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We derive universal entanglement entropy and Schmidt eigenvalue behaviors for the eigenstates of two
quantum chaotic systems coupled with a weak interaction. The progression from a lack of entanglement in the
noninteracting limit to the entanglement expected of fully randomized states in the opposite limit is governed by
the single scaling transition parameter �. The behaviors apply equally well to few- and many-body systems, e.g.,
interacting particles in quantum dots, spin chains, coupled quantum maps, and Floquet systems, as long as their
subsystems are quantum chaotic and not localized in some manner. To calculate the generalized moments of the
Schmidt eigenvalues in the perturbative regime, a regularized theory is applied, whose leading-order behaviors
depend on

√
�. The marginal case of the 1/2 moment, which is related to the distance to the closest maximally

entangled state, is an exception having a
√

� ln � leading order and a logarithmic dependence on subsystem size.
A recursive embedding of the regularized perturbation theory gives a simple exponential behavior for the von
Neumann entropy and the Havrda-Charvát-Tsallis entropies for increasing interaction strength, demonstrating a
universal transition to nearly maximal entanglement. Moreover, the full probability densities of the Schmidt
eigenvalues, i.e., the entanglement spectrum, show a transition from power laws and Lévy distribution in
the weakly interacting regime to random matrix results for the strongly interacting regime. The predicted
behaviors are tested on a pair of weakly interacting kicked rotors, which follow the universal behaviors extremely
well.
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I. INTRODUCTION

The entanglement properties of eigenstates of weakly in-
teracting but strongly chaotic subsystems are of great interest
in many different situations. They have been linked, for ex-
ample, to emergent classical behavior [1,2], the time rate of
production of entanglement in initially separable states [3–8]
or thermalization [9–12]. For isolated many-body systems,
thermalization manifests itself by the redistribution of initial
quantum correlations encoded in subsystems to the whole
system in such a manner that it cannot be retrieved by any
experiment. This process, called scrambling of information, is
exponential or polynomial in time, depending on whether or
not the system is chaotic. Quantitatively, this is captured, for
example, by out-of-time-order correlators, which measure the
development of a noncommutativity of initially commuting
operators under small perturbations [13–17]. This has been
investigated theoretically and experimentally to understand
the information propagation and growth of various entangle-
ment measures for quantum integrable as well as quantum
chaotic many-body systems [18,19]. All these topics are rather
naturally cast into a quantum chaos framework with which a
number of other phenomena have long been associated, such
as spectral statistics [20,21], e.g., level repulsion and spectral
rigidity, universal conductance fluctuations [22,23], eigenstate

morphology being similar to random waves [24], chaos-
assisted tunneling [25,26], and quantum ergodicity [27–31].

A bedrock of quantum chaotic phenomena is universal-
ity, which for our purposes means that, with the exception
of a system’s fundamental symmetries [32], essentially no
information about the system is contained in appropriately
scaled local quantum fluctuation properties. For example,
after scaling out the mean level spacing, spectral fluctuation
properties of a sufficiently chaotic system do not depend on
the nature of the system in any way, e.g., they are universal,
and in particular are independent of whether it is a one-body
or a many-body system. The derivation of universal laws is
quite often done with the aid of random matrix ensembles.

There are some well known exceptions to universality.
Perhaps the most important example is localization in ex-
tended systems, whether it takes the form of Anderson lo-
calization [33] or many-body localization in Fock space
[34–36]. This leads to an additional motivation for under-
standing the universal behaviors as any deviation from uni-
versality indicates the presence of interesting physics, such as
some form of localization or other nonergodic phenomenon.

The concept of universality can be generalized further
to incorporate the possibility of weakly broken symmetries,
which provides a powerful analysis tool for a wide variety
of problems. In the case of breaking time-reversal invariance
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there is a universal transition from the statistics of invariant
systems to those with completely broken symmetry if it is
characterized as a function of the unitless transition parameter
� [37]. The applicability of � to any symmetry, fundamental
or dynamical, describing transitions in fluctuation properties
was emphasized in Refs. [38,39]. It is defined as the local
mean-square symmetry-violating matrix element divided by
the mean level spacing squared, and its relevance can be
deduced from perturbation theory. The transition parameter �

falls within the interval [0,∞] with the limits being preserved
symmetry and completely broken symmetry, respectively.
The relationship of � to the symmetry-breaking interaction
strength depends on the details of the system under consid-
eration, such as the strength of interaction and the density of
states, but once the transition in some fluctuation measure is
expressed as a function of �, it is system independent.

Eigenstate entanglement of weakly interacting bipartite
systems fits perfectly into the generalized universality class
of a dynamical symmetry-breaking nature. Consider two suffi-
ciently chaotic subsystems with a tunable interaction strength.
If the interaction strength vanishes for an autonomous Hamil-
tonian system there would be two constants of the motion, the
energies of each subsystem, and the dynamics of each sys-
tem would be completely independent. A nonzero interaction
strength breaks that dynamical symmetry. Clearly, without
interaction the eigenstates are product states of the eigenstates
of the subsystems and thus completely unentangled. In the
other extreme of a strong interaction strength, the eigenstates
behave like random states in the Hilbert space of the full
system, which fluctuate about (nearly) maximal entanglement.
The universal transition between the two extremes must be
governed by � and take on a unique universal functional form,
independent of any other system properties.

The production of eigenstate entanglement between
chaotic subsystems turns out to be extremely sensitive to
the interaction strength, as with all weakly broken symme-
tries. With increasing system size or complexity, less and
less interaction strength is necessary to produce eigenstates
that are nearly maximally entangled. They are becoming
statistically close to random states on the bipartite space.
It is known that the entanglement in random states can be
used in various protocols of quantum information, including
cryptography and superdense coding [40,41]. Thus, it may be
preferable to have local resources producing nonintegrability
and local random states than to have local interactions that
lead to near-integrable dynamics as the latter would require a
relatively larger nonlocal interaction to produce nearly similar
entanglement.

Some very useful entanglement measures are provided
by the von Neumann and Havrda-Charvát-Tsallis entropies
[42–45], denoted below by Sα . All these can be expressed
as functions of the moments of the Schmidt eigenvalues {λj }
of the reduced density matrix, obtained after partially tracing
one of the subsystems. These eigenvalues (or their negative
logarithms) have been referred to as the entanglement spec-
trum and it has been proposed that the few most significant of
these has information about topological order in quantum Hall
states [46]. Also fluctuation properties, such as their nearest-
neighbor spacing distribution, have been used to characterize
complexity of states [47]. In this paper we investigate the

moments and densities of the entanglement spectra across a
complete transition, from unentangled through perturbative
regimes to that of strong coupling. For purposes of clar-
ity, we continue referring to the {λi} simply as Schmidt
eigenvalues.

In Ref. [48] the universal behavior of the first- and higher-
order (αth-order) moments of the Schmidt eigenvalues has
been calculated and hence all of these entropies, as a function
of � using a recursively embedded and regularized pertur-
bation theory. The end result is valid for the entire range
of 0 � � � ∞, not just the perturbation regime. The com-
plete derivations are given in this paper, including additional
higher-order contributions.

In addition, we study the limits to which the formalism can
be extended and in particular deal with the α = 1/2 moment.
This moment is of particular interest as it is monotonic with
the distance of the bipartite pure state to the closest maximally
entangled one and it is at the boundary between moments
that depend on subsystem size and those that do not. In the
quantum information context, the singlet fraction [49] essen-
tially measures the same quantity. The statistical properties of
the Schmidt eigenvalues in the perturbative regime are also
extensively studied below and reveal the existence of power
laws and stable distributions.

Interestingly, the probability that the second largest
Schmidt eigenvalue is close to the maximum possible value
of 1/2 is nonvanishing, which implies a large number of cases
where there are two significant eigenvalues of the reduced
density matrix even in the perturbative coupling regime. Con-
sistent with this observation is that there is a universal function
of the second largest Schmidt eigenvalue in terms of �,
which is suggested naturally from perturbation theory and has
power-law tails falling as an inverse cubic. However, the same
function, but now of the difference of the largest Schmidt
eigenvalue from unity, displays the stable Lévy distribution,
having its origin in a generalized central limit theorem, being
a sum over many heavy-tailed random variables. The stable
Lévy distribution is also seen to occur in the distribution of
the linear entropy measure of entanglement.

Numerical results show how this heavy-tailed density and
the stable Lévy distributions are modified as the perturba-
tion increases. In the regime of large � the largest Schmidt
eigenvalue comes from a Tracy-Widom distribution. Similar
transitions are observed in the density of eigenvalues of the
reduced density matrix as it approaches the Marčenko-Pastur
distribution for large coupling strengths.

II. ENTANGLEMENT IN BIPARTITE SYSTEMS

A. Bipartite systems

Consider a bipartite system defined on an NANB-
dimensional tensor product space HA ⊗ HB , where each sub-
system is defined on NA- and NB-dimensional Hilbert spaces
HA and HB , respectively. Assume that the space is symmetry
reduced; thus there are no systematic degeneracies and NA �
NB . A generic situation is described by a Hamiltonian of the
form

H (ε) = HA ⊗ 1B + 1A ⊗ HB + εVAB, (1)
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where 1A and 1B are identity operators on HA and HB , re-
spectively. Alternatively, one may consider unitary operators
of the form

U (ε) = (UA ⊗ UB )UAB (ε), (2)

where UAB (ε) → 1 as ε → 0. It is assumed that for ε �= 0
both VAB and UAB (ε) break the dynamical symmetry (see
[50,51] for a discussion of operator entanglement) and hence
provide a genuine interaction between the two subsystems. If
ε = 0, the eigenstates of H (0) [or U (0)] are product states,
which are unentangled by definition. When increasing ε > 0
the subsystems become coupled and the eigenstates become
entangled. This transition is governed by a universal transition
parameter �. The first goal is to derive the � dependence of
bipartite entanglement measures for the eigenstates of H (ε)
or U (ε) and obtain the relationship between � and ε within
random matrix theory.

B. Moments and entropies

To make this paper self-contained and to fix notation,
some standard definitions of the central quantities used in the
following are given (see, e.g., [52,53] for further background
and details). Let |�〉 be any bipartite pure state of the tensor
product space HA ⊗ HB . It can be represented as

|�〉 =
NA∑
i=1

NB∑
j=1

cij |ij 〉, (3)

where {|i〉} and {|j 〉} are mutually orthonormal in their respec-
tive subspaces HA and HB .

The reduced density matrices

ρA = trB (|�〉〈�|), ρB = trA(|�〉〈�|) (4)

obtained after partially tracing the other subsystem are the
states accessible to either A or B, respectively. They can
be written in terms of the matrix C whose elements are
the coefficients cij of the state as ρA = CC† and ρB =
(C†C)T (where AT is the transpose of A). These are evidently
positive-semidefinite matrices whose eigenvalue equations are
ρA|φA

j 〉 = λj |φA
j 〉 and ρB |φB

j 〉 = λj |φB
j 〉, with nonvanishing

eigenvalues indexed by 1 � j � NA. The (Schmidt) eigenval-
ues {λj } of ρA and ρB are identical, except the larger subsys-
tem B is additionally padded with NB − NA zero eigenvalues.
Additionally, assume that the {λj } are ordered such that
λ1 � · · · � λNA

.
The Schmidt decomposition

|�〉 =
NA∑
j=1

√
λj

∣∣φA
j

〉∣∣φB
j

〉
(5)

is the most compact form of writing the bipartite state |�〉
in a product basis from orthonormal sets {|φA

j 〉} and {|φB
j 〉}

and uses the eigenvalues λj and corresponding eigenvectors.
By normalization of the state |�〉, one has

∑NA

j=1 λj = 1.
The Schmidt decomposition follows from the singular-value
decomposition of a matrix whose entries are the coefficients
of the state |�〉 in any product basis. The state is unentangled
if and only if λ1 = 1 (and hence all other eigenvalues are
0) and the Schmidt decomposition gives the states of the

individual subsystems. Otherwise λ2 > 0 and the Schmidt
decomposition consists of at least two terms. For maximally
entangled states, λj = 1/NA for all j .

