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We present an optimized version of the symbolic shadowing algorithm for coarse graining a continuous state
dynamical system, originally due to Hirata and co-workers [Phys. Rev. E 70, 016215 (2004)]. We validate our
algorithm by finding generating partitions presented previously in the literature. We show that, unlike the
original, the optimized algorithm can approximate generating partitions for periodically driven continuous-time
nonlinear oscillators. We recover known generating partitions for the driven Duffing oscillator and compute
generating partitions for the driven van der Pol oscillator. We also examine the problem of how algorithms such
as ours can be applied “objectively,” that is, by starting from arbitrary initial partition guesses. By applying
our algorithm to large ensembles of initial random partitions, we show that symbolic shadowing leads to a
multiplicity of candidate generating partitions that localize points in phase space to a high degree, thus making
it difficult to select the best choice(s). We thus propose using the Lempel-Ziv complexity to identify partitions
from this set of candidates that are, in a specific sense, “minimal,” i.e., those with contiguous cells, fewer cell
boundaries, and a smaller number of cells compared to their rivals. We also show how our methods can be used
to indicate the appropriate number of symbols needed to approximate a generating partition.
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I. INTRODUCTION

In many practical situations, chaotic time series data are
gathered and used to gain an understanding of the dynamics
of a complex physical system. In particular, it is of paramount
importance to use such data to provide a model-based and
objective quantification of the dynamical complexity of a
system, which, together with a measure of its stochasticity,
determine fundamental limits to the system’s predictability.
However, a number of approaches for estimating dynamical
complexity are based on information theory [1] and require
sequences of coarse-grained or, more specifically, discrete
observables, which are not usually directly available, and typ-
ically have to be generated from continuous-valued discrete
time series. In this work, we obtain such discrete observ-
ables for deterministic chaotic systems solely and directly
from their continuous-valued trajectories in the phase space,
using a modification of a general numerical algorithm [2].
Furthermore, we devise a selection procedure utilizing the
Lempel-Ziv complexity of symbol sequences [3] to pick good
observables that have a simple structure in the continuous
phase space, and that also remain faithful to the original time
series measurements without much loss of the information.
Finally, we show how our approach allows us to estimate the
number of symbols needed, i.e., the alphabet size of discrete
observables.

To construct coarse-grained observables, it is necessary to
partition data in the continuous phase space into disjoint sub-
sets, each of which is represented by a unique symbol from a
finite alphabet. Using such a partition, the original continuous-
valued time series is transformed into a symbol sequence
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which can be studied using a variety of tools from information
theory, formal languages, and automata theory [4]. Some
applications for which the experimental analysis of symbolic
time series have furnished useful results can be found in the
review paper [5] and references therein. Furthermore, sym-
bolic dynamics [6] provides a useful theoretical framework to
build models from discrete observables, which is conceptually
simple and easier to handle empirically. However, for such
models to capture the dynamics in a continuous phase space,
one must obtain a “faithful” set of observables for which
the resulting symbolic dynamics are, in a specific sense,
equivalent to the dynamics in the continuous phase space.
Generating partitions [7] provide such a description by es-
tablishing a one-to-one correspondence between a dynamical
trajectory in the continuous phase space and an infinitely long
symbol sequence that encodes that trajectory. In general, this
one-to-one correspondence does not survive in the presence of
process noise [8], although there exist rigorous mathematical
formulations for generating partitions of stochastic systems
evolving according to deterministic maps drawn at random
from an a priori fixed collection [9]. However, whether
or not the system is purely deterministic, in an empirical
context one can only hope to approximately reconstruct an
equivalence between the dynamics in the continuous phase
space and the symbolic dynamics. This is done by identifying
increasingly long symbol strings, as allowed by the amount
of data available, with progressively smaller sets of points
(or sets of trajectories thereof) in the continuous space. In
this sense, a reasonable algorithm relying on a good heuristic,
if known to yield good approximations of known generating
partitions, can be used to obtain empirical partitions of noisy
time series. Such empirical partitions should then be useful
for the construction of good coarse-grained observables for
deterministic dynamical systems, including, possibly, those
with sufficiently small stochastic perturbations.
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In this paper, we focus on the deterministic case and
present an optimized version of the symbolic shadowing
algorithm [2] that provides just such coarse-grained observ-
ables. We apply our general algorithm to find generating
partitions for a number of systems found previously in the
literature by various means but show that, unlike the original
symbolic shadowing algorithm, our optimized algorithm al-
lows us to obtain generating partitions for periodically driven
continuous-time nonlinear oscillators. Specifically, we find
generating partitions for Duffing and van der Pol oscillators:
while those for the Duffing oscillator were found previously,
using entirely different approaches (mentioned below), our
results for the van der Pol oscillator, to the best of our knowl-
edge, have not been previously published. We also examine
the problem of how algorithms such as ours can be applied
to obtain approximate generating partitions “objectively,” that
is, by starting from arbitrary initial guesses for the partitions.
We show, by applying our algorithm to large ensembles of
initial random encodings, that symbolic shadowing does not
lead to unique solutions, and, indeed, can result in a certain
degree of ambiguity regarding the best choice to approximate
a system’s generating partition. We thus propose the use of the
Lempel-Ziv complexity [3], as an additional tool, for identi-
fying partitions from a set of candidates that are, in a specific
sense, “minimal,” i.e., those with contiguous cells, fewer cell
boundaries, and a smaller number of cells compared to their
rivals. Finally, we also show how our methods can be used to
indicate the appropriate number of symbols needed to approx-
imate a generating partition. In the next two paragraphs, we
briefly review approaches based on well-accepted heuristics
used to construct generating partitions. These methods use
time series data only indirectly, i.e., they require knowledge
of various invariant structures in the phase space. We discuss
them below because we validate our solutions by comparing
to results obtained with these alternative methods, whenever
available.

The problem of finding generating partitions, especially
from observed time series data alone, is nontrivial. If a
scalar time series is well approximated using the output of a
one-dimensional map, the critical points of the correspond-
ing return map determine the required generating partition
[10]. However, although certain insights picked up from one-
dimensional discrete-time systems (such as, e.g., the folding
of the attractor at cell boundaries of the generating parti-
tion) have proven useful in the two-dimensional setting, the
problem of finding generating partitions for multidimensional
maps is far from being completely solved. This is primarily
because generating partitions are not unique, and the space
of partitions is prohibitively large, even for two-dimensional
systems, to allow for a systematic search in the absence
of additional dynamical information. However, a number of
approaches, some heavily relying on the geometry of phase
space, have been successfully used to find generating parti-
tions of some well-known two-dimensional maps, including
Hénon and Ikeda maps. A two-cell generating partition for the
Hénon map has been obtained by joining points of homoclinic
tangencies, i.e., points where the stable and unstable man-
ifolds of the map intersect tangentially [11]. This approach
has been successfully extended to flows to obtain a three-cell
generating partition of the attractor of the two-well, driven,

Duffing oscillator, where the primary homoclinic tangency
points, at which the sum of curvatures of both manifolds
is small, were used to obtain partition boundaries [12,13].
Difficulties with the construction of generating partitions us-
ing homoclinic tangencies were discussed in [14] and [15].
Specifically, it was observed that the concept of “primary”
tangencies is not well defined: in some situations, boundaries
consisting of nonprimary tangencies also yield generating
partitions. Furthermore, locating these tangency points is es-
pecially challenging with noisy time series data, as can be
expected in physical experiments and even, to some extent,
numerical simulations.

Another important approach to finding generating par-
titions relies on the requirement that every periodic orbit,
stable or unstable, be encoded by a unique symbol sequence
[16]. The points on an aperiodic trajectory are then encoded
by interpolating from periodic points with known symbol
labels, which act as reference points. An algorithm to find
generating partitions of a strange attractor, which is dense with
unstable periodic orbits (UPOs), uses “proximity functions” in
the phase space to hierarchically encode orbits of increasing
period starting from an initially chosen encoding of short
UPOs [17]. In other work, extensive topological analysis
of UPOs embedded in the attractor is carried out to obtain
their knot invariants and a branched manifold (or “template”)
holding them, consistent with the topological structure of
the attractor [18]. An interpolation algorithm is then used to
combine possible symbolic names of UPOs, consistent with
their topological invariants, along with their spatial locations
on the attractor, to obtain an approximation of a generating
partition [19]. Unlike other approaches, this method gives
the required number of cells of a generating partition, which
equals the number of branches of the template. It has also
been employed to independently recover the same three-cell
generating partition for the two-well Duffing oscillator, pre-
viously obtained using the method of homoclinic tangencies,
as discussed above. However, finding a sufficient number of
UPOs to reasonable accuracy, as required by these methods,
can be a challenging task, especially for limited, noisy, time
series data.

In light of difficulties associated with approaches relying
heavily on the geometry and/or topology of phase space,
we are interested in general-purpose algorithms that work
directly on time series data to obtain good approximations of
generating partitions. From this more empirical perspective,
two important pieces of work are available. First, Kennel and
Buhl [20,21] present algorithms to find good partitions that
try to avoid topological degeneracies, i.e., situations where
two “similar” symbol strings map to points on the attractor
which are quite far apart. This is done using stochastic op-
timization techniques to iteratively minimize the number of
symbolic false nearest neighbors (SFNNs), i.e., points that are
neighbors in the space of symbol sequences but not in the
phase space. Using the SFNN approach, the authors were able
to obtain generating partitions for discrete-time dynamical
systems, the Ikeda and Hénon maps, including in the presence
of observational noise. They also applied their approach to
some engine test data to obtain a partition with low values of
their SFNN-based statistic. However, because of the stochas-
tic nature of these algorithms, for the same initial guess of
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the partition, in different runs one can obtain quite different
final partitions. Furthermore, to obtain consistent, meaningful
results near global minima of the statistic, it is required to
have a good set of tuning parameters for each system, which is
not known a priori. To our knowledge, these algorithms have
not been demonstrated to recover the known three-symbol
generating partition of the driven Duffing oscillator.

Here, we consider another general numerical approach due
to Hirata et al. [2], viz., the symbolic shadowing algorithm,
which is deterministic in the sense that the same input (that is,
the same initial partition) leads to same output for a given set
of algorithm parameters and time series data. In this approach,
each partition is specified by a set of representatives, i.e.,
points in the phase space in one-to-one correspondence with
all substrings, of given length, as observed in a symbolic
encoding of the time series. Each representative is located
at the mass center of the set of points in the phase space
it approximates or “represents.” The goal of the symbolic
shadowing algorithm is then to minimize the discrepancy be-
tween the shadowing trajectory, consisting of representatives,
and the given time series in the phase space. Our primary
interest in this algorithm is due to its simplicity, ease of imple-
mentation, computational efficiency, and the fact that it does
not require the extensive tuning of algorithmic parameters.
Symbolic shadowing has been successfully used to estimate
generating partitions of one and two-dimensional maps with
observation and process noise, including two-cell partitions
of Hénon and Ikeda maps [2,22].

