energy dis-
persion relations in Fig. 1 show a parabolic relation for x < 0
and multiple band structures for x � 0. The existence of the
periodic potential splits the energy dispersion of the positive
wave vector into multiple bands with the band edge occurring
at k = π/2 (see Fig. 1). The lowest and intermediate energy
bands labeled E1(k) and E2(k) are the first and second bands,
respectively. The lowest and first band gap is located below
the first band center at k = 0. The second band gap lies above
the first band edge at k = π/2. In this paper σ = 0.52 is
chosen so that the first-band width in Fig. 1 is 1 meV, shown
in Ref. [10]. We consider the pump with a finite width, i.e.,
α(x) = α0e

−(x/w)2
with pump parameter α0 = γeff/h̄ω and

width w.
Before solving Eq. (2) to find the steady states of SGSs,

we would like to obtain the linear band structure of an
infinite periodic potential and its corresponding Bloch states.
Due to the external potential being composed of uniform
and semiperiodic potentials, the wave function ψ (x) is then
divided into two parts: ψ (x) = ψ<(x) and ψ (x) = ψ>(x)
in the regions x < 0 and x � 0, respectively. Ignoring the
nonlinear, loss, and pump effects, the Bloch wave function
χ (x) is given by the form χn,k (x) = eikxu

n,k
(x), where k is the

quasimomentum and n indicates the band index. The Bloch
functions un,k (x) are periodic with period 2, i.e., un,k (x +
2) = un,k (x). In this case, the function un,k (x) is expanded
by a Fourier series in the reciprocal momentum space, i.e.,
un,k (x) = ∑

m Cn
meimGx , where Cn

m are the expansion coef-

ficients of the Bloch function and G = π is the reciprocal
wave vector. Therefore, the linear spectra of an EPC consist
of bands of eigenenergies En(k).

After finding the Bloch bands and their corresponding
wave functions, we apply the effective-mass approximation
[20,25,26] to Eq. (2). The nonlinear and nonequilibrium ef-
fects are treated as the perturbations. A wave packet ψ>(x)
with a momentum distribution centered around k0 = π/2 at
the n = 1 band edge is described by a slowly varying envelope
F (x) (on the scale of several lattice constants) multiplied by
the Bloch wave function as ψ>(x) = F (x)χ1,k0 (x). In the case
of weakly interacting polaritons and negligible band mixing,
the steady-state envelop F (x), with energy E near the band
edge at k0, satisfies the time-independent differential equation
written as

1

2m∗(x)

d2F (x)

dx2
+ δF (x) − λ|F (x)|2F (x)

− i[α(x) − σλ|F (x)|2]F (x) = 0, (3)

where 1/m∗ = d2E1(k)
dk2 |k=k0 is the inverse effective mass

of the exciton-polariton. δ = E − E1(k0) is the detuning
energy above the band edge of the first band. Due to
the periodicity, the interaction strength between exciton-
polaritons is renormalized by a factor λ, where λ =∫ 1
−1 |χ1,k0 (x)|4 dx/

∫ 1
−1 |χ1,k0 (x)|2 dx. The periodic potential

determines the energy bands and effective masses through the
formalism of Bloch wave functions. It also leads to a group
velocity vg of the wave packet determined by the energy band
via vg (k0) = dE1(k)

dk
|k=k0 . We have vg (k0) = 0 at k0 = 0 and

k = π/2. In EPCs with a negative effective mass, a bright
soliton can be achieved due to the repulsive nonlinearity in
EPCs being reversed into an attractive nonlinearity that can
then balance the dispersion effect [17,18].

Equation (3) determines the envelope of the steady wave
function ψ>(x) in the region of x � 0. The steady wave
function ψ<(x) in the region of x < 0 is determined by Eq. (2)
with V (x) = V2. Still, there are no simple analytic solutions
of Eqs. (2) and (3). We have to rely on the Newton-Ralphson
method (NRM) to solve both equations numerically. Applying
the NRM, we need an initial wave function to generate a
self-consistent solution of a SGS. A toy-model equation [20]
and its analytic solution, φ(x), could be obtained if |ψ<(x)|2
in Eq. (2) and |F (x)|2 in Eq. (3) are replaced by ψ<(x)2

and F (x)2, respectively. We then use φ(x) as the initial wave
function of the NRM to solve Eqs. (2) and (3) consistently.
The wave function φ(x) of the toy model is determined by

1

2M (x)

d2φ(x)

dx2
+ �(x)φ(x) − �(x)φ(x)3

− i[α(x) − σ�(x)φ(x)2]φ(x) = 0, (4)

where M (x) = m∗, φ>(x) = F (x), �(x) = δ, and �(x) = λ

in the region x � 0. In the region x < 0, M (x) = 1, φ<(x) =
ψ<(x), �(x) = ε, and �(x) = 1, where ε = E − V2.