Additionally, the closest product state to |�〉 (in any metric
equivalent to the Euclidean) is |φA

1 〉|φB
1 〉. Hence the largest

eigenvalue of the reduced density matrices λ1 is the maximum
possible overlap of the bipartite state with a product state. This
provides a geometric meaning to the Schmidt decomposition.
A complementary question is the one of identifying the closest
maximally entangled state and the distance to it. Indeed,
the Schmidt decomposition is also the crucial ingredient in
answering this. This has not been discussed in introductions
to entanglement and hence will be addressed in more detail in
Sec. II C.

The entanglement entropy in the state |�〉 is the von
Neumann entropy of the reduced density matrices

S1 = −tr(ρA ln ρA) = −tr(ρB ln ρB )

= −
NA∑
i=1

λi ln λi. (6)

Thus, if S1 = 0, then the state is unentangled, whereas a
maximally entangled state has S1 = ln NA. More generally, to
characterize entanglement one considers the moments

μα =
NA∑
i=1

λα
i , α > 0. (7)

Normalization of the state |�〉 implies normalization of the re-
duced density matrices μ1 = tr(ρA) = tr(ρB ) = ∑NA

i=1 λi = 1.
The second moment μ2 is the purity of the reduced density
matrix ρA or ρB . We are also especially interested in the
moment μ1/2 due to its connection with the distance to
the closest maximally entangled state, as discussed ahead in
Sec. II C.

As the set of Schmidt eigenvalues {λi, 1 � i � NA} de-
fines a classical probability measure, entropies can be defined
based on the many measures studied in this context. The
so-called Havrda-Charvát-Tsallis (HCT) entropies [43–45]
are

Sα = 1 − μα

α − 1
, (8)

whereas the Rényi entropies [54] are defined by

Rα = ln μα

1 − α
.

The Rényi entropies are evidently additive, that is, the entropy
of independent processes is the sum of entropies of the indi-
vidual processes, whereas the HCT entropies are not. We use
the HCT entropies as the ensemble averages are more easily
done with μα rather than with ln μα . Both types of entropies
go to the von Neumann entropy S1 in the limit of α → 1.
Moreover, the purity μ2 is directly related the so-called linear
entropy S2 = 1 − μ2 and is often used as a simpler measure
of entanglement than the von Neumann entropy. The state |�〉
is unentangled if and only if the reduced density matrices are
pure, in which case all μα = 1, or equivalently Sα = 0, for
α > 0.
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Let |�〉 be a random state, i.e., it is chosen at random
uniformly with respect to the Haar measure from the Hilbert
space HA ⊗ HB , which induces a probability density on the
eigenvalues {λi}. For our purposes it suffices to state that the
asymptotic (large NA and NB with fixed ratio Q = NB/NA �
1) limit of the density of the scaled eigenvalues λ̃i = λiNA is
given by the Marčenko-Pastur distribution [55] as shown in
[56],

ρ
Q
MP(x) = Q

2π

√
(x+ − x)(x − x−)

x
for x− � x � x+ (9)

and 0 otherwise. The distribution is in the finite support
[x−, x+] where

x± = 1 + 1

Q
± 2√

Q
. (10)

For quantum chaotic eigenfunctions the eigenvalues of the
reduced density matrix have been verified to follow ρ

Q
MP(x)

[57]. A detailed analysis, including exact results for finite
NA, is given in [58,59]. Using Eq. (9), the Haar averaged
entanglement entropy is

S1 = −
NA∑
i=1

λ̃i

NA

ln
λ̃i

NA

= ln NA − 1

NA

NA∑
i=1

λ̃i ln λ̃i

= ln NA −
∫ x+

x−
x ln x ρ

Q
MP(x)dx

= ln NA − 1

2Q
. (11)

Whereas this is the large-NA result, exact finite NA results
are remarkably enough known [60,61]. Equation (11) seems
to indicate that typical random states are almost as entangled
as the maximum possible S1 = ln NA. Similarly, using Eq. (9)
one gets

S2 = 1 −
NA∑
i=1

λ̃2
i

N2
A

= 1 − 1

NA

∫ 4

0
x2ρ

Q
MP(x)dx

= 1 − Q + 1

NAQ
(12)

and the exact finite-NA result is [62]

S2 = 1 − NA + NB

1 + NANB

. (13)

For the most part, our numerical results are for the symmetric
case NA = NB , corresponding to Q = 1.

C. Distance to the closest maximally entangled state

Any state of HA ⊗ HB having the form

1√
NA

NA∑
i=1

NB∑
j=1

uij |ij 〉, (14)

where U = {uij } is a (generally) rectangular array such that

UU † = 1NA
, (15)

is maximally entangled. This follows as the reduced density
matrix ρA is then the most mixed state 1NA

/NA, correspond-
ing to λi = 1/

√
NA. Therefore, finding the closest maximally

entangled state to a state |�〉 as given in Eq. (3) requires
finding the closest such array to the matrix C ′ = √

NAC,
where C is the array of coefficients cij as in Eq. (3). In the
symmetric case this reduces to finding the closest unitary
matrix to a given one, a problem dealt with in Ref. [63].
We provide an alternate proof and generalize to the case of
a rectangular array.

Let C ′ be an arbitrary NA × NB matrix. The task is to
find another matrix U of the same shape satisfying Eq. (15)
and which minimizes ‖C ′ − U‖2. This minimization is equiv-
alent to maximization of Re tr(C ′U †) over U as the first
and third terms in the expansion ‖C ′ − U‖2 = tr(C ′C ′†) −
2 Re tr(C ′U †) + NA are constant. Let the singular-value de-
composition of C ′ be V1

√
SV T

2 , where V1 and V2 are NA-
and NB-dimensional unitary matrices, respectively, and

√
S

is an (NA × NB)-dimensional diagonal matrix with entries√
si � 0 only when the row and column indices are the same

(= i) and are zero elsewhere.
The following holds:

Re tr(C ′U †) = Re tr
(
V1

√
SV T

2 U †)
= Re tr

(√
SV T

2 U †V1
)
. (16)

Note that Ũ = V T
2 U †V1 is an NB × NA array such that

Ũ †Ũ = 1A, and Re tr(
√

SŨ ) = ∑NA

i=1
√

si Re Ũii . Now as√
si � 0, Re tr(

√
SŨ ) is the maximum for any Ũ having

Re Ũii = 1 for all i � NA, where it is defined. As Ũ elements
are such that

∑NB

i=1 |Ũij |2 = 1 for all j � NA, hence the only
array with Re Ũii = 1 for all i is the rectangular identity ma-
trix, that is, Ũij = δij for 1 � i � NA. Therefore, the closest
required array U , such that UU † = 1NA

, to the matrix C ′ is
U∗ = V1Ũ

†V T
2 , which is essentially the product of the two

unitary matrices in the singular-value decomposition of A.
Thus the closest maximally entangled state to |�〉 is

|�∗〉 = 1√
NA

NA∑
i=1

NB∑
i=1

∑
k

(V1)ik
(
V T

2

)
kj

|ij 〉

= 1√
NA

NB∑
k=1

NA∑
i=1

(V1)ik|i〉
NB∑
j=1

(V2)jk|j 〉

= 1√
NA

NA∑
k=1

∣∣φA
k

〉∣∣φB
k

〉
. (17)

Here |φA
j 〉 and |φB

j 〉 are the eigenvectors of ρA and ρB ,
respectively, i.e., Schmidt eigenvectors, with the pair having
common index j being chosen to have the same eigenvalue
λj .

The norm chosen to measure the distance d∗ is not impor-
tant, as long as it is a unitarily invariant one. A good choice is
given by

d2
∗ = ‖|�〉 − |�∗〉‖2 = 2

⎛
⎝1 − 1√

NA

NA∑
j=1

√
λj

⎞
⎠, (18)

where ‖|φ〉‖ = √〈φ|φ〉 is the Euclidean norm. For an unen-
tangled (product) state λj = δ1j , and the distance d∗ is the
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largest possible,

dproduct
∗ =

√
2(1 − 1/

√
NA), (19)

which for NA → ∞ converges to
√

2. For a random state
in the NA × NB space the mean-square distance d2∗ can be
calculated in the limit of large dimensionalities as

d2∗ RMT(Q) = 2

(
1 −

∫ x+

x−

√
xρ

Q
MP(x)dx

)

= 2 − 4

3π

(
1 + 1√

Q

)
[(Q + 1)E(κ )

− (
√

Q − 1)2K (κ )], (20)

where κ = 2/(Q1/4 + Q−1/4) and E(κ ) and K (κ ) are com-
plete elliptic integrals of the second and the first kind, respec-
tively [64].

For the symmetric case Q = 1, the above simplifies to

d2∗ RMT = 2

(
1 − 8

3π

)
≈ 0.302, (21)

where we drop the explicit specification of Q. Thus, for a typ-

ical random state in a symmetric setting
√

d2∗ RMT/d
product
∗ ≈√

1 − 8/3π ≈ 0.388. This indicates that, whereas for typical
random states the entanglement entropy Eq. (11) is nearly
maximal, the states themselves are quite far from being maxi-
mally entangled. Detailed results about the typicality of these
distances and their relationship to the negativity measure of
entanglement can be found in [65]. Perturbation theory and
numerical results for this quantity are presented in Sect. IV C
(see Fig. 6).

In the asymmetric cases, d2∗ RMT(Q) decreases monotoni-
cally as Q increases from 1 to ∞ and vanishes for large Q as

d2∗ RMT(Q) ∼ 1

4Q
. (22)

Thus, as the environment (the larger subsystem) grows rel-
atively in size, typical states not only are highly entangled,
but are also metrically close to maximally entangled states.
Thus, if the dynamics drives states close to these typical
states, one may say that they would thermalize and reach
the infinite-temperature ensemble of Floquet nonintegrable
systems [66,67].

III. UNIVERSAL ENTANGLEMENT TRANSITION

The derivation of the transition in the eigenstate entan-
glement from unentangled to that typical of random states
begins with the introduction of a random matrix model and
application of standard Rayleigh-Schrödinger perturbation
theory. From these expressions, the transition parameter can
be identified. Then, as soon as one attempts to apply ensemble
averaging to the resultant expressions, it becomes necessary
to regularize appropriately the perturbation theory to account
properly for small energy denominators. Finally, it turns out
to be possible in this case to go beyond the perturbative
regime for the entanglement entropies by a recursive em-
bedding of the regularized perturbation theory that leads to

a simple differential equation which is straightforward to
solve.