However, the symbolic shadowing algorithm has not yet
been shown to empirically converge (i.e., to converge using
methods that work directly on data) to known generating
partitions of driven nonlinear oscillators such as the two-
well, driven Duffing oscillator [12,19]. In fact, in preliminary
studies we found that using a large ensemble of randomly
chosen initial partitions, or even starting with the partition
uniquely encoding the first few of the low period UPOs
observed in time series, the standard symbolic shadowing
algorithm could not find the aforementioned three-cell par-
tition for the two-well Duffing oscillator. In this work, we
propose a modification of the symbolic shadowing algorithm
which achieves the required convergence for many differ-
ent initial partitions. For a specified symbolic encoding (or,
partition), this modification yields shadowing trajectory of
representatives which approximates the original time series
data in the phase space optimally. Here, “optimal” means that
the discrepancy, quantified as the squared Euclidean distance,
between the time series data and its shadowing trajectory is
minimized.

Generating partitions are not unique, and this nonunique-
ness affects the convergence of algorithms in the sense that
different randomly chosen initial partitions can yield different
final results. It is thus desirable to objectively assess if some
partitions are “more generating” than others so that one can
pick the “best” estimate of a generating partition out of dis-
tinct partitions obtained. Here, “more generating” means the
degree to which some partitions yield better correspondence
between progressively smaller sets of points in the phase
space and increasingly longer symbol strings. However, with
a limited amount of data it is conceivable that some candidate
generating partitions might not be easily distinguishable in

this fashion. Empirically speaking, the problem of selecting a
good approximation to a generating partition could be looked
at as analogous to model selection with the usual “model
error” versus “model size” trade-off: whenever possible, the
goal is to find the generating partition with “simplest” bound-
ary structure and the minimal number of cells in the phase
space. Here we propose to use the “minimality” of a partition
in addition to its “generating property” to further distin-
guish between different candidate partitions. We hypothesize
that the Lempel-Ziv complexity [3] calculated for individual
symbol sequences provides a measure of “minimality” of a
partition in the sense that partitions with contiguous cells,
fewer cell boundaries, and fewer cells have lower Lempel-Ziv
complexity (are “more minimal”) than their rivals.

Finally, it is to be noted that, typically, the number of cells
k required for a minimal generating partition is not known
a priori. A lower bound can be obtained if we know the
topological entropy of an attractor under consideration. In
particular, k � �2h0�, where the topological entropy, h0 (in
bits per iteration), quantifies the exponential rate of growth
of the number of observed “orbits” (symbol sequences) of in-
creasing length [7,23]. Alternatively, the number of low period
UPOs provides a lower bound on k which can sometimes be
tighter than that found using topological entropy. For example,
it is not possible to uniquely encode an attractor which has
three period-3 UPOs embedded in it using a binary alphabet,
even if the topological entropy is less than 1 bit per iteration.
Although we do not resolve the issue of exactly estimating
k, in this work, we take an indirect empirical approach. We
use ensembles of symbol sequences over differently sized
alphabets (k � 2) as inputs to symbolic shadowing algorithms
and assess the distinct solutions that result for their potential
to serve as good candidates for minimal generating partitions.
Our empirical results suggest that the number of distinct
candidate partitions increases considerably for alphabets with
more symbols than needed for the minimal generating parti-
tion. On the other hand, if we use fewer symbols than required,
we obtain very few distinct solutions, which also inadequately
approximate generating partitions.

The remainder of this paper is organized as follows. In
Sec. II, we discuss the role of coarse-grained observables in
the modeling process from a dynamical systems perspective.
We also define generating partitions, which yield the “best”
observables, along with a criterion to empirically assess their
“generating property.” In Sec. III, we present the basic notion
of symbolic shadowing and lay out the original symbolic
shadowing algorithm step by step. We propose two differ-
ent methods to randomly generate large ensembles of initial
partitions and discuss the results after applying the original
algorithm to the two-well Duffing oscillator. In Sec. IV, we
present an optimized symbolic shadowing algorithm in detail
and compare and contrast it with the original algorithm on
various fronts, such as convergence, performance, and compu-
tational efficiency. We also provide an empirically grounded
explanation as to why the optimized algorithm significantly
improves convergence to generating partitions for systems
like the driven Duffing oscillator, as opposed to Hénon and
Ikeda maps, which are not derived from flows and for which
the original algorithm is adequate. In Sec. V, we explain
the role that the “minimality” of a partition plays in helping
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select candidate generating partitions, and provide a heuristic
argument, supported by some empirical results, to advocate
the use of Lempel-Ziv complexity in its quantification. Using
these ideas, we analyze the results of applying the original and
optimized symbolic shadowing algorithms to a large ensemble
of random initial partitions for the driven Duffing oscillator.
We conclude by presenting approximate three-cell generating
partitions, found using optimized symbolic shadowing for the
driven van der Pol oscillator.

II. COARSE-GRAINED MODELS
OF NONLINEAR OSCILLATORS

We are interested in physical systems with an underlying
mechanism of deterministic chaos, and which thus show
complicated steady-state behavior as they evolve in time.
Ultimately, we aim to characterize such systems by building
coarse-grained probabilistic models of their observed tempo-
ral behavior. This paper focuses on the first step in creat-
ing such models: namely, the identification and selection of
suitable coarse-grained variables solely and directly from a
trajectory in the phase space. Here, we further restrict our
attention to periodically driven continuous-time nonlinear os-
cillators whose phase space is a three-dimensional manifold,
R2×S1, where the circular component S1 results from the
periodicity of their vector field [6]. We study the discrete-
time dynamics of these nonlinear oscillators by means of an
appropriately defined two-dimensional Poincaré section � ⊂
R2×S1: here we fix an element in S1 (indicating a specified
phase of the forcing) so that � = R2. For dissipative systems,
we have a compact invariant subset � ⊂ �, i.e., an attractor,
on which the observed steady-state dynamics takes place. The
corresponding Poincaré map F : � �→ � is given by

xi+1 = F(xi ), (1)

where xi ∈ � denotes the state of a physical system at discrete
time i ∈ Z.

In what follows, we assume that we only have access to
time series data {xi : xi ∈ � ⊂ �, i ∈ Z} from an unknown,
yet stationary, ergodic, dissipative, discrete-time map F as in
Eq. (1). The ergodicity of F implies that typical trajectories
visit neighborhoods of almost all points on the attractor � in
the Poincaré section �, and that observed trajectories sample
the natural invariant measure (or physical measure) μ [24].

A. Coarse-grained observations

By analogy with statistical mechanics, in experimental
contexts we can think of each x ∈ � as a “microstate,” which
in most practical situations is “hidden” in the sense that we
only have access to noisy measurements of real-valued vectors
or some of their scalar components. As a consequence, a sin-
gle experimental measurement at each time can be attributed
to many conceivable microstates from �. This motivates the
concept of coarse graining, which means the lumping together
of many microstates, or experimental measurements thereof,
and identifying them with a unique symbol, or “macrostate.”
One then aims to develop a finite collection of such symbols
in an alphabet A, with each symbol representing a “cell”

or region of �. Taken together, these cells form a partition
covering every microstate from the invariant set � ⊂ �.

Formally, we choose a time-invariant, noninvertible func-
tion G : � �→ A of microstates, which gives coarse-grained
observations or, more simply, observables, X = G(x) ∈ A,
where, without loss of generality, we let A ≡ {0, 1, . . . ,

k − 1}. We refer to k = |A| as the size of A. The function G
divides the entire phase space � into k disjoint cells to obtain
a partition P = {P0, P1, . . . , Pk−1} of � with each cell given
by Pu = {x ∈ � : X = G(x) = u ∈ A}. By successively ap-
plying G at each time, we get a stationary symbolic encoding,
{Xi, i ∈ Z}, of the dynamical trajectory {xi}. A key issue is
that the partition P must be chosen carefully so that there is
no loss of relevant dynamical information. This leads directly
to the concept of generating partitions, reviewed in the next
section, which yield the “best” coarse-grained observables,
that is, that preserve all of the relevant dynamical information,
and that are central objects of study in this paper.

B. Generating partitions

Let us consider a dynamical trajectory that visits cells
Pu and Pv of partition P of � at times i and i + 1 re-
spectively: i.e., xi ∈ Pu and xi+1 ∈ Pv . Thus, the corre-
sponding observed process {Xi} is such that Xi = u and
Xi+1 = v for u, v ∈ A. Since Xi+1 = v, xi must also lie
in the first preimage of Pv under F, which is, F−1(Pv ) =
{x ∈ � : F(x) ∈ Pv}. We note that, for all v ∈ A, the sets
F−1(Pv ) themselves form a partition of � given by F−1P =
{F−1(P0), F−1(P1), . . . , F−1(Pk−1)}. Furthermore, the sets
{Pu ∩ F−1(Pv ) : u, v ∈ A} form a partition, denoted by P ∨
F−1P, called the join of the partitions P and F−1P. It is
evident that for a given choice of partition P the uncertainty
in the true value of xi , still remaining after recording Xi = u,
will typically reduce as a result of an additional coarse-grained
measurement at time i + 1 (i.e., the value of Xi+1), provided
that Pu ∩ F−1(Pv ) ⊂ Pu.

When true, the joined partition P ∨ F−1P is the first
dynamical refinement of the cells in P under F [7]. Note
that if F is invertible, then FP consisting of cells, F(Pv ) =
{x ∈ � : F−1(x) ∈ Pv} for every v ∈ A, is also a legitimate
partition. Thus, if FP ∨ P is a (dynamical) refinement of
P under the image of F then the knowledge of Xi−1 will
also reduce the uncertainty about xi . Of course, this process
of refinement of P under F can continue as subsequent
coarse-grained measurements, Xi+2, Xi+3, . . . (or, from the
past, Xi−2, Xi−3, . . .) become available, yielding a further
reduction in the uncertainty about xi .

A partition P for which this process continues indefinitely,
i.e., for infinitely long symbol sequences, is known as a gener-
ating partition. In general, we can construct a tree of partitions
with cells of partition P occupying k nodes at the first level be-
low the root and cells of its successive dynamical refinements
occupying nodes of subsequent levels. At level l, we have kl

nodes consisting of cells of the partition, Ql ≡ q=l−1∨
q=0

F−qP =
P ∨ F−1P ∨ · · · ∨ F−l+1P (or, k2l−1 nodes consisting of

cells of Ql ≡ q=l−1∨
q=−l+1

F−qP, if F is invertible), each of

which is uniquely labeled by a length-l [length-(2l − 1),
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if F is invertible] symbol sequence over A. Measure theo-
retically, if a partition P generates under the action of F,
then the full σ -algebra F (corresponding to the dynamical
system F as a measure-preserving transformation) equals the

σ -algebra generated by
∞∨
l=1

Ql : that is, by taking countable

unions and intersections of cells of Ql , for all l, it is possible to
generate every set (including singleton sets) of F [25]. Thus,
for a generating partition P it is possible to separate almost
any two distinct points x and x̃ of the phase space � into
two cells of Ql for a sufficiently large l. As a consequence,
almost every point (or its dynamical trajectory) in the phase
space is assigned a unique infinitely long symbol sequence.
Furthermore, the cells of Ql “shrink” to singleton sets almost
everywhere as l → ∞: i.e., maxi μ(Ql,i ) → 0, where Ql,i

is the i th cell of partition Ql and μ(·) denotes its invariant
probability measure. As a result, to quantify the “generating
property” of a given partition, in the next section we will
utilize the decreasing “size” of cells in the phase space with
increasing l as an easier-to-calculate proxy for the measure
μ. While there could be regions in the phase space in which
points cannot be coded uniquely, even using generating parti-
tions, as stated above such regions will have vanishingly small
measure μ and so will not be observed in typical time-series
data.