We could find the analytic solution of Eq. (4) if the
pump profile α(x) is treated as a uniform pump with pump
parameter α0, i.e., α(x) = α0. In this paper, we take the
excitation energy E is lying below the potential energy
V2 and inside the energy gaps labeled by points “g” and
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“z” of Fig. 1. Therefore, ε is always less than zero. The
hyperbolic-cosecant-type and hyperbolic-secant-type SGSs
[6] could occur inside the band gaps labeled by the points
“z” and “g” in Fig. 1, whose detuning energies δ are less and
greater than zero, respectively. Then in the region of x � 0,
Eq. (4) with δ < 0 and δ > 0 has a hyperbolic-cosecant-
type solution φ>(x) = C1csch(B1x + θ1) and hyperbolic-
secant-type solution φ>(x) = C2sech(B2x + θ1), respec-
tively. There is also a solution of φ<(x) = C3csch(B3x +
θ2) in the region x < 0. Here B1 = √

2m∗(|δ| + iα0), C1 =√
2(|δ| + iα0)/[λ(1 − iσ )], B2 = √

2|m∗|(δ − iα0), C2 =√
2(δ − iα0)/[λ(1 − iσ )], B3 = √

2(|ε| + iα0), and C3 =√
2(|ε| + iα0)/(1 − iσ ). The phases θ1 and θ2 are determined

by the boundary conditions that φ>(x)|x=0 = φ<(x)|x=0 and
dφ>(x)

dx
|x=0 = dφ<(x)

dx
|x=0, where φ>(x) = φ>(x)χ1,k0 (x). The

analytical hyperbolic solutions provides qualitative under-
standing that the SGS is self-localized near the interface
between uniform and semi-infinite periodic potentials.

III. STEADY-STATE PROFILES OF THE SGSS

After finding the analytic solution of Eq. (4), wave func-
tions φ>(x) and φ<(x) are treated as the initial wave function
ψ (x) in the NRM of solving Eq. (2) to obtain a SGS nu-
merically. The self-consistent solutions of hyperbolic-secant-
type SGSs and hyperbolic-cosecant-type SGSs are shown
in Figs. 2(a) and 2(b) and Fig. 2(c) and 2(d), respectively.
With the disperse effect being balanced by the attractive
nonlinearity, a hyperbolic-secant-type SGS is achieved inside
the second band gap. No hyperbolic-cosecant-type SGS exists
inside the second band gap. But a hyperbolic-cosecant-type
SGS can occur inside the first band gap due to the defect
effect created by the discontinuity at the surface of the external
potential. The SGS density distributions for two different V1

values are shown by red solid curves. The density distributions
monotonically diminish from the interface between uniform
and semi-infinite periodic potentials towards the left-hand and
right-hand sides. Due to E < V2, the uniform potential on
the left-hand side of the interface creates a barrier to prevent
the SGS from delocalizing. Still, there are some exciton-
polaritons penetrating the barrier and accumulating near the
left-hand side of the interface.

On increasing the pump parameter from α0 = 0.5 to α0 =
1.5 as shown in Fig. 3, the peak amplitude (|ψ (x)|)peak (or the
peak density) from accumulated exciton-polaritons is growing
higher, and its position (xpeak) shifts towards the interface.
The dependence of (|ψ (x)|)peak and xpeak on the pump pa-
rameter is shown in Fig. 4. On the right-hand side of the
interface, the hyperbolic-secant-type SGS density displays an
oscillating and gradually diminishing distribution. The crests
of the oscillating density are centered on the periodic potential
minima due to the expulsive force from the potential. For a
hyperbolic-cosecant-type SGS, the density is well localized at
the interface, and the oscillating density into the right-hand
periodic potential is not obvious. The band gap from the peri-
odic potential forbids the EPC to propagate toward the right-
hand side if δ > 0. The density profiles of SGSs would change
if the periodic potential depth is higher than the uniform
potential depth, i.e., V1 > V2 shown in Figs. 2(b) and 2(d) and
3(b) and 3(d). The peak amplitude of the SGS tilts towards the

FIG. 2. Density profiles of surface gap solitons with V2 = 3,
α0 = 0.5, and w = 0.5. (red solid curves): (a) a hyperbolic-secant-
type SGS with V1 = 2 and E = 2.110, (b) a hyperbolic-secant-
type SGS with V1 = 4 and E = 2.542, (c) a hyperbolic-cosecant-
type SGS with V1 = 2 and E = 0.700, (d) a hyperbolic-cosecant-
type SGS with V1 = 4 and E = 1.420. The black dashed curve is
the relative strength of the external potential.

interface. The maxima density is reducing and increasing for
a hyperbolic-secant-type SGS and hyperbolic-cosecant-type
SGS, respectively, as V1 gets larger. The number of crests of
the oscillating density of a hyperbolic-secant-type SGS is also
decreasing.