A. Random matrix transition ensemble

Random matrix models for breaking fundamental or dy-
namical symmetries have been introduced for a variety of
cases since the work of [37] for breaking time-reversal in-
variance. Examples include ensembles to describe parity vi-
olation [68], parametric statistical correlations [69], model-
ing transport barriers [25,26,70], and the fidelity [71]. The
structure imposed by the particular symmetry is incorporated
into the unperturbed ensemble (zeroth-order piece) and a
tunable-strength ensemble is added that violates that structure.
Each symmetry is different, and for the case of noninteract-
ing, strongly chaotic subsystems, the direct product structure
must be imposed on the zeroth-order part of the ensem-
ble, which is violated by an interaction part not respecting
that structure. To model the statistical behavior of bipartite
systems, such as those given by Eq. (1) or (2), a random
matrix transition ensemble has been introduced recently in
Ref. [72],

URMT(ε) = (
UCUE

A ⊗ UCUE
B

)
UAB (ε), (23)

where the tensor product is taken of two independently chosen
members of the circular unitary ensemble (CUE) of dimen-
sions NA and NB , respectively, and UAB (ε) is a diagonal
unitary matrix in the resulting NANB-dimensional space rep-
resenting the coupling. Its diagonal elements are taken as
exp(2πiεξj ), where ξj are independent random variables that
are uniform on the interval (−1/2, 1/2]. Preparing for the
perturbation theory introduced ahead, it is helpful to define
a Hermitian matrix VAB such that

UAB (ε) = exp(iεVAB ) where (VAB )jk = 2πξj δjk. (24)

The strength of the coupling ε is a real number and 1 � j, k �
NANB label the basis states of the subsystem. A limiting case
of this ensemble has been studied previously [73], wherein
the entangling power of URMT(ε = 1) was found analytically.
If ε = 0 there is no coupling between the spaces and there
is no eigenstate entanglement, and the consecutive neighbor
spacing statistics is Poissonian [72,74]. As ε is increased,
it leads to a rapid transition in the spacing statistics to the
Gaussian or circular unitary ensemble, and the entanglement
also reaches values that are valid for random states in the
entire NANB-dimensional Hilbert space [48,72].

B. Applying Rayleigh-Schrödinger perturbation theory

Perturbation theory for random matrix ensembles has
previously been applied to describe symmetry break-
ing [26,38,68,75] and continues to be of interest due to various
applications ranging from quantum mechanics to quantitative
finance [76–78]. Mostly this has been done in a Hamiltonian
framework, whereas the ensemble of Eq. (23) is unitary for
which the spectrum lies on the unit circle in the complex
plane. The first- and second-order corrections are given in
Appendix A for the eigenvalues and eigenvectors of U (ε) of
Eq. (2). In the limit of NA → ∞, the local part of the spectrum
of relevance to perturbation theory occupies a differentially
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A

B

AB

0 π 2π

FIG. 1. Example spectrum of the direct product of two un-
coupled subsystems [Eq. (25)] for NA = NB = 6. The spectra are
ordered vertically for subspaces A and B and the combined spectrum,
respectively. This schematically illustrates two key features, the
emergence of Poissonian spacing fluctuations and the great increase
in eigenangle density for the combined spectrum.

small fraction of the unit circle and it is straightforward
to expand the perturbation theory for the unitary ensemble
in order to make it look just like the standard perturbation
expressions for Hamiltonian systems with the use of Eq. (24);
locally the correlations built into the unitary matrix elements
can be ignored. Thus, corrections of O(N−1

A ) are to be
ignored from the outset in the derivation presented in this
section.

For each single member of the ensemble URMT(ε), the
basis chosen with which to apply perturbation theory is given
by the eigenstates of a single realization of UCUE

A ⊗ UCUE
B .

Denote the set by |jA〉|kB〉, where |jA〉 and |jB〉 are eigen-
states of individual members UA and UB , respectively. In the
following the labels A and B are dropped from this basis as
the ordering implies the particular subsystem, i.e., |jA〉|kB〉 ≡
|jk〉. The labels AB are also dropped from UAB (ε) and VAB

as well for convenience. The eigenstates of the ensemble
of URMT(ε = 0) are unentangled and uniformly random with
respect to the direct product Haar measures of the subspaces.

The associated eigenangles are given by

θjk = θj + θk mod(2π ) (25)

(see Fig. 1). Note that the mean spacing of eigenangles for θj

(θk) is 2π/NA (2π/NB ) and for θjk is 2π/NANB , showing
that the combined spectrum is denser by a factor of either
NA or NB than the individual subspace spectra. Choose a
particular eigenstate of an ensemble member (ε �= 0), denoted
by |�jk〉, as the one which is continuously connected to |jk〉
as ε vanishes. Its Schmidt decomposition can be written as

|�jk〉 =
NA∑
j=1

√
λj

∣∣φA
j

〉∣∣φB
j

〉
, (26)

where λ1 � λ2 � · · · � λNA
are the (Schmidt) eigenvalues of

the reduced density matrix ρA and the states {|φA
j 〉, |φB

j 〉} are
the orthonormal eigenvectors of ρA and ρB , respectively. The
perturbation expression to first order of the eigenstate is [U (ε)
is the member of the ensemble URMT(ε) under consideration

with corresponding V ]

|�jk〉 ≈ |jk〉 + ε
∑

j ′k′ �=jk

〈j ′k′|V |jk〉
θjk − θj ′k′

|j ′k′〉. (27)

Here and throughout j ′k′ �= jk means to exclude the single
term in which both j ′ = j and k′ = k. Note that the eigen-
basis |jk〉 of one member of UCUE

A ⊗ UCUE
B is not the one

in which the operator V is diagonal and a transformation
to the appropriate eigenbasis must be performed in order to
evaluate the matrix elements above. Due to the statistical
properties of the ensemble, the transformation between bases
is statistically equivalent to choosing a direct product random
unitary transformation independently uniform with respect to
the Haar measure in each subspace. Thus, there is a central
limit theorem for the behavior of the matrix elements. Further-
more, there is a complete absence of correlations between the
unperturbed spectra and the unperturbed eigenstates. Like the
classical random matrix ensembles, there is an ergodicity [79]
for this ensemble as well in that spectral averages taken
over an individual member of the ensemble in the large-
dimensional limit have fluctuation properties that are nearly
equal to those expected of the ensemble.

An interesting circumstance appears when calculating the
density matrix from the perturbation expression: Only one row
and column have matrix elements of O(ε),

ρA = |j 〉〈j | + ε
∑
j ′ �=j

〈j ′k|V |jk〉
θj − θj ′

|j ′〉〈j | + H.c.

+ ε2
∑

j ′k′,j ′′k′ �=jk

〈jk|V |j ′′k′〉〈j ′k′|V |jk〉
(θjk − θj ′k′ )(θjk − θj ′′k′ )

|j ′〉〈j ′′|. (28)

However, given the comments above about the statistical
nature of the ensemble members, matrix elements vary as
zero centered Gaussian random variables without correlation
to the energy denominators. In fact, the dominant terms are
nearly always those with the smallest energy denominators.
The important point is that the eigenangle denominators of the
O(ε) terms involve only the spectrum of subsystem A, whose
differences are generally a factor NB greater (NB � NA →
∞) than energy denominators involving the full spectrum
(recall Fig. 1). So these terms represent an O(N−1

B ) correction
and can be dropped.

Thus, it is necessary to self-consistently track down all
the O(ε2) perturbations contributing to the reduced density
matrix. It turns out that all the second-order terms not shown
in Eq. (27) contributing to the summation over the |jk〉 states
contribute at O(ε3) or greater and can be dropped. The only
second-order correction that must be accounted for in Eq. (27)
is the second-order normalization of the |jk〉 term. Thus, the
normalized state with all the terms needed to this order is [80]

|�jk〉 =
⎛
⎝1 − ε2

2

∑
j ′k′ �=jk

|〈jk|V |j ′k′〉|2

(θjk − θj ′k′ )2

⎞
⎠|jk〉

+ ε
∑

j ′k′ �=jk

〈j ′k′|V |jk〉
θjk − θj ′k′

|j ′k′〉. (29)
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The expression for the density matrix is finally

ρA =
⎛
⎝1 − ε2

∑
j ′k′ �=jk

|〈jk|V |j ′k′〉|2

(θjk − θj ′k′ )2

⎞
⎠|j 〉〈j |

+ ε2
∑

j ′k′,j ′′k′ �=jk

〈jk|V |j ′′k′〉〈j ′k′|V |jk〉
(θjk − θj ′k′ )(θjk − θj ′′k′ )

|j ′〉〈j ′′|. (30)

C. Schmidt decomposition

Given the eigenstate expressions for the ensemble, the
next step towards evaluating the entanglement entropies is
to deduce the Schmidt eigenvalues. A priori, the perturbed
state in Eq. (29) is not in the Schmidt decomposed form of
Eq. (26) or, alternatively, the density matrix expression (30)
has not yet been diagonalized. Therefore, it is not yet clear
what the reduced density matrix eigenvalues are from the
expressions. However, the ensemble of Eq. (23) has some
very nice statistical properties, as mentioned in the preceding
section, that greatly simplify the process.

The key argument is that, given the random featureless
interaction (all matrix elements fluctuate about the same scale,
independently of the pair of states involved), the dominant
terms in perturbation theory come from the nearest neighbors
in the spectrum. This has the consequence of inhibiting any
changes to the Schmidt eigenvectors. Consider the differ-
ence of θj+1 − θj , which would result if the value of k is
unchanged. It is likely to be much farther away than the
nearest neighbors. Much more likely is that an appropriate
change in k can help cancel a large part of this difference. For
example, |j + 1, k〉 and |j, k + 1〉 have a far greater chance
of being nearby as θj+1 + θk − θj − θk+1 has a far greater
chance of generating a small difference. In fact, for NA →
∞ in a local neighborhood of the spectrum, for any given
value of j , there is only one value of k that has a chance
of being close. Similarly, for a given value of k, only one
value of j has a chance of being close. Thus, the only terms
that are appreciable in Eq. (29) lead to mutually orthonormal
sets of {j, k} locally in the spectrum. The same argument
implies that Eq. (30) is diagonal as well. Since j and j ′ are
matched to the same values of k and a unique value of j

gives a near neighbor, one of the diagonal terms will nearly
always dominate the j �= j ′ terms. Thus, as a consequence,
under these conditions, we have with high probability that the
perturbed state in Eq. (29) remains in the Schmidt form to
an excellent approximation that gets better with increasing
dimensionality. It turns out that corrections to this picture
produce higher-order corrections after ensemble averaging.
Thus, the eigenvalues of the reduced density matrix can be
taken directly from the diagonal elements of Eq. (30).

D. Eigenvalues of the reduced density matrix
and ensemble averaging

Following from Eq. (30), the expression for the largest
eigenvalue λ1 of the reduced density matrix ρA is approxi-

mately

λ1 ≈ 1 − ε2
∑

j ′k′ �=jk

|〈jk|V |j ′k′〉|2

(θjk − θj ′k′ )2
(31)

and the second largest is nearly always

λ2 ≈ ε2 |〈jk|V |j1k1〉|2(
θjk − θj1k1

)2 , (32)

where θj1k1 is the closest eigenangle to θjk . The dependence of
these eigenvalues on the central state indices jk is suppressed.
To this level of approximation, the largest eigenvalue is simply
the squared overlap of the state with its perturbation. Such
a situation has been analyzed in the context of parametric
eigenstate correlators and the fidelity with a broad variety of
physical applications [71,81–84].

The unperturbed Schmidt vector corresponding to the
largest eigenvalue |j 〉 is unchanged in this approximation.
This is a statistical approximation that simply reads off the
eigenvalues of the reduced density matrix assuming that the
significant terms in the perturbation expansion (29) are de-
termined by eigenangle denominators and rely on the |j ′〉
vectors all being locally orthonormal and likewise the |k′〉
vectors. A more detailed analysis is possible [85] that entails
constructing the reduced density matrix and making a further
perturbation approximation to diagonalize it. This leads to
some changes in the formal structure of these expressions. For
example, the sum in the largest eigenvalue λ1 [Eq. (31)] is
changed to a more restricted sum such that j ′ �= j and k′ �= k.
However, these changes only lead to higher-order corrections
after ensemble averaging and do not affect any of the results
presented here.