The separation property of a generating partition is key
to preserving an equivalence between the map F on � and
the dynamics on the space of symbol sequences, the study of
which is known as symbolic dynamics [6]. Because of this
equivalence, generating partitions are extremely appealing
from a conceptual viewpoint because the dynamics on the
symbol sequences is always governed by the shift map, as
described below, irrespective of the actual functional form of
the map F, which frequently is not even known in explicit
form. In the following, we assume that F is invertible.

Let AZ be the space of all symbol sequences for a given
alphabet, i.e., the set of all possible bi-infinite sequences
S ≡ (. . . s−2s−1 � s0s1s2 . . . ), with each coordinate si : i ∈ Z,
drawn from A, and with the coordinate s0, to the immediate
right of the “center” (denoted by a dot “�”), being the zeroth
or time-0 coordinate of a sequence S. Then, the dynamics on
the space of symbol sequences is governed by the shift map,
σ : AZ �→ AZ, defined as

σ (. . . s−2s−1 � s0s1s2 . . . ) = (. . . s−2s−1s0 � s1s2 . . . ), (2)

which simply shifts each input bi-infinite sequence S by one
coordinate to the left to obtain an output bi-infinite sequence
σ (S), so that σ (S)0 [i.e., time-0 coordinate of σ (S)] is s1.
Any partition induces a map, φ : � �→ AZ, which provides
a relationship between points in the phase space and symbol
sequences. For an invariant set � ⊂ � (e.g., an attractor) in
the phase space, the image φ(�) constitutes a shift space
which is closed under the shift map σ . For a physical system,
typically, φ(�) is a subset of AZ since many of the finite
sequences of transitions between partition cells do not occur.
Most importantly, for a generating partition P, the map φ

is one to one and continuous. Also, for the φ induced from
a generating partition, the shift map σ acting on φ(�) is
conjugate to F acting on �: that is, φ(F(x)) = σ (φ(x)).

Heuristically speaking, we might expect a reasonable parti-
tion with a large number of cells, e.g., a coordinate grid over �

with many “cubic” boxes, and which is technically not gener-
ating, to refine dynamically for fairly long symbol sequences,
meaning that newly measured observables bring in new infor-
mation about the system’s initial condition. However, generat-
ing partitions are advantageous in that they typically have only
a few cells. This property is crucial in practice, as the length
of the time series required to build useful probabilistic models
grows with the number of cells of the partition. In particular,
for large A the number of distinct strings of length l observed
in the symbolic time series grows rapidly with l, so that their
true probabilities become very small, which in turn means
that we need ever longer time series for adequate statistical
estimates. Nevertheless, it is important to compare different
reasonable partitions, including generating ones, using some
objective criterion applied to finite amounts of data. This is
the subject of the next subsection.

C. How “generating” are partitions?

For a general empirical approach to assess generating
partitions, as we adopt in our work, it is important to test
their defining properties as directly as possible, especially
given their abstract nature. However, the “guiding principle”
used to construct generating partitions [11], that two points
of any homoclinic intersection be coded with distinct symbol
sequences, is difficult to test using merely time-series data.
In other work [26], the relabeling or misrepresentation of the
graph associated with the full shift of the tent map was used
to explain the topological error due to misplaced partitions.
However, most dynamical systems (including the nonlinear
oscillators to be studied here) are not known to admit such
exact (i.e., finite graph) representations, making it difficult to
accurately quantify topological errors arising from nongener-
ating partitions.

In this work, given a partition, we take as an empirical
measure of its “generating property” its ability to localize
points in the phase space for increasingly long symbol strings
[2,24]. For any partition, each observed delimited string

s−ms−m+1 . . . s−1 � s0s1 . . . sn−1sn,

of length l = m + n + 1, denoted henceforth by sn
−m, corre-

sponds to a set of points in the phase space,

C
(
sn
−m

) ≡ {φ−1(S) : Si = si,

−m � i � n = l − m − 1,∀ S ∈ AZ}, (3)

also known as a cylinder. The preimage φ−1 is a continuous
map if and only if the partition is generating [24,27]. Each
of the cylinders can be empirically estimated from a long
time series {Xi, i = 1, . . . , N} by simply sliding a window of
length l by one symbol from left to right to get

C
(
sn
−m

) = {
xi : Xi+n

i−m = sn
−m,m + 1 � i � N − n

}
, (4)

where Xi+n
i−m denotes a delimited string, Xi−mXi−m+1 . . .

Xi−1 � XiXi+1 . . . Xi+n−1Xi+n. Continuity of φ−1 implies that
points belonging to the same cylinder are closer together so
that the decrease in the size of cylinders C(sn

−m) for increas-
ing string length l provides a natural way to quantify the
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FIG. 1. Generating partition consisting of three cells labeled
using symbols {0, 1, 2} for the strange attractor of the stochastically
unperturbed, two-well, driven Duffing oscillator given by a second-
order ordinary differential equation (ODE): ẍ + 0.25 ẋ − x + x3 =
0.4 cos t . Also shown in the phase space R2 are iterates of the
Poincaré map, each obtained by numerical integration for half the
forcing period (i.e., from 0 to π ), followed by inversion of coor-
dinates: x → −x and ẋ → −ẋ. Although the partition has been
obtained for the strange attractor, the cell boundaries have been
extrapolated outside the attractor for clarity. This partition, obtained
from time series data using methods discussed later in the paper,
matches well with the previously published generating partition
found using independent methods [12,19].

generating property of a given partition. Indeed, for a fixed
l, cylinders are synonymous with the cells of partition Ql

belonging to the tree of partitions discussed in Sec. II B. In
particular, along the line of [19], we empirically estimate the
maximum cylinder diameter Dl

max, corresponding to all strings
of length l observed in a long time series, as follows:

Dl,m
max ≡ max

C(sl−m−1
−m )∈Cl,m

diam
[
C
(
sl−m−1
−m

)]
, (5)

Dl
max ≡ min

0�m�l−1
Dl,m

max, (6)

where diam[C(sl−m−1
−m )] is a maximum Euclidean distance be-

tween all pairs of points belonging to the cylinder C(sl−m−1
−m );

and C l,m is the collection of all cylinders [estimated empiri-
cally as per Eq. (4)] corresponding to all observed delimited
strings of length l with exactly m symbols to the left of their
center.

To illustrate the significance of these ideas, consider the
three-symbol generating partition for the driven Duffing os-
cillator in Fig. 1, obtained previously [12,19], and to be found
from time-series data using methods developed later in this
paper. As can be seen in Fig. 2, this generating partition
substantially decreases the maximum cylinder diameter Dl

max,
even at string lengths greater than l = 5, indicating that it is
expected to localize points in the phase space well. In con-
trast, other reasonable partitions, including those consisting
of equiprobable boxes (k = 16) or equisized boxes (k = 21),
do not show substantial decrease in Dl

max beyond l = 3 and
have, in fact, higher values of Dl

max for l > 5 than those for
the generating partition (k = 3). This suggests that partitions
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equisized boxes (k = 21)
random coloring (k = 3)

FIG. 2. Comparison of cylinder diameter Dl
max [Eq. (6)] vs string

length l for four partitions (with different alphabet sizes k) of the
Duffing attractor, empirically estimated from a time series of four
million points. Note the base-10 logarithmic scale on the y axis. For
the k = 3 (three symbol) generating partition of Fig. 1, Dl

max shows
a sustained decrease until about l = 10. For the k = 16 “maximum
entropy” (equiprobable) and k = 21 equisized (same area) partitions,
Dl

max decreases by a factor of one-half until l = 3, without further
substantial decrease for longer strings. For a k = 3 random coloring
every data point is uniformly randomly assigned a symbol from A =
{0, 1, 2}. Symbol sequences from this partition correspond to sets of
points spread over all of the attractor so that Dl

max does not decrease
with l and equals the diameter of the attractor itself. As expected,
unlike other partitions, the generating partition consistently increases
the degree of localization of points on the Duffing attractor, even at
string lengths larger than l = 5.

which retain greater “static” information by using a greater
number of cells (and, therefore, more symbols) are not neces-
sarily good at retaining dynamically relevant information.

As we will see, the minimization of diameter in Eq. (6)
proves crucial for estimating generating partitions empiri-
cally. It is easy to see that, from any symbolic itinerary
{Xi,Xi+1, . . . , Xi+l−1; 1 � i � N − l + 1} of length l =
m + n + 1, we get l − 1 delimited strings sn

−m of length l (and
their cylinders) depending on the somewhat arbitrary choice
of the location of the string center, that is, of the value of
m between 0 and l − 1. However, as can be seen in Fig. 3,
the maximum diameter Dl,m

max [Eq. (5)], estimated from the
three-symbol generating partition of Fig. 1, strongly varies
with m for fixed l. In particular, for each l there is a value of
m = mopt that yields the smallest cylinder (i.e., that localizes
points within it most strongly) of diameter Dl

max, consistent
with the minimization of Eq. (6).

This can be explained as follows. For any given delimited
string sn

−m the set of points C(sn
0 ) align along a local stable

manifold as they share a common future, while points in the
cylinder C(s0

−m) fall along a local unstable manifold since they
share a common past (i.e., the same backward sequence of
symbols). Also, we clearly have C(sn

−m) = C(s0
−m) ∩ C(sn

0 ).
For dissipative chaotic systems, such as the Duffing oscillator,
the rate of convergence of trajectories along a local stable
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FIG. 3. Variation of maximum cylinder diameter Dl,m
max [Eq. (5)]

for three-symbol generating partition of the Duffing attractor (Fig. 1).
For each l, the l largest diameters Dl,m

max are shown by × and solid line,
corresponding to values of m from 0 to l − 1 from left to right within
each curve. We see Dl,m

max varies significantly with m, with minimum
Dl

max shown by ��� and dashed line: these minima are the same values
as in Fig. 2, with mopt as in Eq. (7).

manifold is higher than the rate of divergence of nearby points
along a local unstable manifold, when averaged over the entire
attractor. Thus, on average, the forward sequence of symbols
is more “efficient” than the backward sequence in localizing
points of a given partition cell. This means, for fixed l, the
optimal choice of m satisfies

mopt = argmin
0�m�l−1

Dl,m
max � l/2�. (7)

This observation is critical for the estimation of generating
partitions from time series data. In the next section, we
consider the symbolic shadowing algorithm [2] for estimating
generating partitions and its modification based on the above
observation, which significantly improves its convergence.