IV. BOGOLIUBOV EXCITATIONS AND STABILITIES
OF THE SGSS IN EPC

Bogoliubov excitations can be studied by inserting into
rescaled Eq. (1) a solution that has small perturbations to
the steady wave function [27]. Then �(x, t ) = e−iEt [ψ (x) +
uq (x)eiqxe−i�t − v∗

q (x)e−iqxei�t ], where uq (x) and vq (x) are
the amplitudes of Bogoliubov quasiparticles with wave vector
q. Substituting �(x, t ) into the time-dependent equation of
Eq. (2), we can obtain two coupled Bogoliubov equations to
realize the stability of the SGSs through the complex-valued
�. Then Eq. (4) becomes a non-Hermitian matrix eigenvalue
problem:(

L+ −φ2(x)(1 − iσ )
φ∗2(x)(1 + iσ ) L−

)(
uq

vq

)
= �

(
uq

vq

)
,

(5)
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FIG. 3. Density profiles of surface gap solitons with V2 = 3,
α0 = 1.5, and w = 0.5. (red solid curves): (a) a hyperbolic-secant-
type SGS with V1 = 2 and E = 2.110, (b) a hyperbolic-secant-
type SGS with V1 = 4 and E = 2.542, (c) a hyperbolic-cosecant-
type SGS with V1 = 2 and E = 0.700, (d) a hyperbolic-cosecant-
type SGS with V1 = 4 and E = 1.420. The black dashed curve is
the relative strength of the external potential.

where L± = ∓ 1
2

d2

dx2 ± V (x) ± 2|φ(x)|2 + iα − 2iσ |φ(x)|2
∓ E. If the system has one eigenvalue with a positive
imaginary part, the corresponding mode will grow
exponentially in time. The system is then dynamically
unstable and might evolve into gap solitons. The stability
limit is obtained from the condition that the imaginary part of
the eigenvalue is greater than zero.

FIG. 4. Peak amplitude [(|ψ (x )|)peak, solid line] and posi-
tion (xpeak, dashed line) of SGSs with V1 = 2 and V2 = 3. (a)
A hyperbolic-secant-type SGS with δ = 0.4 and w = 0.3; (b) a
hyperbolic-cosecant-type SGS with δ = −0.2 and w = 0.5.

FIG. 5. Phase boundaries between stable and unstable SGSs with
V1 = 2 and V2 = 3. (a) A hyperbolic-secant-type SGS with δ = 0.4
and E = 2.110; (b) a hyperbolic-cosecant-type SGS with δ = −0.2
and E = 0.700.

For various pump powers and widths, the phase boundaries
between stable and unstable hyperbolic-secant-type SGSs in
the second band gap (lying between the first and second
bands) and hyperbolic-cosecant-type SGSs in the first band
gap (lying below the first band) are shown in Figs. 5(a)
and 5(b), respectively. The SGSs become unstable in regimes
with higher pump powers and larger pump widths or with
very narrow pumps. A hyperbolic-secant-type SGS is stable
if the gain is smaller and this behavior is different from the
dissipative gap solitons in optical cavities. A dissipative gap
soliton becomes unstable if the gain is larger or smaller [7].
For a large pump width, a SGS owns a much broad density
distribution which can be easily delocalized away from the
interface. Therefore, a SGS under a uniform pump is unstable.
A SGS under a very narrow pump does not have enough
density to balance the dispersion effect and therefore becomes
unstable. In a given pump power, stable hyperbolic-secant-
type SGSs exist when the pump owns an intermediate width.
On the right-hand side of the interface, the number of density
sidelobes of a stable SGS is unaffected by the pump power. On
the other hand, the width of the highest density peak decreases
as the pump power increases. Also, the stable region of
the hyperbolic-cosecant-type SGS exists for a smaller pump
width and does not change with respect to the pump power.
However, for a given pump power, hyperbolic-cosecant-type
SGSs can exist even the pump width is very small.