In order to prepare these expressions for ensemble aver-
aging ahead, it is quite useful to extract certain scales and
introduce spectral two-point functions, which can be used
to express the summations in integral form [38]. First, the
statistical properties of the transition matrix elements and the
energy differences each involve a single scale. The admixing
matrix elements ε2|〈jk|V |j ′k′〉|2 in the unperturbed basis
behave as the absolute square of a complex Gaussian random
variable. Denoting the mean by v2, the term ε2|〈jk|V |j ′k′〉|2

is replaced by v2wj ′k′ , where the set of {wj ′k′ } behaves
according to the statistical probability density

ρ(w) = e−w, w � 0, (33)

with unit mean across the ensemble. This is a property of
the ensemble (23). Note that for a bipartite chaotic dynamical
system with the structure of Eq. (2), for which the perturbation
is not random, the distribution of w shows deviations from the
exponential as illustrated in Appendix C. Still the predictions
of the random matrix ensemble apply very well to the coupled
kicked rotors, as shown below.

Second, the energy denominator has the single scale of
a mean spacing D = 2π/(NANB ) built in. Let θjk − θj ′k′ =
Dsj ′k′ ; upon substitution,

λ1 ≈ 1 − ε2v2

D2

∑
j ′k′ �=jk

wj ′k′

s2
j ′k′

= 1 − �
∑

j ′k′ �=jk

wj ′k′

s2
j ′k′

, (34)
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where the second form uses the definition of the transition
parameter [37,38]

� = ε2v2

D2
. (35)

This illustrates its natural appearance in the perturbation
expressions.

Let us define the function

R(s, w) =
∑

j ′k′ �=jk

δ(w − wj ′k′ )δ(s − sj ′k′ ), (36)

where R(s, w) is the probability density of finding a level at
a rescaled distance s from θjk and the corresponding matrix
element variable w takes the value wj ′k′ . In general, there
could be correlations between matrix elements and spacings;
however, for the current scenario they are completely inde-
pendent across the ensemble. Equation (31) can be expressed
in an exact integral form using R(s, w) as

λ1 ≈ 1 − �

∫ ∞

−∞
ds

∫ ∞

0
dw

w

s2
R(s, w). (37)

This expression clarifies a number of issues. First, � controls
the entanglement behavior as asserted in the Introduction
and the perturbative regime is for � � 1 (see Sec. III E).
Another great simplicity is that ensemble averaging of λ1

is reduced entirely to replacing R(s, w) with its ensemble
average R(s, w). For the ensemble of Eq. (23), all correlations
between matrix elements and spacing vanish. In fact,

R(s, w) = ρ(w)R2(s) = exp(−w), (38)

where the last form follows for the ensemble because R2(s) =
1 (−∞ � s � ∞) for a Poissonian sequence of unit mean and
in general defined as

R2(s) =
∑

j ′k′ �=jk

δ(s − sj ′k′ ). (39)

The eigenangles are pairwise sums of those with CUE fluctua-
tions. These lose correlations and are Poisson distributed. For
a recent rigorous mathematical proof in the context of product
unitary operators see [74]. Another issue is that of calculating
moments of the Schmidt eigenvalues, which is treated in
Sec. IV. We only mention here that the moments involve
more complicated expressions than are given in Eq. (38).
Finally, the spacing integral in Eq. (37) using Eq. (38) for
ensemble averaging leads to a divergence which requires a
regularization as there are too many small spacings. The
regularization is given in Sec. III F.

A curious feature arises for the ensemble averaging of the
expression for λ2. The expression for the nearest-neighbor
spacing density of a Poissonian sequence arises from the
consideration of consecutive spacings between eigenvalues.
However, |j1k1〉 is selected to be the closest nearest neighbor.
In effect, θjk has a nearest neighbor to the left and one to the
right in the spectrum and |j1k1〉 is determined by the smaller
spacing of the two. The standard result ρNN(s) = exp(−s) is
not the appropriate density. Rather, the closer neighbordensity
ρCN(s) is given by

ρCN(s) = 2 exp(−2s) (0 � s � ∞) (40)

for a Poissonian spectrum of unit mean spacing [48,86].
Collecting results gives

λ1 ≈ 1 − �

∫ ∞

−∞
ds

∫ ∞

0
dw

w

s2
e−w, (41a)

λ2 ≈ 2�

∫ ∞

0

w

s2
e−w−2sdw ds. (41b)

As mentioned earlier for λ1, Eqs. (41) diverge as s → 0.
The divergence indicates that the correct order of λ1 or λ2 is
not in fact 1 − O(�) or O(�), respectively. Instead, they turn
out to be of the form λ1 = 1 − O(

√
�) and λ2 = O(

√
�),

and indeed the average of the general moments in Eq. (7)
for α > 1/2 differ from 1 by terms of O(

√
�), as shown in

Sec. IV. Thus the eigenvalues and moments are much more
volatile than suggested by naive perturbation theory. This will
be further related in Sec. V to the emergence of power laws in
the probability density of reduced density matrix eigenvalues
in this regime.

E. Transition parameter �

Once the universal transition curve is derived for the ran-
dom matrix ensemble (23), it is of interest to explore how
well the universal results apply to chaotic dynamical systems.
For that reason, instead of deriving the expression for �

exclusively for the ensemble of Eq. (23), a slightly more
general expression is derived. The subsystem unitary oper-
ators are taken from the CUE (imitated well by the chaotic
dynamical subsystems), but the interaction is left unspecified,
allowing for greater flexibility and generality of applicability.
It turns out that the transition parameter expression under such
circumstances is given by (see Appendix B for a detailed
derivation)

� = N3
AN3

B

4π2
(
N2

A − 1
)(

N2
B − 1

)(1 +
∣∣∣∣ trUAB

NANB

∣∣∣∣
2

− 1

NA

∥∥∥∥U (A)

NB

∥∥∥∥
2

− 1

NB

∥∥∥∥U (B )

NA

∥∥∥∥
2)

. (42)

Here U
(A)
ii = ∑

k[U (ε)]ik and U
(B )
kk = ∑

i[U (ε)]ik are par-
tially traced (still diagonal) interaction operators, which
are in general not unitary, and ‖X‖2 = Tr(XX†) is the
Hilbert-Schmidt norm. It can be checked that this � cor-
rectly vanishes if V is a function of either coordinate alone
and thereby not entangling. However, it does not vanish for
general separable potentials and hence the assumption that
the interaction is entangling is necessary. Equation (42) is the
generalization of the corresponding result stated in Ref. [72]
for the case NA = NB = N .

Performing an additional ensemble average over the diag-
onal random phases for the U (ε) of Eq. (23) gives

�RMT = N2
AN2

B

4π2(NA + 1)(NB + 1)

[
1 − sin2(πε)

π2ε2

]

≈ NANBε2

12
, (43)

where for the last expression the limits NA,NB � 1 and
ε � 1 have been used. Equation (43) clearly demonstrates
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the sensitivity of a large system to even extraordinarily weak
coupling. Only if NA, NB , and ε are scaled such that �RMT is
kept fixed, universal statistical behavior of the bipartite system
is to be expected. In contrast, without fixing the scaling of �,
as NA → ∞, the transition to effectively random eigenstates
would be discontinuously rapid if ε > 0.

The evaluation of � generally is much more complicated
in many-body systems; see [39], where it was analyzed for the
compound nucleus in the context of time-reversal symmetry
breaking. One extremely important factor complicating the
analysis in most cases is that no matter how many particles
are involved in the system, their interactions are dominated
or limited to one- and two-body operators. In the standard
random matrix ensembles, if they are being used to model a
system of m particles, the ensemble implicitly is dominated
by m-body interactions. If not, there would have to be a large
number of matrix elements set to zero in an appropriate basis
of Slater determinant states. This fact has led to the study
of the more complicated and difficult to work with so-called
embedded ensembles [87]. In fact, as the number of parti-
cles increases, Hamiltonian matrix elements would become
increasingly sparse. The selection rules arising through the re-
striction of the body rank of the interactions thus create a great
deal of matrix element correlations and large-scale structure
imposed on local fluctuations. For the nuclear time-reversal
breaking analysis, it was possible to cast the theory as a means
to calculate an effective dimensionality, which is necessarily
much smaller than the dimensionality of the full space.

F. Regularization of perturbation theory

The main approach to regularize the divergences that arise
in the perturbation theory of symmetry-breaking random ma-
trix ensembles was introduced in the earliest works on the
subject [38,75]. There sometimes arises fluctuation measure
specific or symmetry specific aspects, but the basic approach
is common to all cases. Typically, the leading order is de-
termined by the regularization required for a pair of levels
(eigenphases) to become nearly degenerate. The probability
of three or more levels is sufficiently lower as to generate only
higher-order corrections.

Consider one realization with a pair of levels that are nearly
degenerate and sufficiently isolated. There is a subset, yet
still infinite, series of terms in the perturbation theory that
contains the near vanishing denominators responsible for the
divergence. Isolating just that series of terms, they have to
be equivalent to the series arising from a two-level system.
Thus, regularization to lowest order proceeds by using the
two-level exact solution to represent the resummation of this
infinite series of diverging terms. The effective and scaled
Hamiltonian, ignoring an irrelevant phase, is(

s/2
√

�w
√

�w −s/2

)
, (44)

where the jk subscript is suppressed on s and w. The unper-
turbed state (1, 0)T gets rotated by the interaction � > 0 to
(1, a)T /

√
1 + |a|2, where

|a|2 = (s − √
s2 + 4�w)2

4�w
= 4�w

(s + √
s2 + 4�w)2

. (45)

The weight �w/s2 of the mixing as obtained by perturbation
theory is replaced by |a|2/(1 + |a|2), i.e., with a bit of algebra
the regularization is seen to involve the replacement

�w

s2
�→ 1

2

(
1 − |s|√

s2 + 4�w

)
. (46)

This correctly accounts for near-degenerate cases when s → 0
and the states are nearly equally superposed. For larger s, in
the perturbative regime that we are interested in, � � 1, the
mapping is effectively accounting for a part of the higher-
order corrections. It does no harm to use the regularized
expression beyond where it is needed as it only effects higher-
order corrections. Such a regularization is better substantiated
and more accurate than providing simply a lower cutoff to
divergent integrals in the spacing s.

Making this substitution in Eq. (41) gives the expectation
values of the first two Schmidt eigenvalues as

λ1 ≈ 1 −
∫ ∞

0
ds

∫ ∞

0
dw

(
1 − s√

s2 + 4�w

)
e−w

= 1 −
√

π�, (47)

λ2 ≈
∫ ∞

0
ds

∫ ∞

0
dw

(
1 − s√

s2 + 4�w

)
e−w−2s

=
√

π� + 2e−4��[Ei(4�) − πerfi(2
√

�)] (48)

=
√

π� + 2�[γ + ln(4�)] − 8
√

π�3/2 + · · · , (49)

where the imaginary error function is erfi(x) = −i erf(ix),
Ei(x) is the exponential integral [88, Eq. 6.2.5], and γ =
0.577 21 . . . is Euler’s constant. Equation (49) gives the func-
tional expansion for the small-� regime, a bit beyond the �

order to which it is valid.
As mentioned previously, the lowest-order behavior is

augmented from � to
√

� once the divergence is regularized
properly. It also turns out that λ1 + λ2 = 1 + O(� ln �). The
third and smaller Schmidt eigenvalues must contribute in
higher orders of the transition parameter. This fact is crucial
for the development of the recursively embedded perturbation
theory in Sec. VI.