III. SYMBOLIC SHADOWING

As we have seen, cylinder sets of a generating partition
become smaller with increasing string lengths. This prop-
erty of generating partitions can be used to search for them
using the symbolic shadowing algorithm. In the symbolic
shadowing algorithm, each cylinder set C(sn

−m) corresponding
to a partition of the attractor is associated with a unique
point, r (sn

−m) ∈ Rd , called its representative. As cylinders
themselves form a partition of the attractor, the set of rep-
resentatives can be viewed as a piecewise constant approxi-
mation of points in them. Thus, each data point of the time
series xi is approximated by a unique representative r (Xi+n

i−m)
corresponding to a symbolic encoding {Xi, i = 1, . . . , N} of
the original time series obtained with a given estimate of the
generating partition. In the symbolic shadowing algorithm,
the estimated symbolic encoding and the corresponding set
of representatives are iteratively updated so that the error of

approximation between the given trajectory in the phase space
and this shadowing trajectory formed by the representatives is
systematically reduced.

More precisely, the problem of estimating a generating
partition is formulated as the following minimization problem
at each string length l = m + n + 1 [2]:

min
{Xi }; {r (Xi+n

i−m )}

N−n∑
i=m+1

∥∥xi − r
(
Xi+n

i−m

)∥∥2
, (8)

where the minimization takes place over both the encoded
sequence of visited cells and the set of representatives, as
defined below. The cost function in the above is referred
to as the discrepancy between a given time series and its
shadowing. Considering any estimated partition, for fixed l

and m, representatives are located at the center of mass of the
corresponding cylinders, i.e.,

r
(
sn
−m

) = 1∣∣C(
sn−m

)∣∣
∑

x∈C(sn−m )

x, (9)

where |C(sn
−m)| is the number of points in a cylinder C(sn

−m).
In fact, given a symbolic encoding of an ergodic system
with invariant measure μ, the above choice of representatives
minimizes the expected squared error H(l, m) given by

H(l, m) ≡
∫ ∥∥x − r

(
Xn

−m

)∥∥2
dμ(x) (10)

= lim
N→∞

HN (l, m), (11)

where

HN (l, m) = 1

N − m − n

N−n∑
i=m+1

∥∥xi − r
(
Xi+n

i−m

)∥∥2
. (12)

Furthermore, if as m → ∞ (which implies l → ∞) H(l, m)
approaches zero, then the estimated symbolic encoding is a
generating partition. This justifies the iterative minimization
of Eq. (8) carried out by the symbolic shadowing algorithm.

Since the minimization takes place over both the encoded
sequence and the set of representatives, it is done in two
steps. First, starting with some initial partition Pj (at say,
iteration j ), representatives at fixed string length l and m =
l/2� are found using Eq. (9) so as to minimize H(l, m)
estimated from a long time series, i.e., HN (l, m) with large
N using Eq. (12). In the second step, given a set of represen-
tatives for fixed l and m, a Voronoi tessellation of the phase
space is constructed to obtain a new partition (or, equivalently,
a new symbolic encoding) of data as follows. For a given set of
generator points, a Voronoi tessellation of the space consists
of as many cells as there are generator points. A Voronoi
cell corresponding to a particular generator point collects all
points that are closer to that generator point than to any other.
For our purposes, we consider the representatives at given l

and m as the generator points. Then, a Voronoi cell T(sn
−m),

for each string sn
−m obtained from the previous encoding

sequence, is defined as a set of points that are closest (con-
sidering Euclidean distance) to its representative r (sn

−m), i.e.,

T
(
sn
−m

) ≡ {
x ∈ � :

∥∥x − r
(
sn
−m

)∥∥ <
∥∥x − r

(
s̃n
−m

)∥∥,

∀s̃n
−m �= sn

−m

}
, (13)

032211-7



NAVENDU S. PATIL AND JOSEPH P. CUSUMANO PHYSICAL REVIEW E 98, 032211 (2018)

which we empirically estimate from the time series as

T
(
sn
−m

) = {
xi :

∥∥xi − r
(
sn
−m

)∥∥ <
∥∥xi − r

(
Xi+n

i−m

)∥∥,

∀Xi+n
i−m �= sn

−m, i = m + 1, . . . , N − n
}
. (14)

Finally, these Voronoi cells are combined to obtain a new
estimate of the generating partition Pj+1 = {P j+1

u : ∀u ∈ A}
with its cells given by

P j+1
u = ∪{

T
(
sn
−m

)∀ sn
−m : s0 = u, u ∈ A

}
. (15)

It is to be noted that if the original partition Pj is generating
then its approximation Pj+1 obtained by Voronoi tessellation
will converge to a generating partition as string length
l → ∞ [2].

We are now able to state the original symbolic shadowing
algorithm step by step:

(1) Given: time series in the continuous phase space,
{xi , i = 1, 2, . . . , N}; alphabet size, k; initial symbol
sequence, yN

1 ≡ {y1, y2, . . . , yN } over alphabet A =
{0, 1, . . . , k − 1}; initial string length, linitial; maximum
string length, lmax; maximum number of iterations,
MaxIter.

(2) Initialize: {Xi} ← yN
1 , l ← linitial.

(3) Set m = l/2� and n = (l − 1)/2�. For each string
sn
−m observed in {Xi}, estimate cylinder C(sn

−m) and
its representative r (sn

−m) according to Eqs. (4) and (9),
respectively.

(4) For i from 1 to N , find representative r (sn
−m) which is

closest to xi , and assign symbol s0 ∈ A appearing at
the center of the string sn

−m to Xi .
(5) If the newly obtained symbol sequence {Xi} at the end

of step (4) is different from the previous one, and if
the number of iterations is less than MaxIter, then go
back to step (3).

(6) l ← l + 1. Go to step (3) if l � lmax.

One could also stop the algorithm when either the mean
squared error, HN (l, m) [Eq. (12)], or the maximum squared
error, maxi ‖xi − r (Xi+n

i−m)‖2, drops below a certain pre-
scribed threshold value. However, the correct choice for the
threshold value of error is not known a priori and is usually
set to some small value. In this work, we instead choose lmax

and MaxIter, so that the algorithm finishes in a reasonable
amount of time. As reported in [2], we have also seen peri-
odic behavior in a few cases, where the algorithm alternates
between different “solutions” (i.e., the set of representatives
and the corresponding symbol sequence), and would do so
indefinitely unless stopped (at MaxIter). In such cases, we
choose a solution which has the least mean error among the
other iterates.

A. Choice of initial partitions

In step (2) of the algorithm presented above, the symbolic
shadowing algorithm is initialized by providing a symbol
sequence yN

1 over the chosen alphabet A. This can be done
in several ways. One way is to use surrogates of low-period
UPOs found from the time-series data. Each orbit point is
assigned a symbol so that every distinct periodic orbit is coded
with a unique symbol sequence. Then, each of the remaining

points of the time series are assigned a symbol of the nearest
encoded periodic point in the phase space, thus creating a
partition of the data. However, surrogates of many of the
most prominent lowest-period orbits in the system may not be
found from the time-series data, as for many systems such or-
bits may lie outside the attractor. In such cases, one must look
for relatively high period orbits, which becomes a difficult
task, especially in the presence of noise in the data. Moreover,
typically there are many possible initial partitions which could
uniquely encode a given set of low-period UPOs (i.e., assign
unique symbolic names to each orbit), some of which may
not converge to good approximations of generating partitions
when fed to the symbolic shadowing algorithm [2]. Thus, this
process inherently requires some manual intervention, and the
number of admissible choices of initial partitions can grow
very quickly with the period of available UPOs.

In this work, we adopt a different approach by choos-
ing a large ensemble of random initial partitions from the
space of partitions. The main idea here is that we want to
explore the space of partitions as much as possible (within
some reasonable computational time limit) so that we better
understand the nature of the algorithmic convergence, and
can examine multiple approximations of the many generating
partitions that are believed to exist. We use two methods,
random representatives (RRs) and random symbols (RSs) to
construct initial symbol sequences. In the RR method, we
select a random sample of klinitial points from the time-series
data without replacement, and use its elements to form a set of
representatives of string length linitial. Each of these represen-
tatives is then assigned a symbol from an alphabet A (of size
k), uniformly randomly, so that exactly klinitial−1 representatives
have the same symbol. Finally, each data point of the time
series is assigned the symbol of its nearest representative to
obtain an initial encoded sequence yN

1 . In the RS method, each
data point of the time series is uniformly randomly assigned
a symbol from A to directly obtain yN

1 . As can be seen,
these methods are objective in that no particular knowledge
of the system or its dynamics in phase space are used while
forming the initial symbol sequences. In what follows, we
used both the RR and RS methods to generate an ensemble of
1008 initial symbol sequences over different alphabet sizes,
which were made to evolve under the symbolic shadowing
algorithm. We next discuss the results of applying the sym-
bolic shadowing algorithm with these initial sequences for the
driven, two-well Duffing oscillator.

B. Driven Duffing oscillator

Let us consider the two-well, periodically driven Duffing
oscillator,

ẍ + δẋ − x + x3 = γ cos(ωt ), (16)

where overdots denote time derivatives. We fix γ = 0.4, ω = 1,
and δ = 0.25. Moon and Holmes ([6], pp. 82–91) have shown
that this ODE serves as a good model to describe periodically
forced steady state vibrations of a cantilever beam in its first
mode when placed in a nonuniform field created by two
permanent magnets near its free end. For our calculations, we
exploit the fact that the Duffing equation is invariant under the
transformation (x, ẋ, t ) → (−x,−ẋ, t + π/ω). Thus, points
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FIG. 4. The most frequently obtained three-cell partition of the
Duffing attractor, generated by application of the symbolic shadow-
ing algorithm to thousands of random initial symbol sequences. Note
that this does not match the generating partition of Fig. 1, a limitation
addressed by our modification to the original algorithm. The cells of
the partition are a union of multiple, apparently disjoint regions in
the phase space. Inset: An enlarged view of one area in the phase
space where the cells for symbols {0} and {1} are intermingled in a
complicated way.

x = (x, ẋ )ᵀ in the continuous Poincaré section � are acted
upon by the map Fπ , constructed by numerically integrating
Eq. (16) for half the forcing period, i.e., over the interval
[0, π/ω], followed by an inversion of coordinates: x → −x

and ẋ → −ẋ. Thus, two iterates of Fπ are required for
each full forcing cycle, so that Fπ is the “square root” of
the Poincarè map F : � �→ � [Eq. (1)], which is therefore
obtained by composition as F ≡ Fπ ◦ Fπ [28]. This system
at the chosen parameter values is known to be chaotic and
admits the three-symbol generating partition of its strange
attractor shown in Fig. 1.