While fixing α0 = 1 and V2 = 3, two new phase bound-
aries are drawn in Fig. 6. One is the border, shown by the
blue dashed curve, for V1 versus w. Another is the border,

FIG. 6. The numerically identified stable regions for SGSs are
located on the left-hand side of borders, which are shown for α0 = 1
and V2 = 3. (a) Hyperbolic-secant-type SGSs: The black solid curve
is the borders of δ versus w with V1 = 2. The blue dashed curve is
the border of V1 versus w with δ = 0.4. (b) Hyperbolic-cosecant-type
SGSs : The black solid curve is the borders of δ versus w with V1 =
2. The blue dashed curve is the border of V1 versus w with δ = −0.2.
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shown by the black solid curve with V1 = 2, for δ versus
w. Stable phases are on the left hand of curves. From the
blue dashed line, we conclude that a shallow semiperiodic
potential does not create a large enough band-gap to localize
a hyperbolic-secant-type SGS. This conclusion is consistent
with the previous study of the dissipative gap solitons [7].
Stable dissipative gap solitons could exist if the periodic
modulation of the refractive index is larger [7]. There is
also no localized hyperbolic-secant-type SGS in a deeper
semiperiodic potential, which produces a band-edge energy
higher than the uniform potential barrier, i.e., ε > 0. Near the
first band edge with a smaller energy detuning inside the gap,
a hyperbolic-secant-type SGS owns a much broad density dis-
tribution and is easily delocalized away from the interface [see
the black solid line in Fig. 4(a)]. On the other hand, shifting
the detuning close to the second band edge, the nonlinearity
of an EPC gradually changes from the attractive nonlinearity
into the repulsive nonlinearity. No stable hyperbolic-secant-
type SGS with repulsive nonlinearity can exist in EPCs. The
same investigation done on hyperbolic-cosecant-type SGSs
[see Fig. 6(b)] reveals that they are unstable as the periodic
potential depth owns an intermediate depth. The border for δ

versus w in Fig. 6(b) is not significantly affected by the change
of the detuning energy.

In Ref. [28] the dissipative surface solitons forming at the
interface between a semi-infinite lattice and a homogeneous
Kerr medium was reported. When a gain is applied at the
interface between a homogeneous and a periodic medium,
the dissipative surface solitons can be pinned by the defect
channel realized by the gain. In our case here, the polariton-
polariton repulsive interaction resembles to a defocusing me-
dia. Figure 3(a) in Ref. [28] is not applicable in polariton
system. In comparison to Fig. 3(b) in Ref. [28], we obtain
the existence domain with respect to pump parameter and
coefficient of nonlinear losses shown in Fig. 7. In Ref. [28]
the surface solitons exist between a lower and upper values
of gain coefficient. However, in Fig. 7 the result of the
existence domain is different. The difference should be from
the finite pump spot in our polariton system, and we assume
a Gaussian pump profile α(x) = α0e

−(x/w)2
rather than a pe-

riodic α(x) = α0 sin2(2x). Moreover, the existence domains
of the hyperbolic-secant-type and hyperbolic-cosecant-type
SGSs are different. For the hyperbolic-cosecant-type SGS
with pump width w = 0.5 and a given coefficient of nonlinear
losses σ , the gap soliton is stable when the pump parameter
is below a threshold value. But for hyperbolic-secant-type

FIG. 7. The numerically identified stable regions for SGSs are
located on the right-hand side of borders, which are shown for V1 =
2, V2 = 3 and w = 0.5. (a) Hyperbolic-secant-type SGSs with δ =
0.4. (b) Hyperbolic-cosecant-type SGSs with δ = −0.2.

SGS with pump width w = 0.5, in particular 0.1 < σ < 0.4,
the gap soliton is stable when the pump parameter exceeds a
threshold value, and there also exists the upper bound for the
allowed pump parameter at which the gap solitons can still be
found.

V. CONCLUSIONS

In summary, we showed that stable SGSs could be created
near the interface between uniform and semi-infinite periodic
EPCs. A defect is created by the discontinuity between un-
form and periodic potentials, and periodicity induces a non-
linear character change. There are stable hyperbolic-secant-
type SGSs and hyperbolic-cosecant-type SGSs with energies
above the band edge with an anomalous dispersion relation
and below the band center with a normal dispersion relation
on the first band, respectively. The defocusing nonlinearity
is balanced by the anomalous dispersion relation in the for-
mation of hyperbolic-secant-type SGSs in EPCs. A stable
hyperbolic-cosecant-type SGS is pinned by a defect near the
interface between uniform and semi-infinite periodic EPCs.
We also reported the dynamical instability of SGSs. We show
that SGSs become unstable as the pump power or width is
increasing. No stable SGSs exist in a uniformly pumped EPC.
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