G. Floquet system: Coupled kicked rotors

It is instructive to have a simple, bipartite, deterministic,
chaotic dynamical system to compare against the universal
transition results emerging from random matrix theory for
the rest of the paper. Simple in this context means that it
is possible both to calculate the value of � as a function of
interaction strength analytically and to carry out calculations
for reasonably large values of NA and NB . A system of two
coupled kicked rotors quantized on the unit torus is ideal.
Here we will restrict the numerical computations to the case
NA = NB = N .

A rather general class of interacting bipartite systems can
be described by the unitary Floquet operator of the form given
in Eq. (2), including many-body systems. A specific example,
leading to the kicked rotors, for which the quantum time-
evolution operator has this form begins with the Hamiltonian

H = 1
2

(
p2

A + p2
B

)+ [VA(qA) + VB (qB ) + bVAB (qA, qB )]δt ,

(50)
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where δt = ∑∞
n=−∞ δ(t − n) is a periodic sequence of kicks

with unit time as the kicking period. The subsystem one-kick
unitary propagators connecting states are given by

UA = exp
(−ip2

A

/
2h̄
)

exp(−iVA/h̄) (51)

and likewise for B. The interaction or entangling operator is

UAB (b) = exp(−ibVAB/h̄). (52)

The classical system is well defined and given by a four-
dimensional symplectic map with the interaction strength
tuned by the parameter b. A particularly important and well
studied example is the coupled kicked rotors [89,90], which
have been realized in experiments on cold atoms [91]. The
most elementary case is for two interacting rotors with the
single-particle potentials

VA = KA cos(2πqA)/4π2 (53)

similarly for B and the coupling interaction

VAB = 1

4π2
cos[2π (qA + qB )]. (54)

The unit periodicity in the angle variables qj is extended here
to the momenta pj , so the phase space is a four-dimensional
torus.

If the kicking strengths KA and KB of the individual maps
are each chosen sufficiently large, the maps in (qA, pA) and
(qB, pB ) are strongly chaotic with a Lyapunov exponent of
approximately ln(K/2) [92]. There are some special ranges
of K to avoid corresponding to small-scale islands formed
by the so-called accelerator modes [92]. This is supported by
recent rigorous results showing that the stochastic sea of the
standard map has full Hausdorff dimension for sufficiently
large generic parameters [93]. In this article KA = 10 and
KB = 9 are used everywhere, in which case the dynamics of
the uncoupled maps numerically is sufficiently chaotic, i.e.,
no regular islands exist on a scale large enough to matter.

The quantum mechanics on a torus phase space of a single
rotor leads to a finite Hilbert space of dimension N (see, e.g.,
Refs. [94–98]). The effective Planck constant is h = 1/N .
Thus UA and UB are N -dimensional unitary operators on their
respective spaces. Explicitly, the unitary matrix UA reads

UA(n′, n) = 1

N
exp

[
−iN

KA

2π
cos

(
2π

N
(n + θp )

)]

×
N−1∑
m=0

exp

(
−πi

N
(m + θq )2

)

× exp

(
2πi

N
(m + θq )(n − n′)

)
, (55)

where n, n′ ∈ {0, 1, . . . , N − 1}. The parameters θq, θp ∈
[0, 1[ allow for shifting the position grid by which any present
symmetries, in particular parity and time reversal, can be
broken.

If UAB (b) is only a function of position, such as in Eq. (50),
this can be represented in position space by a diagonal matrix.
Thus, the resulting (N2 × N2)-dimensional unitary matrix for

0.0

0.5

1.0

0.0 0.1 0.2 0.3√
Λ

λi

FIG. 2. Average Schmidt eigenvalues λ1 (black crosses) and λ2

(blue circles) and their sum (green squares) for the coupled kicked
rotors versus

√
�, in comparison with the corresponding predictions

(47) (dashed black line) and (48) (solid blue curve) and their sum
(dash-dotted green curve).

the coupled kicked rotors is given by

〈n′
1n

′
2|UKR|n1n2〉

= UA(n′
1, n1)UB (n′

2, n2)

× exp

[
−iN

b

2π
cos

(
2π

N
(n1 + n2 + 2θp )

)]
. (56)

The choice N = 100 is taken as sufficiently large to give
asymptotic results and the phases θq = 0.34 and θp = 0.24
are chosen to break time-reversal and -parity symmetry, re-
spectively. Such coupled quantum maps have been studied in
different contexts [99,100], where more details can be found.
Note that coupled kicked rotors with a different interaction
term have also been studied on the cylinder [101].

Applying Eq. (42) to the coupled kicked rotors gives

�KR = N2

4π2

[
1 − J 2

0 (Nb/2π )
] ≈ N4b2

32π4
, (57)

where the approximation holds for Nb � 1. Using the ap-
proximations in Eqs. (43) and (57) relates the kicked rotor
interaction strength b to the parameter ε of the random matrix
model explicitly, i.e.,

ε =
√

3

8π4
Nb (58)

for small values of ε and Nb, and N � 1. In practice, this
approximation is good for the entire transition even if N is
only moderately large.

Let us compare the first two mean Schmidt eigenvalues
of the coupled kicked rotors to the random matrix ensemble
predictions (see Fig. 2). The averaging is a spectral average
over all N2 eigenstates for the coupled kicked rotors. The
perturbative nature of the expression (47) for λ1 is evident,
showing that the derivation only provides the initial depen-
dence at � = 0 as it is designed to do. For λ2 the validity of
the result (48) extends beyond the initial dependence as given
by Eq. (49).
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FIG. 3. Average Schmidt eigenvalues λi , i = 1, 2, . . . , 7 (sym-
bols with lines as a guide to the eye, from top to bottom), for the
coupled kicked rotors versus

√
�.

IV. EIGENVALUE MOMENTS OF THE REDUCED
DENSITY MATRIX

For a global view of the spectrum of the reduced density
matrix as the coupling is increased, Fig. 3 shows the
behavior of various λi versus

√
�. From here forward,

all the discussion in the paper is restricted to the equal
dimensionalities case NA = NB = N , as all the kicked rotor
results are calculated for equal subsystem dimensions and
with N = 100. It can be seen from the figure that whereas λ1
monotonically decreases towards its random matrix average
of approximately 4/N , other principal eigenvalues, such as
the second or third largest, display a nonmonotonic approach
to their respective averages. The smallest eigenvalue λN grows
to about 1/N3, which is the random matrix average [102,103].
For � � 1, the probability density of the set of λi follows
the Marčenko-Pastur distribution given in Eq. (9). The largest
alone is distributed according to the Tracy-Widom density
(after appropriate scaling and shift) [104], whereas the
smallest is known to be exponential [103]. Numerical results
for the transition towards these results are presented in Sec. V.
Also see the recent paper [105] for additional random matrix
results concerning the smallest eigenvalue and applications to
coupled kicked tops.

A. General moments

To characterize the entanglement in bipartite systems the
general moments μα of Eq. (7) and thus the sum of the
averages λα

j are needed. The relationship of the entropies to
the general moments is given in Eq. (8). In the perturba-
tive regime, the largest eigenvalue λ1 decreases from 1 (see
Fig. 2) and thus has a different behavior compared to all
other eigenvalues. This is clear from the content of Eqs. (31)
and (32) where each eigenvalue λj with j > 1 has its own
expression, whereas the largest follows from normalization,
λ1 = 1 −∑

j>1 λj . Therefore, it is necessary to treat the
general moments of λ1 separately from the others as it requires
some additional analysis.

1. Moments
∑

j>1 λα
j

The moment expressions for the
∑

j>1 λα
j can be written

down immediately from the results of Secs. III D and III F.

There is no need to invoke the closer next neighbor statistics
as there is a sum over all the eigenvalues j > 1 of the
unperturbed Hamiltonian and hence R2(s) = 1. This gives, for
the α (>1/2) moment,∑

j>1

λα
j =

∫ ∞

−∞
ds

∫ ∞

0

dw

2α

(
1 − |s|√

s2 + 4�w

)α

R(s, w)

=
∫ ∞

−∞
ds

∫ ∞

0

dw

2α

(
1 − |s|√

s2 + 4�w

)α

e−w

= C2(α)
√

�, (59)

where

C2(α) = 2
√

π

∫ π/2

0

1

sin2 θ
sin2α θ

2
dθ

=
√

π

2

∫ 1/2

0

tα

t3/2(1 − t )3/2
dt

=
√

π

2
B1/2

(
α − 1

2
,−1

2

)
, α > 1/2. (60)

Here Bz(a, b) is the incomplete Beta function (see [88],
Eq. 8.17.1) defined as

Bz(a, b) =
∫ z

0
ta−1(1 − t )b−1dt

= za

a
2F1(a, 1 − b; a + 1; x). (61)

Note that the evaluation of the integral is exact and that all
moments (α > 1/2) are proportional to

√
�, i.e., there are no

higher-order terms coming from these expressions. If α = 1/2
there is a divergence [C2(1/2) = ∞] and this is a special
value as far as the moments are concerned. This is due to the
contributions of the very small eigenvalues. It turns out that
for α = 1/2 the order is no longer

√
�. This will be dealt

with later in Sec. IV C.
The result for α = 1, which follows from C2(1) = √

π , is
identical to the leading order of the average second largest
eigenvalue in Eq. (49). The reason for this is that the other
eigenvalues do not contribute to this order. This really justifies
the use of only two reduced density matrix eigenvalues in
the perturbative regime. Another special case corresponding
to α = 2 gives ∑

j>1

λ2
j =

√
π�(1 − π/4). (62)

2. Moments of λ1

Turning to the largest eigenvalue, it is given by

λα
1 =

⎛
⎝1 −

∑
j>1

λj

⎞
⎠

α

=
[

1 −
∫ ∞

−∞
ds

∫ ∞

0

dw

2

(
1 − |s|√

s2 + 4�w

)
R2(s, w)

]α

.

(63)

The extra ingredient not present for the moments of the other
eigenvalues is the ensemble averaging of the powers of the
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density R(s, w) also involved. To see how this changes the
moment calculations, consider the simplest case, the quadratic
terms in the binomial expansions of the moments. There is a
quadruple integral for which one needs the ensemble average
of R(s1, w1)R(s2, w2). It has two contributions, those coming
from off-diagonal terms in the products of δ functions from
Eq. (36) and the diagonal terms. Thus,

R(s, w)R(s ′, w′)

= ρ(w)ρ(w′)R3(s, s ′) + δ(w − w′)ρ(w)δ(s − s ′)R2(s)

= e−w−w′ + δ(s − s ′)δ(w − w′)e−w. (64)

The second line follows due to the independence of the matrix
elements from each other and the spectrum and the fact that
it is the three-point correlation function of the spectrum that
enters. Fortunately, for Poisson sequences, for all k, Rk = 1,
which gives the last line.

The second moment therefore is given by

λ2
1 = 1 − 2

∫ ∞

−∞
ds

∫ ∞

0

dw

2

(
1 − |s|√

s2 + 4�w

)
e−w

+
∫ ∞

−∞
ds

∫ ∞

0

dw

4

(
1 − |s|√

s2 + 4�w

)2

e−w

+
[∫ ∞

−∞
ds

∫ ∞

0

dw

2

(
1 − |s|√

s2 + 4�w

)
e−w

]2

= 1 − 2C2(1)
√

� + C2(2)
√

� + C2
2 (1)�

= 1 −
(

1 + π

4

)√
π� + π�. (65)

It is immediately apparent that the leading-order terms pro-
portional to

√
� come from the diagonal terms for which

all the energy and matrix element variables are reduced to
the minimum set. Note that there is only one way for all the
variables to be maximally correlated; i.e., the set of integration
variables {wj }, {sj } reduces to (w, s). There are corrections,
depending on the moment α considered, polynomial in

√
�.