Using the above approach, we generated a chaotic time
series of length N = 105 for the Duffing oscillator. For the
numerical integration, we employed a fifth-order solution of
the embedded Runge-Kutta method with Cash-Karp parame-
ters [29,30]. We found, after a comparison of fourth and fifth
order solutions at several thousand points on the attractor,
that a fixed step-size implementation with 2000 time steps
in each forcing period yielded a solution with absolute and
relative errors below 10−8. We then applied the symbolic
shadowing algorithm to the time series, with the following pa-
rameters: k = 3; linitial = 2; lmax = 10; and MaxIter = 100.
After running the algorithm on 1008 distinct initial symbol
sequences generated using the RR method, we found only
46 distinct encoded sequences. Out of these encodings, the
partition shown in Fig. 4 appeared most frequently (314 times
out of 1008) and had satisfactory convergence so that the
mean and maximum squared errors were 7.9951×10−4 and
7.2883×10−2 respectively. This partition was also the most
frequent of the 37 distinct encodings obtained from the initial
symbol sequences generated using the RS method, with 497
out of 1008 sequences converging to it. As can be seen, the

FIG. 5. Cylinder sets C(sl−m−1
−m ) for m = 0, . . . , 9 and l = 10,

corresponding to the symbolic itinerary {0, 2, 1, 1, 0, 2, 1, 1, 0, 2},
the most probable itinerary (probability ≈ 0.0209) among all ob-
served length-10 strings obtained from the generating partition
(Fig. 1), overlaid on the Duffing attractor. Sets were estimated from
a time series of four million points. As the number of backward
symbols m change from 0 to 9, we get cylinders (heavy dots) of
different shapes and sizes due to stretching and folding on the
Duffing attractor. Also indicated, by the symbol ∗, is each cylinder’s
representative r (sl−m−1

−m ) [Eq. (9)]. Observe that the cylinder size is
smallest, and is best approximated by its representative, when m = 2.

partition cells consist of a union of multiple disjoint regions in
the phase space. Also, this partition has a much more compli-
cated boundary structure compared to the generating partition
of Fig. 1, which has fewer and simpler cell boundaries.
Furthermore, we found that none of more than two thousand
initial symbol sequences, generated using both the RR and
RS methods, converged to the generating partition of Fig. 1.
One might attribute this failure to the choice of initial symbol
sequences, in the sense that we might accidentally not have
selected initial encodings that happen to converge to the gen-
erating partition under the action of the algorithm. However,
after considerable experimentation, we discovered that the
standard choice of m made in the original symbolic shadowing
algorithm [see step (3)] has a strong effect on the algorithm’s
ability to find a generating partition of the Duffing attractor.

As we have seen in the discussion surrounding Fig. 3,
the diameter of cylinder sets at each l corresponding to the
generating partition of the Duffing attractor varies strongly
with the choice of m. As an illustration, consider the cylinder
sets corresponding to the length l = 10 symbolic itinerary
{0, 2, 1, 1, 0, 2, 1, 1, 0, 2}, shown in Fig. 5 along with the
cylinder set representatives [Eq. (9)]. For the delimited string,
02 � 110 211 02, which corresponds to m = 2 we get the
“smallest” cylinder so that all points within this cylinder are
clustered together better than in cylinders for other m values in
[0,9]. In fact, both mean and maximum squared errors as well
as the cylinder diameter are minimized at m = 2 (see Fig. 6).
However, the standard symbolic shadowing algorithm uses
the cylinder corresponding to m =  l

2� = 5, which is clearly
suboptimal. Since the main goal of the symbolic shadowing
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FIG. 6. Comparison of shadowing errors (i.e., mean and maxi-
mum squared errors) and the maximum cylinder diameter vs number
of backward symbols m in delimited strings of length l = 10 for the
generating partition (Fig. 1) of the Duffing attractor. The solid lines
show values estimated from all of the cylinder sets over the attractor,
while the dotted lines correspond to the cylinder sets (Fig. 5) of the
symbolic itinerary {0, 2, 1, 1, 0, 2, 1, 1, 0, 2}. Both shadowing errors
as well as the cylinder diameter are minimized at m = 2 suggesting
an optimal choice for the formation of cylinder sets.

algorithm is to minimize the discrepancy [Eq. (8)] between the
phase space trajectory and its shadowing orbit passing through
the cylinder representatives, it makes sense to choose a value
of m at which cylinders are best approximated by their rep-
resentatives. This observation motivates a modified symbolic
shadowing algorithm, as discussed in the next section.

IV. OPTIMIZED SYMBOLIC SHADOWING

In light of the above discussion, we here present a mod-
ification to the original symbolic shadowing algorithm so
that cylinder sets are formed in a way that renders their
approximation by representatives optimal. Thus, instead of
fixing the value of m at  l

2� we choose it so that the mean
squared error HN (l, m) [Eq. (12)] is minimized at each l.
We expect to yield the same value of m as mopt in Eq. (7)
since the mean squared error and the cylinder diameter behave
similarly as m changes (see Fig. 6). The resulting optimized
symbolic shadowing algorithm only requires the modification
of step (3) of the original algorithm, as presented below: the
rest of the algorithm remains the same and is thus omitted to
highlight the modification.

(3) Optimized step:

(a) Set m = 0 so that n = l − 1.
(b) For each string sn

−m observed in {Xi}, estimate
the cylinder C(sn

−m) and its representative r (sn
−m)

according to Eqs. (4) and (9), respectively.
(c) Calculate the mean squared error, HN (l, m), ac-

cording to Eq. (12).
(d) m ← m + 1 so that n ← n − 1. Go to step (3b) if

m � l − 1.
(e) Set m = mopt, where

mopt ≡ argmin
0�m�l−1

HN (l, m). (17)
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FIG. 7. Typical convergence traces of the maximum squared
error for symbolic shadowing (SS) and optimized symbolic shad-
owing (OSS) algorithms starting from 175 initial symbol sequences
generated using the RS method. For all these sequences, the opti-
mized algorithm converged to the generating partition of Fig. 1 for
which mean and maximum squared errors were 5.0012×10−4 and
1.6851×10−2 respectively, while the original algorithm converged to
the partition of Fig. 4 with mean and maximum squared errors equal
to 7.9951×10−4 and 7.2883×10−2 respectively. Also, the original
algorithm took about thrice as many iterations as required by the
optimized algorithm before it stopped.

To test the optimized algorithm, we used the same
time series (of length N = 105) of the Duffing oscillator
as was used previously, along with the same algorithmic
parameters: k = 3; linitial = 2; lmax = 10; and MaxIter
= 100. After running the algorithm on 1008 distinct initial
symbol sequences generated using the RR method, we found
only 17 distinct encoded sequences. Out of these encodings,
the partition shown in Fig. 1 was the most frequent (424 out
of 1008) with mean and maximum squared errors equal to
5.0012×10−4 and 1.6851×10−2 respectively. This partition
was also the most frequent among the 21 distinct encodings
obtained from the initial symbol sequences generated using
the RS method, with 426 out of 1008 sequences converging
to it. To directly compare the numerical performance between
the original and optimized symbolic shadowing algorithms,
we used the same set of initial sequences generated using the
RS method for both: Fig. 7 shows the convergence traces for
175 of these common sequences. On average, the optimized
algorithm required a third of the iterations for convergence
and achieved a lower maximum squared error as compared to
the original algorithm.

Each iteration of the optimized symbolic shadowing algo-
rithm finds a symbol sequence {Xi} corresponding to each of
the l values of m from 0 to l − 1, to identify the value of m =
mopt that yields the best encoding. In contrast, for the original
algorithm, encoding is found only once per iteration with
m =  l

2�. Thus, it may initially seem that the execution time
for the optimized algorithm is l times slower than that of the
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optimized symbolic shadowing algorithm (OSS) and the original
algorithm (SS) with increasing l, estimated using convergence traces
of Fig. 7. In the OSS algorithm, although l symbol sequences are
found at each iteration, it does not run l times slower as compared to
the SS algorithm. For the Duffing oscillator, at 6 < l � 10, we have
T OSS

iter /T SS
iter ≈ εl, where ε ∈ (0.42, 0.53). A simple extrapolation, as-

suming ε increases linearly with l, leads to a prediction: εmax ≈ 0.61
at l = 15.

original. However, this is not the case since the determination
of cylinder sets via Eq. (4) for different values of m [step (3b),
above] at each iteration can be carried out quite efficiently
using the shift map. In particular, since

σ
(
sn
−m

) = s−m . . . s−1s0 � s1 . . . sn,

we have

C(s−m . . . s−1s0 � s1 . . . sn)

= {
xi+1 : xi ∈ C

(
sn
−m

)
,m + 1 � i � N − n

}
. (18)

Indeed, for every given symbol string, we can obtain its cylin-
der at a particular value of m, say m̃, with 0 < m̃ � l − 1, re-
cursively as an image, under the action of the Poincaré map F,
of its cylinder at m = m̃ − 1. We have found empirically that,
for the values of l used here, each iteration of the optimized
algorithm runs much faster than the “worst case scenario” of
being l times slower than the original algorithm (see Fig. 8).

For the sequences considered in Fig. 7, on average the
total execution time for each initial sequence was about 330 s
for the optimized algorithm (running on a single Intel Xeon
X5675 3.07 GHz processor), as compared to 293 s for the
original algorithm. Furthermore, it is interesting to note that,
as shown in Fig. 9, the values of mopt found at any given l

seldom change from iteration to iteration. As a consequence,
with reference to Fig. 8, it seems evident that we could
further save significant computational time for the optimized
algorithm, especially at higher values of l, by choosing to
optimize m at only the first few iterations and using that mopt

for subsequent iterations.
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2
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FIG. 9. Typical variation of values of mopt, estimated at each
iteration, and l for one of the traces in Fig. 7 for the optimized
algorithm (OSS). For reference, values of m = l/2� for the original
algorithm (SS) are also shown. As can be seen, the estimated mopt is
less than or equal to l/2�, dependent on l, and seldom changes from
iteration to iteration at fixed l.

To further test our optimized symbolic shadowing al-
gorithm, we used it to recover previously known two-cell
generating partitions of the Hénon and Ikeda maps
[2,11,17,27]. Computations were done using our implementa-
tions of both the original and optimized algorithms to allow
for direct comparisons. For these discrete maps, there is a
good match between partition boundaries as found by original
and optimized algorithms [see Fig. 10 left, (a)–(c)]. Thus,
it may seem puzzling that the original symbolic shadowing
algorithm, unlike the optimized version, could not recover the
three-cell generating partition (Fig. 1) of the Duffing oscilla-
tor. Moreover, we have also found a previously published [31]
two-cell generating partition using the optimized algorithm
for a chaotic Duffing oscillator at parameter values, δ = 0.65,
γ = 1 in Eq. (16). This partition [see Fig. 10 left, (d)] of the
Duffing attractor in its Poincaré section (prepared as described
in Sec. III B except with the forcing phase of the Poincaré
section set to π/2) shows good agreement with the partition
obtained by joining homoclinic tangencies (see Fig. 4 of [31]).
In contrast, the original symbolic shadowing algorithm could
not find this partition even for this simpler two-symbol case.
However, using additional numerical results, we can provide
an explanation for this apparently “system-specific conver-
gence” issue of the original symbolic shadowing algorithm,
one that is seemingly resolved by the optimized algorithm.

In Fig. 10 right, we compare the variation of maximum
cylinder diameter Dl,m

max as a fraction of the diameter of the
attractor with the number m of the backward symbols in
delimited length-15 strings using the aforementioned two-cell
generating partitions. For the Hénon map, the cylinder diam-
eter Dl,m

max is minimized at multiple values of m, with mopt ∈
{2, 3, 4, 5} for partition I [Fig. 10 left, (a)] and mopt ∈ {3, 4, 5}
for partition II [Fig. 10 left, (b)]. Note that the Dl,m

max “curve”
for partition II can be easily obtained from that of partition I
by shifting the latter plot to the right by one symbol, which is
not surprising given that partition II is a preimage of partition
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FIG. 10. Left: Two-cell generating partitions of the Hénon map (a), (b), Ikeda map (c), and the driven, two-well Duffing oscillator at an
alternate set of parameters (d), respectively, found with optimized symbolic shadowing (cell boundaries shown with solid lines). For Heńon
and Ikeda maps, cell boundaries for partitions obtained from the original algorithm (broken lines) lie almost exactly on top of those found using
the optimized algorithm. As a result, the cell boundaries of these maps obtained using both the algorithms are virtually indistinguishable from
each other in these figures. Right: Maximum cylinder diameter Dl,m

max normalized by attractor diameter D0 vs number of backward symbols m in
delimited strings of length l = 15, compared for all systems on left. The sampling of strings was done using N = 106 iterates on the attractor
for each system. The vertical broken line corresponds to m = l/2� = 7. For the Hénon and Ikeda maps, there is only about 2–4% of the
attractor diameter increase in Dl,m

max for m values between m = mopt and m = l/2�, as opposed to an 18% increase for the Duffing oscillator.

I under the action of the Hènon map. More importantly,
values of normalized Dl,m

max at m = l/2� = 7 are only about
2–4% higher than the optimized values. This also holds for
the Ikeda map, as the normalized Dl,m

max increases from about
10% at mopt = 5 to ≈ 12% at m = 7. This indicates that, for
the Hénon and Ikeda maps, the localization of points in the
phase space using short delimited strings is not too sensitive
to the specific location of the “string center,” as long as the
center is chosen to be not much greater than the middle of
the string, which is precisely what occurs with the original
symbolic shadowing algorithm. Thus, good approximations
of the generating partitions obtained from the original and the
optimized algorithm are expected to be very similar to each
other for these maps. In contrast, for the two-cell generating
partition of the Duffing attractor in Fig. 10 left, (d), the
normalized increase in Dl,m

max is significant, from about 10% at
mopt = 1 to ≈ 28% at m = 7. This suggests that, in contrast
with the Hénon and Ikeda maps, and as we found in our
calculations, the optimization of m can significantly improve
the convergence to the correct generating partition.

V. “MINIMAL” PARTITIONS AND
LEMPEL-ZIV COMPLEXITY

As seen above, both the original symbolic shadowing
algorithm and its optimized version can converge to multiple
distinct partitions, depending on the initial partitions fed into
them. Although the partitions of Figs. 1 and 4 appeared most
frequently, using optimized and standard symbolic shadow-
ing, respectively, when starting from a large ensemble of ini-
tial partitions, other partitions were obtained after satisfactory
convergence to lower values of mean and maximum squared

errors. As discussed in Sec. II C above, one can rank partitions
based on their “generating property,” i.e., their ability to con-
sistently localize points in the phase space or decrease cylin-
der diameter Dl

max with increasing l (Fig. 2). However, with
a limited amount of data it could be misleading to pick the
single “best” partition based on cylinder sizes alone due to in-
herent sampling fluctuations, especially at large l. In the limit
of infinitely long symbol sequences, a true generating parti-
tion separates every given point in the phase space from all
other points by splitting cylinder sets into sets of ever smaller
size. Thus, it is at least plausible that the process of separation
can be facilitated better for some rather convoluted partitions,
that is, which have many more cell boundaries, among all
candidate k-cell partitions. This is because the boundaries of
cylinders are formed from the preimages and images of the
boundaries of cells. Indeed, while it was the most probable,
we found that the generating partition of Fig. 1, which has
three, rather simple, contiguous cells, was not the one with
the smallest value of Dl

max among different partitions obtained
using the optimized symbolic shadowing algorithm. Thus,
there is a need for an additional reasonable criterion to further
distinguish between different candidate generating partitions.

In our opinion, such a criterion should reflect what we
here refer to as the “minimality” of a partition: among a
candidate set of partitions which localize points in the phase
space equally well, those with contiguous cells, fewer cell
boundaries, and a smaller number of cells are preferred over
their rivals. Apart from the obvious appeal of simplicity, such
partitions seem advantageous in the presence of observation
noise. With bigger, contiguous cells there are likely to be
fewer instances of the misencoding of a noisy dynamical tra-
jectory when the true state of the system lies near cell bound-
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aries. Furthermore, such minimal partitions are “efficient”
in terms of matching the information generation rate (i.e.,
the entropy rate) in the continuous phase space using fewer
cylinders. As a consequence, in practice, using a finitely long
encoded sequence we can estimate probabilities of cylinders
or corresponding strings more accurately.

Unfortunately, however, it is a nontrivial issue to express
this notion of partition minimality using some calculable
measure. In the context of the symbolic shadowing algorithm,
since at each string length l we get different partitions iter-
atively, choosing the iterate at the “best” l has been looked
at as a model selection problem [22,27], especially for short,
noisy time series. In this previous work, l has been selected
using the Akaike or Bayesian information criteria, as well as
by minimizing the description length, with the set of cylinder
representatives treated as “model parameters.” It also seems
reasonable to extend these criteria to select among candidate
k-cell partitions obtained at some large l (fixed a priori),
after iterating distinct initial symbol sequences. Each of these
criteria differ in terms of the relative importance placed on the
model size and the prediction error, and can lead to different
model choices.

Here, we propose to instead use the Lempel-Ziv (LZ)
complexity [3] of encoded sequences, which we hypothesize
indirectly quantifies the “minimality” of the corresponding
partition, as characterized above. The LZ complexity equals
the number of new subsequences encountered as the symbolic
time series is parsed from left to right. It is high for “random”
sequences, which is desirable here since the initial symbol
sequences we used for the symbolic shadowing algorithms
were randomly generated, i.e., with no consideration to the
dynamics in the phase space. Here, we consider the exhaus-
tive parsing of the sequence, yN

1 ≡ y1y2 . . . yN−1yN , into p

phrases recursively, y
w(j )

w(j−1)+1 (j = 1, 2, . . . , p), where w(0) ≡
0, w(1) = 1 and w(p) = N :

y
w(1)

1 y
w(2)

w(1)+1 . . . y
w(p)

w(p−1)+1,

such that y
w(j )

w(j−1)+1 (1 < j < p) is the shortest such phrase

which has not appeared anywhere in the subsequence y
w(j )−1
1 .

The last phrase, yN
w(p−1)+1, may or may not be part of the subse-

quence yN−1
1 . The Lempel-Ziv complexity of a sequence, de-

noted henceforth as cE , equals the number of phrases p in its
uniquely defined exhaustive parsing. For example, a sequence
y20

1 = 10 212 102 212 221 022 102, over the alphabet {0, 1, 2},
has the exhaustive parsing consisting of p = 8 phrases:

1 | 0 | 2 | 12 | 1022 | 122 | 2 102 210 | 2,

where the vertical lines separate individual phrases. Thus,
we have cE (yN

1 ) = 8. Clearly, it is possible to employ vari-
ous alternative schemes to parse a given sequence in many
different ways. However, among all “iterative self-delimiting
vocabulary-building processes” [3] which could be considered
to produce a given sequence step by step, the exhaustive
parsing scheme is minimal as it results in the least number
of phrases. Moreover, for a stationary ergodic source from
which a given sequence is assumed to arise, the appropriately
normalized LZ complexity approaches the entropy rate [1,32]
as the length of phrases and the sequence length N grows
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FIG. 11. Six examples of partitions of the Duffing attractor, with
two cells [partitions (a)–(c)] and three cells [partitions (d)–(f)].
Symbols {0, 1, 2} label partition cells. Cell boundaries for partitions
(a), (b) and (d), (e) were chosen so that each cell for a given partition
had an equal number of data points falling in it. Furthermore, by
construction, the boundaries of partition (c) are the union of those
of partitions (a) and (b). Similarly, cell boundaries of (f) consist of
boundaries of (d) and (e). Partitions (c) and (f) have noncontiguous
cells which are disjoint unions of smaller boxes.

without bound, i.e.,

lim sup
N→∞

cE

(
yN

1

)
N/ log2 N

� h (almost surely), (19)

where the entropy rate of the source h is expressed in bits.
We note that, while the entropy rate is a property of the
source itself, the LZ complexity characterizes individual se-
quences, i.e., particular realizations from a source. In fact,
assuming an underlying unknown “finite-state” probabilistic
source model, the individual sequences could be ranked, as
N → ∞, essentially according to their LZ complexity so that
the most probable sequence emitted by the source would have
the least complexity [32,33]. Furthermore, LZ complexity is
relatively easy to calculate, and has been shown to be useful
to characterize spatiotemporal patterns [34].

We now give some empirical evidence supporting our
heuristic argument regarding the usefulness of LZ complex-
ity for characterizing minimality of a partition. For this,
we have considered six partitions, as shown in Fig. 11. By
construction, four partitions, viz., (a), (b), (d), (e), consist of
equiprobable boxes, i.e., of cells having the same number
of data points falling in them. Partitions (a), (b), (c) have
two cells labeled 0 and 1 while partitions (d), (e), (f) have
three cells labeled 0, 1, and 2. Partitions (a), (b) and (d),
(e) have contiguous cells defined by one and two boundaries
respectively. In this case, by construction, we can specify
these boundaries using simple inequalities with thresholds,
say, x < xth or ẋ > ẋth. On the other hand, partitions (c)
and (f), which have noncontiguous cells, require that their
boundaries be specified by more than one condition of the
form, say, xleft < x < xright or ẋlow < ẋ < ẋhigh. Thus, from
a standpoint of specification, we can argue that partitions
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FIG. 12. Comparison of Lempel-Ziv (LZ) complexity cE of par-
titions of Fig. 11. A time series of four million points of the Duffing
oscillator was divided into 20 consecutive segments of length N =
2×105 each. For each partition, these segments were encoded and
their cE values are as shown in the bar plot. Statistical fluctuations
in cE estimates are about 1–2%. Evidently, partitions (c) and (f),
which have noncontiguous cells but use same number of symbols
as partitions (a), (b) and (d), (e) respectively, are more complex in
the LZ sense. Furthermore, three-cell partitions (d)–(f) are also more
complex than two-cell partitions (a)–(c).