The next to leading order, O(�), come from terms whose
integrals can be reduced to (w1, w2, s1, s2). In the second-
moment example shown above, there is only one term that
is of this form. However, for arbitrary moments, there is a va-
riety of combinations of possibilities that form a subbinomial
expansion given ahead.

3. Leading order of λ1 moments

Beginning with the binomial expansion of the moments,
the leading order comes from the terms remaining after re-
ducing the power of summations to a single summation

λα
1 =

⎛
⎝1 −

∑
j>1

λj

⎞
⎠

α

=

⎛
⎜⎝ ∞∑

k=0

−1k

(α

k

)⎡⎣∑
j>1

λj

⎤
⎦

k
⎞
⎟⎠

�→
⎛
⎝ ∞∑

k=0

−1k

(α

k

)∑
j>1

λk
j

⎞
⎠. (66)

By inverting the order of the remaining summations, the
series can be resummed to give a compact expression for
arbitrary moments. The zeroth-order terms have to be handled
separately. This gives

λα
1 = 1 +

∑
j>1

∞∑
k=1

−1k

(α

k

)
λk

j

= 1 +
∑
j>1

[(1 − λj )α − 1]

= 1 − C1(α)
√

�, (67)

where

C1(α) = 2
√

π

∫ π/2

0

1

sin2 θ

(
1 − cos2α θ

2

)
dθ

=
√

π

2

∫ 1/2

0

1 − (1 − t )α

t3/2(1 − t )3/2
dt

=
√

2π 2F1

(
−1

2
,

3

2
− α;

1

2
;

1

2

)
. (68)

Here 2F1(·) is the Gauss hypergeometric function (see [88],
Eq. 15.2.1) defined as

2F1(a, b; c; z) = 1 + ab

1!c
z + a(a + 1)b(b + 1)

2!c(c + 1)
z2 + · · · .

With the analytic results for C1(α) and C2(α), the results
of Eq. (49) have been generalized to complete general mo-
ments. Here C1(1) = √

π is consistent with the expression
given there and C1(2) = 1 + π

4 is consistent with Eq. (65).
A moment of special interest ahead is

√
λ1 = 1 −

√
π�[

√
2 − ln(1 +

√
2)] (69)

due to its relationship to the nearest maximally entangled
state.

4. The O(�) correction of λ1 moments

In order to calculate the O(�) correction of the λ1 mo-
ments, the key question is the combinatoric one of separating
the eigenvalues in each term of [

∑
j>1 λj ]k into two groups;

of course, k � 2. The results is

⎡
⎣∑

j>1

λj

⎤
⎦

k

�→ 1

2

k−1∑
l=1

(
k

l

)∑
j>1

∑
j ′>1�=j

λl
jλ

k−l
j ′

= 1

2

∑
j>1

∑
j ′>1�=j

k−1∑
l=1

(
k

l

)
λl

jλ
k−l
j ′

= 1

2

∑
j>1

∑
j ′>1�=j

[
(λj + λj ′ )k − λk

j − λk
j ′
]
. (70)
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Therefore, the O(�) correction C3(α)� is given by

C3(α)� = 1

2

∑
j>1

∑
j ′>1�=j

( ∞∑
k=2

−1k

(α

k

)[
(λj + λj ′ )k − λk

j − λk
j ′
])

= 1

2

∑
j>1

∑
j ′>1
�=j

1 + (1 − λj − λj ′ )α − (1 − λj )α − (1 − λj ′ )α, (71)

which after using the same manipulations as for the earlier
integrals leads to

C3(α) = π

8

∫ 1/2

0
dt1

∫ 1/2

0
dt2

× 1 + (1 − t1 − t2)α − (1 − t1)α − (1 − t2)α

t
3/2
1 (1 − t1)3/2t

3/2
2 (1 − t2)3/2

. (72)

Note that C3(2) = π , which is consistent with Eq. (65). For
some other values of α relevant in the following, the integral
evaluates to C3(3) = 3π2/4 and C3(4) = 2π + 3π3/16. The

computations of λ2
1, λ

1/2
1 , and

∑
j>1 λ2

j for the coupled kicked
rotors are shown in Fig. 4 and compared to the analytic
results of Eqs. (65) and (69) and Eq. (62), respectively. The
agreement in the perturbative regime is quite good.

B. Entropies

With these results for the average eigenvalue moments
of the reduced density matrix, everything needed for the
entropies defined in Eq. (7) has been evaluated. Combining
Eq. (62) with Eq. (65) results in

μ2 =
N∑

j=1

λ2
j = tr

(
ρA2) = 1 − π3/2

2

√
� + π�, (73)

where the neglected terms are presumably of O(�3/2). This
is the random matrix prediction for the purity of the density
matrix of generic eigenstates of chaotic subsystems that are
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1/2
1

√
Λ

FIG. 4. Average moments λ2
1 (black crosses), λ

1/2
1 (red squares),

and
∑

j>1 λ2
j (blue circles) for the coupled kicked rotors versus√

�. These are compared to their corresponding perturbative results,
Eq. (65) (dash-dotted black line), Eq. (69) (dashed red line), and
Eq. (62) (solid blue line).

perturbatively entangled due to the coupling. As decoherence,
i.e., coupling of a system to the environment, is usually the
cause of loss of purity, this shows the universal manner in
which decoherence due to coupling with a chaotic subsystem
results in the degradation of the purity of eigenstates.

The generalized moments for α > 1/2 are

μα =
N∑

j=1

λα
j = 1 − C(α)

√
� + C3(α)� + · · · , (74)

where

C(α) = C1(α) − C2(α) =
√

π

4

∫ 1

0

1 − tα − (1 − t )α

t3/2(1 − t )3/2
dt

= π
�(α − 1/2)

�(α − 1)
. (75)

The incomplete Beta functions of C1(α) and C2(α) combine
to produce complete Beta functions. This perturbative
moment evaluation is one of the central results of this work.
Note that C(1) = C3(0) = 0, correctly reproducing the unit
trace of the density matrix, and that C(α) < 0 for α < 1.
In the regime where α < 1 the smaller eigenvalues start to
become more important as well. The critical value α = 1
corresponds to the von Neumann entropy and is of central
interest in quantum information.

Thus it follows that the average HCT entropies, defined in
Eq. (8), for small � are

Sα = π
�(α − 1/2)

�(α)

√
� − C3(α)

α − 1
� (76)

and the limα→1 C3(α)/(α − 1) = C3L(1) is the integral

C3L(1) = π

8

∫ 1/2

0

∫ 1/2

0

dt1dt2

t
3/2
1 (1 − t1)3/2t

3/2
2 (1 − t2)3/2

× [(1 − t1 − t2) ln(1 − t1 − t2)

− (1 − t1) ln(1 − t1) − (1 − t2) ln(1 − t2)]

= π2

4
(4 − π ). (77)

Hence the von Neumann entropy, the measure of entangle-
ment in bipartite pure states, is perturbatively

S1 = π3/2
√

� − C3L(1)�. (78)

Figure 5 shows the average entropies computed for the cou-
pled kicked rotors in comparison with Eq. (76). Again it is
clear that the numerics for the coupled kicked rotors supports
these perturbative results, but that for larger � there are devi-
ations that grow with the coupling. Also, the von Neumann
entropy grows at a faster rate perturbatively (� � 1) than
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FIG. 5. Average entropies Sα for α = 1, 2, 3 for the coupled
kicked rotors (symbols) in comparison with the perturbative results,
Eq. (76) (solid line for S3 and dashed line for S2) and Eq. (78)
(dash-dotted line for S1).

the other entropies, in particular the linear entropy. On the
other hand, later it is seen that the von Neumann entropy
approaches its asymptotic (� � 1) random matrix value, the
slowest among the shown entropies, including the linear.

C. Moment at α = 1/2 and distance to the closest
maximally entangled state

The averaged moment for α = 1/2 indicates the distance
of the eigenfunction to the closest maximally entangled state.
In the quantum information context the singlet fraction [49]
essentially measures the same quantity. It is the highest α

value for which the moment depends on subsystem size; note
the trivial case of α = 0 for which the moment is simply
the subsystem dimension NA (NB). The case α = 1/2 is
marginal and the moment is shown to grow as a logarithm of
system dimensionality, whereas for α > 1/2 the moments are
independent (except through the definition of �). This signals
a breakdown of the description with a single universal dimen-
sionless parameter, and the smaller Schmidt eigenvalues all
contribute significantly to the average value of the moments.

As in the case of regularization, the divergence in Eq. (76)
for α = 1/2 is indicative of a change in the functional � de-

pendence. However, the largest eigenvalue moment λ
1/2
1 given

in Eq. (69), even with the C3(1/2)� correction, is still valid.
The critical quantity is the integral in Eq. (59). As the value
of α decreases, the importance of distant levels increases.
Although the number of Schmidt eigenvalues is equal to N ,
for α > 1/2 the decay of the integrand is fast enough that in
the N → ∞ limit there is no difference whether the upper in-
tegration bound is finite or not. For α = 1/2 this is not true and
the fact that N , no matter how large, has a finite value must be
accounted for. A good approximation is to change the limits of
integration over s from −∞ � s � ∞ to −(N − 1)/2 � s �
(N − 1)/2. With the substitution

√
4�w = s tan θ and using

the fact that 4
√

�w/(N − 1) � 1, the integral in Eq. (59)
leads to the following modification of Eq. (68):

C2(1/2) = 2
√

π

∫ π/2

4
√

�w
(N−1)

1

sin2 θ
sin

θ

2
dθ. (79)

0
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0 1 2 3√
Λ

d2
∗

FIG. 6. Square of the distance to the closest maximally entangled
state d2

∗ (circles) as defined in Eq. (18) for the coupled kicked rotors
as a function of

√
�. The dashed line is the perturbative predic-

tion for d2∗ using Eq. (82) and (dproduct
∗ )2 = 1.8 [see Eq. (19)]. For

larger
√

� an approach towards d2∗ RMT = 2(1 − 8/3π ) (dotted line)
[see Eq. (21)] for a typical random state takes place.

The θ integral can be done exactly, and again using the fact
that N is large and � small, the following approximation can
be derived:

∑
j>1

√
λj =

√
π�

[
ln

(
2(N − 1)√

�

)

+ γ

2
+

√
2 − 2 − ln(1 +

√
2)

]
. (80)

Combining this with the result for the α = 1/2 moment of the
largest eigenvalue in Eq. (69) gives the leading-order term

μ1/2 = 1 +
√

π�

[
ln

(
2(N − 1)√

�

)
+ γ

2
− 2

]
. (81)

Thus the diverging C2(α) as α → 1/2 gives rise to the term
proportional to ln(N/

√
�). As a consequence, we obtain a

dependence on N and as well as a different leading-order
� dependence proportional to −√

� ln(�), rather than
√

�,
which is valid for moments α > 1/2.