(c) and (f) are more “complex” (i.e., less “minimal”) than
partitions (a), (b) and (d), (e), respectively. Moreover, with
additional cell boundaries we also yield new temporal patterns
(i.e., symbol sequences) due to the “renaming” of some of the
dynamical transitions. For instance, a dynamical transition,
“0 → 1” (i.e., from cell “0” to cell “1”) in partition (a), is
“split” into four transitions, viz., “1 → 0,” “1 → 1,” “0 → 0,”
and “0 → 1”’ in partition (c). As the LZ scheme parses the
symbol sequence into distinct phrases, it is expected to build
a larger vocabulary for sequences encoded using partition (c),
by incorporating these new names of dynamical transitions,
than it would with partitions (a) or (b).

Indeed, as shown in Fig. 12, the LZ complexity cE of par-
titions (c) and (f) is higher than those of partitions (a), (b) and
(d), (e) respectively. Also, as expected, two-cell partitions (a)–
(c) have lower complexity than three-cell partitions (d)–(f).
Clearly, in this discussion, based on their appearance in the
phase space, we are treating partitions (a) and (b) or (d) and
(e) as equally “complex” in a specification sense because
they have the same number and type of cells (contiguous,
equiprobable).

Now, it is clear by their very construction that the above
partitions do not pay particular attention to the actual dy-
namics on the attractor, so that they can be expected to yield
symbolic dynamics quite different from partitions with better
“generating behavior.” Likewise, because of this rather arbi-
trary relationship with the intrinsic dynamics of the system,
they can have widely varying values of cE , as is observed
for the two seemingly similar three-symbol partitions (d)
and (e). However, for our intended purpose, this will not be
an issue because we will select partitions with minimal LZ
complexity from a group of partitions which have already
been determined to localize points in the phase space equally
well, i.e., from a group of partitions with similar values of

Dl
max at a given l. That is, we propose to use cE in conjunction

with Dl
max to assess partitions in a way that is analogous to a

more conventional model selection approach: specifically, cE

can be interpreted as playing the role of “model size,” while
Dl

max plays the role of “model error” since, as we have seen,
it behaves similarly to the mean and maximum squared errors
in the symbolic shadowing algorithms (see Fig. 6).

A. Revisiting the Duffing oscillator

We now compare distinct partitions obtained from the
original and the optimized symbolic shadowing algorithms,
in which we consider their generating property, characterized
by the cylinder diameter Dl

max, in conjunction with their
complexity (here taken as the opposite of “minimality”) as
revealed by the Lempel-Ziv complexity cE . A time series of
four million points of the Duffing oscillator was divided into
20 consecutive segments of length N = 2×105 each. After en-
coding each of these segments using a given partition, values
of cE and Dl

max (at l = 12) were calculated. Furthermore, we
took the minimum of cE and maximum of Dl

max of these 20
values as our best estimates for each partition. The estimate
of the cylinder diameter Dl

max was then normalized using the
diameter of the Duffing attractor, D0 ≈ 2.6995, while the LZ
complexity cE was normalized using its asymptotic value for
binary random sequences [3], which is N/ log2 N ≈ 11 357
phrases. Note that using the maximum of the estimates of Dl

max
is appropriate here because, for fixed l, with increasing N the
cylinder sizes cannot decrease. On the other hand, since the
normalized LZ complexity approaches its asymptotic value
from above as N → ∞, taking the minimum of estimates of
cE makes more sense.

In Fig. 13, we show the results in the “generating-
complexity plane” (normalized Dl

max vs normalized cE), for
all three-cell partitions of the Duffing attractor that were
obtained after running symbolic shadowing algorithms with
both the RR and RS initialization methods. As can be seen,
the distinct partitions output by the computations primarily
fall into two groups: those that did not converge satisfactorily
after running the symbolic shadowing algorithms, and those
that did, with the latter indicated by the fact that they achieved
Dl

max/D0 < 0.1, indicating that they are good approximations
of generating partitions. To aid in interpretation, we have also
constructed piecewise linear, nonincreasing, greatest lower
envelopes for each of the four sets of solutions. Any partition
on the envelope is “more generating” (i.e., has the smallest
Dl

max) than other partitions which are “equally complex” (i.e.,
with same cE). Similarly, any partition on the envelope is
more “minimal” (i.e., has a lower LZ complexity cE) than
its rivals which are “equally generating” (i.e., having same
Dl

max). In this sense, from a given set of solutions, a partition
lying on the envelope is preferred over comparable rivals lying
above and/or to its right in the normalized cE -Dl

max plane.
The generating partition previously found in the literature,
shown in Fig. 1, indicated by the up arrow in Fig. 13, lies on
the envelopes for partitions obtained with optimized symbolic
shadowing, while the partition of Fig. 4 (indicated by the left
arrow) does not lie on any of the envelopes (although it is not
too far away) because of the relatively high LZ complexity
of its encoded sequences. Thus the use of these envelopes

032211-14



EMPIRICAL GENERATING PARTITIONS OF DRIVEN … PHYSICAL REVIEW E 98, 032211 (2018)

0.5 0.6 0.7 0.8 0.9 1.0
0.05

0.1

0.5

1

Normalized LZ Complexity cE

N/ log2 N (bits)

N
or

m
al

iz
ed

C
yl

in
de

r
D

ia
m

et
er

Dl m
ax D0

 

 

2-cell

SS; RR
SS; RS
OSS; RR
OSS; RS

FIG. 13. For Duffing oscillator with parameters as for Figs. 1
and 4: comparison of three-cell partitions obtained from symbolic
shadowing, presented in normalized Dl

max vs cE plane. All distinct
solutions from four data sets obtained after applying both origi-
nal (SS) and optimized symbolic shadowing (OSS). Initial symbol
sequences generated using both RR and RS methods. Heavy lines
indicate piecewise linear greatest lower envelope for each of the four
sets of solutions. Up arrow and left arrow point to most frequently
appearing partitions, as in Figs. 1 and 4, respectively.

in the normalized cE -Dl
max plane provides a systematic way

to consistently select good partitions (that are minimal and
generating) among a candidate set of generating partitions.

The symbolic shadowing algorithms do not in themselves
tell us the number of symbols, k, that should be used to
encode points in the phase space. It is thus desirable to have an
objective method that allows researchers to examine the effect
of alternative values of k. We therefore computed partitions
using initial symbol sequences over alphabets with sizes k =
2 and k = 4 for the Duffing oscillator with parameters as in
Fig. 13. We set lmax = 15 for k = 2 and lmax = 8 for k = 4:
all other algorithmic parameters were identical to those used
previously. After running the optimized symbolic shadowing
algorithm on an ensemble of 1008 distinct initial symbol
sequences generated using the RR method, we found only four
distinct two-cell partitions as opposed to 287 distinct four-cell
partitions. In Fig. 14, we have compared these partitions with
the three-cell partitions in the normalized cE -Dl

max plane.
As can be seen, the two-cell partitions fail to satisfactorily
localize points in the phase space since the maximum cylinder
diameter at l = 12 is comparable to the size of the Duffing
attractor itself. On the other hand, there are many four-cell
partitions which satisfactorily localize points in the phase
space, similar to their three-cell counterparts, but that have
marginally higher values of normalized LZ complexity. Al-
though we do expect the number of distinct partitions found
by symbolic shadowing applied on an ensemble of initial
symbol sequences to increase with k, the scarcity of two-
cell partitions and the abundance of four-cell partitions with
low values of Dl

max provides a convenient indication that
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FIG. 14. For Duffing oscillator with parameters as in Fig. 13:
comparison of partitions in the normalized cE -Dl

max plane, obtained
with optimized symbolic shadowing applied to initial symbol se-
quences prepared using the RR method. All distinct solutions from
three sets corresponding to alphabet sizes k ∈ {2, 3, 4} of the initial
sequences are shown. The up arrow points to the generating partition
of Fig. 1.

the minimum number of symbols needed to find generating
partitions for the Duffing attractor is 3.

B. Generating partitions for the van der Pol oscillator

We conclude our study by using symbolic shadowing algo-
rithms to look for generating partitions for the periodically
driven van der Pol oscillator studied by Shaw and others
[23,35], which is governed by the following set of ODEs:

ẋ = 0.7y + 10x(0.1 − y2), ẏ = −x + 0.25 sin(ωt ), (20)

where the forcing frequency ω is set to π/2. This system
also exhibits a half-period symmetry similar to the Duffing
oscillator since the above set of equations are invariant under
the change of coordinates: (x, y, t ) → (−x,−y, t + π/ω).
Thus, each iterate of the map, Fπ , in the continuous phase
space is obtained by numerically integrating Eq. (20) for half
the forcing period, i.e., over the interval [0, π/ω], followed
by inversion of coordinates. As before, the Poincaré map is
then given by F = Fπ ◦ Fπ . With these parameter values,
the system admits a strange attractor and the corresponding
dynamics is equivalent to a return map with three branches
over an annulus [23]. As a result, its generating partition is
expected to consist of three cells.

We employed the optimized symbolic shadowing algo-
rithm developed in this paper to find candidates for a mini-
mal generating partition, and compared our results to those
obtained with the original, nonoptimized algorithm. For this
purpose, we generated a time series of 2×105 iterations of the
Poincaré map in the phase space using the same numerical
method as for the Duffing oscillator, albeit with 1000 time
steps in each external forcing period, as was adequate to
keep absolute and relative one-step errors below 10−8. After
applying the symbolic shadowing algorithms to ensembles of
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TABLE I. Application of original (SS) and optimized (OSS)
symbolic shadowing algorithms to the van der Pol oscillator
[Eq. (20)]: parameters and solution sets.

Solution set no. 1 2 3 4 5 6

Alphabet size k 3 3 3 3 2 4
Algorithm SS SS OSS OSS OSS OSS
Initialization method RR RS RR RS RR RR
Initial string length linitial 2 2 2 2 2 2
Maximum string length lmax 15 15 15 15 15 12
Maximum iterations at each l,
MaxIter 500 500 500 500 500 500

Number of distinct solutions
(from 1008 initial sequences) 43 24 62 38 1 572

initial symbol sequences we obtained six solution sets of dis-
tinct candidate partitions. The number of distinct partitions in
each of the solution sets and the parameters of the algorithms
used to generate them are given in Table I.