Not only is the moment α = 1/2 therefore an interesting
limiting moment, it is also of importance due to its relation-
ship via Eq. (18) to the distance from the closest maximally
entangled state. It follows from Eqs. (18) and (81) that

d2∗ = (dproduct
∗ )2−2

√
π�

N

[
ln

(
2(N − 1)√

�

)
+ γ

2
−2

]
. (82)

Note that for � = 0, the distance is that of a product state
as given in Eq. (19). Figure 6 shows the transition of d2∗ going
from the situation of product states at � = 0 to typical random
states at

√
� = 3 for the coupled kicked rotors. Equation (82)

describes the initial behavior up to approximately
√

� = 0.5
very well.
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V. PROBABILITY DENSITIES OF SCHMIDT
EIGENVALUES AND ENTROPIES

Having completed the perturbation theory of the
eigenvalue moments and entanglement entropies, consider the
probability densities of the eigenvalues of the reduced density
matrices. For � � 1, the Marčenko-Pastur law (9) holds for
the eigenvalue density of states. For � = 0, the density is a
unit δ function at unity and an (N − 1)-weighted δ function at
the origin. For very weak interactions, the density breaks away
from the δ function form limit and is dominated by the largest
and second largest eigenvalues. Note that the probability
density of λ1 in the strongly coupled regime is the extreme
value statistics of Tracy and Widom, as it follows the same
universality class of fixed trace Wishart ensembles [106].

Figure 7 shows the probability densities ρλ1 (x) and ρλ2 (x).
For � � 1, the density of the largest eigenvalue λ1 is sharply
peaked around its unperturbed value of 1, whereas λ2 is
similarly peaked around 0. The two densities appear almost
mirror symmetric about 1/2 and both have prominent tails
extending to 1/2, indicating instances when both of the them
have large excursions away from their unperturbed values
due to near degeneracies. A more detailed view of these tails
is shortly developed, where power laws and stable densities
exist, and the mirror symmetry is seen to be an illusion.
For moderately larger couplings this picture gets modified.
The probability of the largest eigenvalue develops a tail that
crosses 1/2 and the densities have an overlapping range. A
curious feature that appears for

√
� ∼ 0.3 is that the largest

eigenvalue density is characterized by an almost uniform
density over a wide interval. For even larger coupling the
densities tend to significantly overlap and approach their
random matrix extreme value statistical laws. Further results
in this strong-coupling regime are postponed for discussion in
Sec. VI after the perturbative regime is considered in detail.

A. Perturbative regime

Recall that perturbatively the two largest eigenvalues λ1

and λ2 are fluctuating variables, which from Eqs. (31) and
(32), after regularization, are given by

λ1 = 1 − 1

2

∑
j

⎛
⎝1 − 1√

1 + 4�wj

/
s2
j

⎞
⎠,

λ2 = 1

2

(
1 − 1√

1 + 4�w/s2

)
, (83)

where the transition strengths wj and w are distributed ac-
cording to ρw(x) = exp(−x). The spacings sj refer to tran-
sitions from a fixed state to all others; we take it as inde-
pendent and uniform in [−M/2,M/2], where M � 1 is the
number of terms in the sum for λ1. This leads to a Poisson
process for the ordered spacings. The spacing s in λ2 is the
closer neighbor used in Eq. (41) and is distributed according
ρCN(s) = 2 exp(−2s).

1. Probability density of the second largest eigenvalue

Treating λ2 first, the second part of Eq. (83) and the
subsequent considerations imply that its probability density
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FIG. 7. Probability densities ρλ1 (x ) (thick blue histogram) and
ρλ2 (x ) (thin red histogram) for the coupled kicked rotors for√

� = 0.01, 0.1, 0.3, and 1.0.
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FIG. 8. Probability density ρu2 (x ) for u2 = g�(λ2) in a double-
logarithmic representation for the coupled kicked rotors. The dashed
red curve shows the analytical result (85). The insets show the same
densities in a linear representation.

is given by

ρλ2 (x) =
∫ ∞

0
2e−2sds

∫ ∞

0
e−wdw

× δ

(((
x − 1

2

(
1 − 1√

1 + 4�w/s2

))))

=
∫ ∞

0

y2

4�(1 − 2x)3
exp

(
−1

4
g�(x)y2 − y

)
dy,

(84)

where the w integral is performed first, y = 2s, and

g�(x) = x(1 − x)

�(1 − 2x)2
.

The function g�(x), suggested by perturbation theory, is sym-
metric about x = 1/2, i.e., g�(x) = g�(1 − x). It includes
a scaling by �, which magnifies the eigenvalue λ2, and the
value becomes arbitrarily large whenever the second largest
eigenvalue gets close to 1/2.

This implies the remarkable result that for the variable
u2 = g�(λ2) there is a universal density independent of �,

ρu2 (u) = 1

4

∫ ∞

0
e−t e−t2u/4t2dt

= − 1

u2
+

√
π

2u5/2

[
(2 + u) exp

(
1

u

)
erfc

(
1√
u

)]
. (85)

Recall that the complementary error function is erfc(x) =
1 − (2/

√
π )
∫ x

0 e−t2
dt ≈ 1 − 2x/

√
π , the approximation be-

ing valid for x ≈ 0. Thus, for u � 1, the density of ρu2 (u) has
a power-law tail ∼√

π/2u3/2.
Figure 8 illustrates the validity of the power-law tail over

several orders of magnitude of
√

�. Although the power-law
tail remains quite intact even for larger coupling strengths,
such as

√
� = 0.1, deviations are visible around u ∼ 1 even

for the smallest � used. This is in the regime when λ2 ∼
�, whereas the average λ2 is much higher, being ∼√

�

[see Eq. (49)]. Thus, it appears that the current approximations
used for the second eigenvalue are not good enough to capture
these very small values accurately. Indeed, the average is
also calculated to within O(�). The deviations then reflect
the need for higher-order perturbation theory. Note also that
u2 = ∞ due to its density having a power-law tail u−3/2 and
reflects the fact that the average of λ2 is not of order �.

2. Density of the largest eigenvalue

The largest eigenvalue λ1 is related to a sum over many
terms each arising from such heavy-tailed densities and is
hence naturally related to Lévy stable distributions, through
the generalized central limit theorem. The first of Eqs. (83)
implies

1 − λ1 =
M∑

j=1

xj , (86)

where each xj is distributed according to the density

ρxj
(x) = 1

M

∫ M/2

−M/2
ds

∫ ∞

0
e−wdw

× δ

(((
x − 1

2

(
1 − 1√

1 + 4�w/s2

))))

= 1

M

∫ M/2

−M/2
e−s2g�(x) s2

�(1 − 2x)3
ds. (87)

Note that s is uniformly distributed on [−M/2,M/2) as
opposed to being an exponential as in the case of the second
largest eigenvalue [see Eq. (84)].

Observe that

g�(1 − λ1) = g�(λ1) ≈
M∑

j=1

yj , yj = g(xj ), (88)

where the approximation g�(
∑

j xj ) ≈ ∑
j g�(xj ) is used

and justified as there is no constant term in the Taylor expan-
sion of g� and the fact that to leading order (

∑
j>1 xj )k ≈∑

j>1 xk
j , where the cross terms involving independent ran-

dom variables have been neglected. This is similar to the
arguments that lead to the approximation in Eq. (67).

The density of each yj is given by

ρyj
(y) = 2

M

∫ M/2

0
e−s2ys2ds →

√
π

2M

1

y3/2
. (89)

If we scale yj to ỹj = M2yj/π , then the density of ỹj has a
tail that is independent of the number of terms summed and
goes as (1/2)ỹ−3/2 and g�(λ1) is distributed as the sum

1

M2

M∑
j=1

ỹj . (90)
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FIG. 9. Probability density ρu1 (x ) of u1 = g�(λ1) for the cou-
pled kicked rotors in comparison with the Lévy distribution (91)
(dashed red line). The insets show the density in a double-logarithmic
representation highlighting the excellent agreement in the tails, espe-
cially for

√
� = 10−4.

Then, according to a generalized central limit theo-
rem [107,108], the sum behaves according to the Lévy dis-
tribution with index α = 1/2 and scaling constant π/2. Thus,
if u1 ≡ g�(λ1), then it is distributed with the Lévy probability
density

ρu1 (u) =
√

π

2u3/2
exp

(
−π2

4u

)
. (91)

Shown in Fig. 9 is a comparison of this density with results
for the coupled kicked rotors. The power-law tail is again
well reproduced and indicates the large probability with which
excursions occur for the largest eigenvalue away from its
unperturbed value. Therefore, if two chaotic systems are
weakly coupled there is an extended regime in which the
system responds very sensitively with Schmidt eigenvalues
being heavy tailed. This is reflected in the averages of the
eigenvalues deviating greater from their unperturbed values
than expected from a naive perturbation expansion.

3. Density of the purity

The density of the purity μ2 is a closely related quantity as

μ2 =
(

1 −
∑
i>1

λi

)2

+
∑
i>1

λ2
i ≈ 1 − 2

∑
i>1

λi (1 − λi ), (92)
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FIG. 10. Probability density ρu(x ) of u as defined in Eq. (98)
based on the purity μ2 for the coupled kicked rotors dependent on√

� in comparison with the half-normal density (97), red dashed line.

where cross terms (eigenvalue correlations) have been ne-
glected as before as they are of lower order. Using Eq. (83)
we get

1

2
(1 − μ2) =

N∑
j=1

(
4 + s2

j

�wj

)−1

≡
N∑

j=1

xj , (93)

with the xj being distributed according to

ρxj
(x) = 2

N

∫ N/2

0
exp

( −s2x

�(1 − 4x)

)
s2

�(1 − 4x)2
ds. (94)

This is therefore similar to the scenario in Eqs. (86) and (87)
except that g�(x) is now replaced with

f�(x) = x

�(1 − 4x)
. (95)

Following the same procedure as for the largest eigenvalue
case gives

1 − μ2

2�(2μ2 − 1)
= S2

2�(1 − 2S2)
, (96)

which is Lévy distributed as in Eq. (91). The purity is written
in terms of the linear entropy S2, above which it is implied
that the entanglement probability density, suitably scaled in
the perturbative regime, is the stable Lévy distribution.

If y is a random variable that is Lévy distributed as in
Eq. (91), it is easy to see that u = 1/

√
y is distributed accord-
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ing to the half-normal density given by

ρu(x) = √
π exp(−π2x2/4) with x � 0. (97)

Thus displayed in Fig. 10 for comparison with coupled kicked
rotors is the probability density of the related quantity

u =
√

2�(2μ2 − 1)

1 − μ2
=
√

2�(1 − 2S2)

S2
, (98)

which should be distributed according to Eq. (97). Note that
these expressions are expected to be valid for � � 1, where
P2 > 1/2. Again one observes that the agreement is very good
up to

√
� = 0.01, whereas for

√
� = 0.1 clear deviations, in

particular at small u, are visible.

B. Nonperturbative regime

1. Density of the purity

Shown in Fig. 11 is the density ρμ2 (x) of the purity itself,
across a wide range of the transition parameter �. It is seen
that at around

√
� = 0.1 a prominent secondary peak appears

around purity x = 1/2. This corresponds well to the value of
the interaction for which the density of the largest eigenvalue
starts to overlap with that of the second largest in a significant
manner as seen earlier in Fig. 7. For larger values of �, the
other eigenvalues also compete as is illustrated in Fig. 3 and
decrease the secondary peak’s purity further. The densities
become unimodal once again and proceed towards the random
matrix densities with a mean value around 2/N . Although
the entire transition remains to be captured, the next section
shows how the mean value and similar mean values for other
entropies can be motivated to evolve in an essentially simple
manner.