In Fig. 15, we show the partition selection statistics from
the first four solution sets in Table I, plotted in the normalized
cE -Dl

max plane. For the van der Pol oscillator, the greatest
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FIG. 15. van der Pol Oscillator: comparison of partitions ob-
tained from symbolic shadowing algorithms in the normalized
cE-Dl

max plane. All distinct solutions from set 1 to 4 (see Table I)
are shown. All are three-cell partitions except for the encircled ones
which have two cells. A time series of two million points of the van
der Pol oscillator was divided into ten consecutive segments of length
N = 2×105 each. After encoding each of these segments using a
given partition, values of cE and Dl

max (at l = 20) were calculated.
The points shown correspond to minimum of cE and maximum of
Dl

max over these ten values for each partition. The cylinder diameter
Dl

max was normalized using the diameter of the van der Pol attractor,
D0 = 1.6026, while the LZ complexity cE was normalized using
its asymptotic value for binary random sequences, i.e., N/ log2 N ≈
11 357 phrases. Heavy lines constitute piecewise linear, nonincreas-
ing, greatest lower envelope for each of the four sets of solutions. Up
arrows, with increasing values of LZ complexity, point to partitions
(a) and (b) respectively of Fig. 17, while the down arrow points to
the partition (i) of Fig. 18.
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FIG. 16. van der Pol Oscillator: comparison of partitions in the
normalized cE-Dl

max plane (similar to Fig. 15) obtained after applying
the optimized symbolic shadowing algorithm. All distinct solutions
from sets 3, 5, and 6 (see Table I) are shown. See caption of Fig. 15
for details on the calculation of cE and Dl

max values.

lower envelopes of solution sets obtained from optimized
symbolic shadowing algorithm lie below their counterparts
obtained with the original algorithm, again indicating the
usefulness of the optimization in m proposed in this paper.
As done for the Duffing oscillator, we also found partitions
of the van der Pol attractor by initializing the algorithm using
sequences over two and four symbols (Table I, solution sets
5 and 6). We found only one two-cell partition as opposed
to 572 distinct four-cell partitions. This large jump in the
number of partitions indicates that k = 3 gives an appropriate
alphabet size for the system. In Fig. 16, we have compared
the two and four-cell partitions with the three-cell partitions
in the normalized cE -Dl

max plane. It is interesting to note that
the two-cell partition has cells {P0} and {P1 ∪ P2}, where
{P0, P1, P2} are those of the three-cell partition (a) of Fig. 17.
Unlike the Duffing attractor, the two-cell partition here is
able to localize points down to ≈ 7% of the size of van
der Pol attractor, in comparison with 4–5% for the three-cell
candidate generating partition shown in Fig. 17. This suggests
that the two-cell partition under consideration can almost
adequately capture the symbolic dynamics of the van der Pol
oscillator. Furthermore, we have found hundreds of four-cell
partitions, which are very good at localizing points in the
phase space at the expense of higher values of LZ complexity
when compared to their three-cell counterparts.

We pick out two partitions having three contiguous cells
lying on the envelopes of the solution sets of the optimized
algorithm as pointed out by up arrows in Figs. 15 and 16.
These partitions, shown in Fig. 17, are very good candi-
dates for the minimal generating partition of the van der
Pol attractor because of their low complexity (“minimality”)
and small shadowing errors (see Table II). We emphasize
that none of these partitions were found with the original
symbolic shadowing algorithm: the value of mopt for these
partitions is much smaller than l/2�, signifying the role of
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FIG. 17. Partitions of the van der Pol attractor obtained using
optimized symbolic shadowing algorithm consisting of three con-
tiguous cells labeled {0, 1, 2}.

the optimization subroutine. Given that we used a limited
amount of data, the differences in complexity and cylinder
diameters for these partitions are negligible, given that they
are comparable to sample fluctuations. Thus, in the absence
of any further information, it is difficult to select one of these
partitions as being the “most” generating.

TABLE II. Postconvergence summary of the three-cell candidate
generating partitions of the van der Pol attractor found using opti-
mized symbolic shadowing algorithm.

Partitions (Figs. 17 and 18) (a) (b) (i)

Mean squared error (10−5) 11.02 7.39 5.44
Maximum squared error (10−3) 10.15 5.52 9.40
mopt at l = 15 2 2 1
Number of occurrences 49 (RR) 26 (RR) 70 (RR)
(out of 1008 initial sequences) 128 (RS) 46 (RS) 174 (RS)

C. Robustness of generating partition estimates
for the van der Pol oscillator

We conclude this section by making few observations
about the robustness of our partition estimates, particularly
as it relates to the random partition initialization approach
used for this paper and the subtle way it can interact with the
precision of the numerical integration scheme. The end result
of this discussion is another candidate generating partition
for the van der Pol equation. The code used for this paper
was written in MATLAB, with C code generated and used to
create MATLAB-callable functions as required for speed and
accuracy. All of our Duffing oscillator results were found to
be highly robust: they were all run many times with different
random initial partition ensembles, and it was found that
for sufficiently small values of the integrator precision the
statistics obtained, and the “best” partitions chosen according
to our criteria, did not change. In addition, we found that
changing the particular integration scheme (i.e., using our own
solver vs a built-in MATLAB solver) had no significant effect.
However, the van der Pol oscillator exhibited a more subtle
behavior.

Consider partitions (i) and (ii) of Fig. 18, both found using
the optimized symbolic shadowing algorithm, and which at
first glance appear to be small perturbations of each other.
Partition (i) is not “minimal”: it has higher LZ complexity
than partition (ii), due to the former’s noncontiguous cells, as
well as than either of the partitions in Fig. 17. Partition (i)
was found using the same custom solver used for all of our
previously presented driven oscillator results, as discussed in
Sec. V B. In contrast, partition (ii) was obtained using time
series generated using MATLAB’s ode45 solver with absolute
and relative tolerances set at 10−8 and 10−6 respectively. How-
ever, in our early investigations of numerical robustness, we
found that the MATLAB solver could not recover this partition
when the absolute and relative tolerances were reduced to
10−9, in which case the solution was very close in appearance
to partition (i). Thus, there was some question as to whether
or not partition (ii) in Fig. 18 should be considered a valid
candidate. Indeed, it was this peculiar behavior, which we
emphasize was only observed with the van der Pol equation,
that motivated us to write our own solver. However, partition
(ii), due to its simple structure, is appealing and if plotted
in the normalized cE-Dl

max plane corresponds to a point with
normalized LZ complexity of 0.4116 bits and a normalized
maximum cylinder diameter equal to 4.68%. As a conse-
quence, it would fall on the envelope in Fig. 15, just to the right
of the first up arrow corresponding to partition (a) of Fig. 17.
Furthermore, we discovered that if we initialize the optimized
algorithm at a partition with contiguous cells close to partition
(ii), while starting at linitial = 8 instead of 2 as done for all
of our other computations, the algorithm would converge to
partition (ii) by l = 15. Indeed, this is the very solution that
is depicted in part (ii) of Fig. 18. This, then, suggests that
partition (ii) is not a numerical artifact but is at least a “local”
solution obtainable from the optimized algorithm (that is, for
initial partitions that are sufficiently close). It is therefore a
worthy generating partition candidate.

The above discussion suggests a potential limitation of
our random partition initialization schemes. Such an approach
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FIG. 18. Three-cell partitions of the van der Pol attractor found
using optimized symbolic shadowing algorithm. Unlike partitions of
Fig. 17, these solutions are sensitive to parameters of the numerical
integration algorithm used to prepare the data set and also to some
extent the initial string length linitial. Partitions (i) and (ii) are very
similar except in a small area around the boundary between cells {0}
and {1}. An enlarged view of this area for partition (i) is shown in its
inset.

helps to expand the search range of the algorithm, allows
us to identify a multiplicity of possible algorithm outputs,
and is useful for identifying an appropriate alphabet size k.
However, we cannot at this stage conclude that such random
initializations will exhaustively explore the partition space
or find all of the “best” approximate generating partitions.
Furthermore, the need to both start close to the partition of
Fig. 18 (ii) and with longer initial string length suggests ex-
tremely random initial partitions and low initial string lengths
can both inhibit convergence to minimal generating partitions
(i.e., that localize states and have simple, contiguous cells). It
would appear that in this case the small changes in numerical
precision related to the different numerical solvers acted in
a manner analogous to noise, in that the small differences
“nudged” the algorithm toward a valid local solution.

VI. CONCLUSIONS

We have presented a modification of the symbolic shadow-
ing algorithm [2] that can be used to find generating partitions
in phase space from time series data alone. Our modified algo-
rithm optimally approximates the cylinder sets corresponding
to symbol strings without significantly compromising the
simplicity of the algorithm. As with the original algorithm,
every cylinder set is approximated by a representative point at
its mass center in the phase space. However in our optimized
algorithm the number of backward symbols used to construct
symbol strings is adjusted to find the cylinder set with the
smallest image in the phase space. This subtle modification
results in partitions which are much better at localizing points
in the phase space with increasingly long symbol sequences
and hence are “more generating” than their counterparts found
using the original algorithm. This allows us to find generating
partitions for driven nonlinear oscillators, something not pos-
sible with the original algorithm. In fact, the previously found
3-cell generating partition of the two-well Duffing attractor
[12,19] has been obtained in this work from time series data
alone using our optimized symbolic shadowing algorithm.

A central issue in data-driven methods for approximating
generating partitions is the “objectivity” of the process with
respect to the initial guess input to any algorithm. The fact
that, in theory, many generating partitions exist for a given
chaotic attractor further complicates the problem of select-
ing the best choice from candidate partitions obtained via
symbolic shadowing. To address this issue, we used a large
ensemble of random symbol sequences as inputs to the sym-
bolic shadowing algorithms to empirically explore the space
of partitions. This resulted in many distinct partitions, some of
which are good approximations of generating partitions in that
they consistently yield smaller cylinders with increasing sym-
bol string length. In addition, it is desirable to have partitions
of minimal complexity, that is, that possess a simple arrange-
ment of contiguous cells, and this provides another criterion
that can assist in selecting among candidate partitions. To
address this issue in a manner that can be applied objectively
and consistently, we proposed the use of the Lempel-Ziv (LZ)
complexity [3]. The LZ complexity represents the “growth
of vocabulary” from left to right within symbol strings, and
we argue heuristically that it indirectly characterizes minimal
partitions by preferring partitions with contiguous cells, fewer
cell boundaries and a fewer number of cells over their rivals.
Using cylinder size in conjunction with Lempel-Ziv complex-
ity we have been able to select the previously known, three-
cell generating partition of the Duffing attractor from many
potential candidates. The minimal generating partitions so
selected yield small cylinders with increasing string lengths,
and also have small values of Lempel-Ziv complexity. We
argue that this represents a good solution to the “model error”
versus “model size” trade-off. By varying the alphabet sizes
of the input symbol sequences for the Duffing oscillator and
analyzing the distinct solution sets we are able to show that
two-cell (two-symbol) partitions are inadequate to capture the
symbolic dynamics, while the very large number of four-cell
partitions satisfactorily localize points in the phase space at
the expense of higher LZ complexity. This provides an indi-
cation that a three-symbol alphabet is needed to find a minimal
approximate generating partition for the Duffing oscillator.

032211-18



EMPIRICAL GENERATING PARTITIONS OF DRIVEN … PHYSICAL REVIEW E 98, 032211 (2018)

This observation is useful given that the symbolic shadowing
algorithm requires the user to input the alphabet size.

Last, we have applied the optimized symbolic shadowing
algorithm to the driven van der Pol oscillator to estimate its
generating partition. Following the methodology developed
for the Duffing oscillator, we identified two partitions (Fig. 17)

consisting of three cells as good approximations to generating
partitions of the van der Pol attractor [35]. Furthermore, we
were also able to obtain a three-cell partition with simple
structure which appears as a “local” solution of the optimized
algorithm and is a very good candidate for a generating
partition.
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