2. Transition of the density of Schmidt eigenvalues

For the case of strong interaction, i.e., large �, one expects
that the statistics of any quantity of interest follows the cor-
responding random matrix results. The approach to this limit
can be, as illustrated here, quite distinct. First, consider the
density of

λ̃i = Nλi, (99)

which for � large enough must follow the Marčenko-Pastur
distribution (9). Toward this end, consider the density of the
rescaled eigenvalues. Figure 12 shows the combined den-
sity obtained from N Schmidt eigenvalues for each of the
N2 eigenstates for the coupled kicked rotors. For

√
� = 3,

deviations are still clearly visible in the tail of the density
visible in the inset. For

√
� = 10 the agreement with the

Marčenko-Pastur distribution is quite good apart from a small
deviation in the tail, whereas for

√
� = 15 (not shown) the

agreement is excellent.
A detailed comparison with exact finite N distributions

of the density for time-evolving states (rather than eigen-
states as studied here) was carried out in [59], wherein good
agreement was found for suitably large coupling between two
large kicked tops. Whereas it is likely that that this coupling
strength also leads to comparable � where we observe the
Marčenko-Pastur distribution, there is a different transition
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FIG. 11. Probability densities ρμ2 (x ) of the purity μ2 for the
coupled kicked rotors for

√
� = 0.05, 0.1, 0.2, 0.3, 0.5, and 1.0.

parameter that is relevant for time-evolving states and further
comparisons are left for future work.

Whereas the tail of the density is a good place to look for
deviations whose origins are due to the underlying dynamical
system, a complementary approach is the spectral extreme
value problem. Of particular importance is the probability
density of the largest eigenvalue λ1, which has already been
considered in the perturbative regime (see Fig. 7). In the
random matrix theory limit the behavior in the tail of the
Marčenko-Pastur distribution is governed by λ1. In this limit
a Tracy-Widom distribution F2 is expected for the unitary
case [104,109] if one considers the appropriately rescaled
variable

λmax = λ1 − 4/N

24/3N−5/3
(100)
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FIG. 12. Density ρλ̃(x ) of all Schmidt eigenvalues, rescaled ac-
cording to Eq. (99), for the coupled kicked rotors (black histogram)
in comparison with the Marčenko-Pastur distribution (9) for Q = 1
(dashed red line). The inset shows the same data in the semilogarith-
mic representation.

[see, e.g., [106], Eq. (55)]. Of interest is how the Tracy-
Widom distribution is approached as the interaction is in-
creased

√
�. Figure 13 shows that the approach is much

slower than for any other statistical quantity considered in
this paper: Only for about

√
� = 14, good agreement with

the Tracy-Widom distribution is observed when N = 100.
Interestingly, we find that for N = 50, already for

√
� = 6

quite good agreement with the Tracy-Widom distribution is
obtained (not shown). This gives a hint that for these statistics
the transition parameter does not provide the right scaling;
understanding this in detail is left for future investigation.

For random matrix theory, the density of the smallest
Schmidt eigenvalue λN is proven to be exponential [103]
using the rescaling

λmin ≡ N (N2 − 1)λN. (101)

Figure 14 shows that for
√

� = 3 the tail of the density is
clearly not following the exponential behavior, but

√
� = 6

shows good agreement.

VI. RECURSIVELY EMBEDDED
PERTURBATION THEORY

The analytical expressions obtained thus far are perturba-
tive, i.e., � � 1, but random matrix theory is expected to re-
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FIG. 13. Density ρλmax (x ) of the largest Schmidt eigenvalue λ1,
rescaled according to Eq. (100), for the coupled kicked rotors for dif-
ferent

√
�. For comparison, the Tracy-Widom distribution, expected

in the random matrix theory limit, is shown (dashed red line).

produce the entire transition for chaotic systems. The opposite
limit � → ∞ is also likely to allow for analytic calculations.
As the main object of interest has been the spectra of the re-
duced density matrices, the relevant random matrix ensemble
is the fixed-trace Wishart ensemble [110] for which a variety
of results is already known [56,103,105,110–112]. Thus it
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10−1

100

0.0 2.5 5.0 7.5 10.0

√
Λ = 3,

√
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FIG. 14. Density ρλmin (x ) of the smallest Schmidt eigenvalue λN ,
rescaled according to Eq. (101), for the coupled kicked rotors for√

� = 3 (blue) and
√

� = 6 (black). For comparison, the exponen-
tial density, expected in the random matrix limit, is shown (dashed
red line).
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would be interesting to connect the perturbative regimes with
various power laws to this random matrix regime. Here we
are restricted to the average of moments rather than their
probability densities.

Increasing � gradually from 0, the eigenvalues of the
reduced density matrix of an eigenstate of the full system get
added one at a time (see Fig. 3 for an illustration in terms of
the averages λi). Therefore, this defines successive regimes
in which one Schmidt eigenvalue after another starts to in-
crease significantly away from 0. In the first regime there are
roughly ∼√

�N2 eigenstates whose reduced density matrix
has two prominent eigenvalues. Thus, for

√
� � 1/N2 the

largest eigenvalue is still nearly unity for all eigenstates. For√
� ∼ 1/N2 due to near degeneracies in the system’s spec-

trum, certain eigenstate pairs suddenly appear in uncorrelated,
widely separated parts of the spectrum that have two dominant
eigenvalues λ1 and λ2. They are responsible for the averages
that deviate by an order

√
� [as opposed to O(�)] from their

values in the absence of interactions. As � is continuously
increased, clusters of three levels whose eigenstates have three
significant eigenvalues appear, the third one being of the order
of � ln � in the previous regime of pairs only. In this regime,
the third Schmidt eigenvalue starts to develop significance and
there is a regime where the fourth is also important and so on.

This scenario suggests an analysis that can capture the
essence of the successive regimes in the transition. Consider
the first regime and let the pair of unperturbed states |kl〉 and
|k1l1〉 be one such doublet creating a pair of eigenstates, of
which one’s Schmidt decomposition is very nearly

√
ν1|kl〉 +

√
ν ′

1|k1l1〉, (102)

where ν1 + ν ′
1 = 1. For the other member of the pair, ν1 and ν ′

1
are interchanged, so assume that ν ′

1 � ν1. A further increase
in the interaction starts to mix in, say, |k2l2〉, such that the
Schmidt decomposition is now approximately

√
ν2(

√
ν1|kl〉 +

√
ν ′

1|k1l1〉) +
√

ν ′
2|k2l2〉, (103)

again with ν2 + ν ′
2 = 1 and ν ′

2 � ν2. At this stage there are
three prominent Schmidt eigenvalues and the corresponding
probabilities ν2ν1, ν2ν

′
1, and ν ′

2. The process is now iterated
and thus schematically corresponds to a fragmentation pro-
cess of the interval [0,1] into smaller pieces that add to 1,

{ν1, ν
′
1} → {ν2ν1, ν2ν

′
1, ν

′
2}

→ {ν3ν2ν1, ν3ν2ν
′
1, ν3ν

′
2, ν

′
3} → · · · , (104)

where ν ′
j + νj = 1 at all stages, but νj is a random variable.

At a particular generation let the fractions be {λ1, . . . , λK−1}
and the associated moment be μα = ∑K−1

j=1 λα
j . Then, after the

next level

μ′
α = να

Kμα + (ν ′
K )α. (105)

Thus

μ′
α − μα = −[1 − να

K − (ν ′
K )α

]
μα + (ν ′

K )α (1 − μα ). (106)

Now consider only the leading order of μα in Eq. (74) and
assume that νK and ν ′

K have the same properties as λ1 and
λ2, in particular that their moments satisfy Eqs. (59) and (67).
Note that Eq. (59) is also the moment of λ2 as the other

eigenvalues contribute at a smaller order of
√

�. Putting these
together, we get an equation for the averages

μ′
α − μα = −C(α)

√
� μα + O(�), (107)

which suggests that the fragmentation process occurs at a rate
proportional to

√
�. Taking into account the known behavior

of μα around
√

� = 0 leads to the differential equation

∂μα

∂
√

�
= −C(α)μα. (108)

This recursively embedded perturbative argument suggests a
simple exponential extension of the perturbation expansions.
That is, the differential equation solution

μα ≈ exp[−C(α)
√

�] (109)

is expected to be valid for larger � than does the linear
perturbative result in Eq. (74). This supports an exponential
decay of moments, in particular the purity (α = 2), as the
interaction is increased.

In the � → ∞ limit, the known random matrix asymptotic
(large-N ) result is

μ∞
α = Cα/Nα−1, (110)

where the Cα are Catalan numbers (see [88], §26.5), defined
usually for an integer value of α. The μ∞

α , being the moments
of the Marčenko-Pastur distribution (9), are well defined for
all α � 0 and hence Cα are well defined as well.

A simple interpolation between the exponential decay of
the moments and their random matrix value is given by

μα ≈ exp

(
− C(α)

1 − μ∞
α

√
�

)(
1 − μ∞

α

)+ μ∞
α . (111)

The arguments of the exponentials in Eq. (109) get modified
by the asymptotic values, so the small � perturbative result
is unchanged, yet the asymptotic value is reached. Using (8),
this gives, for the entropies,

Sα (�) ≈
[

1 − exp

(
− C(α)

(α − 1)S∞
α

√
�

)]
S∞

α , (112)

where

S∞
α = 1 − CαN1−α

α − 1
. (113)

The asymptotic entropies S∞
α are reached at the end of the

transition, and although Eq. (113) is valid for α > 1, it is
known that S∞

1 = ln N − 1
2 . For α = 1 one has the important

case of the von Neumann entropy, which, however, has to
be treated separately. Its increase is governed by the limit of
C(α)/(α − 1) as α → 1, which is equal to π3/2, consistent
with Eq. (78). Explicitly, the von Neumann entropy is

S1(�) ≈
[

1 − exp

(
−π3/2

S∞
1

√
�

)]
S∞

1 . (114)

Figure 15 shows the von Neumann entropy and S2, S3, and S4

for the coupled kicked rotors. The agreement is surprisingly
good with Eqs. (112) and (114). The inset may be compared
with Fig. 5, where deviations are visible from the perturbation
theory at values of

√
� that are one order of magnitude
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FIG. 15. Average eigenstate entropies Sα for von Neumann en-
tropy S1 and α = 2, 3, 4 as a function of

√
�. The lowest curve is for

von Neumann entropy and the approach to asymptotic values is faster
for larger α values. The circles are for the coupled kicked rotors. The
lines correspond to Eq. (112). The inset is a magnification of the
small-� region.

smaller. Overall, the exponential continuation along with the
random matrix value seems to give the full transition from
uncoupled, unentangled states to generic states with nearly
maximal entanglement entropy.

VII. SUMMARY AND OUTLOOK

The results obtained in this paper apply to a rather gen-
eral class of weakly interacting bipartite systems. The basic
assumption is that each of the subsystems can be considered
quantum chaotic in the sense that it can be described by
random matrix statistics for the eigenvalues and eigenvectors.
The random matrix ensemble (23) describes the universal
transition from the statistics of noninteracting systems to those
of a fully interacting case, as long as it is characterized as
a function of the unitless transition parameter � [Eq. (35)].
This transition is described by a generalized universality
class of a dynamical symmetry-breaking nature. While the
subsystems are assumed to follow random matrix statistics,
the interaction between the subsystems is kept general. Thus,
this approach, numerically illustrated for the example of the
coupled kicked rotors, applies equally well to few- and many-
body systems, e.g., interacting particles in quantum dots, spin
chains, coupled quantum maps, and Floquet systems. Many
dynamical symmetry-breaking scenarios may be imagined
for many-body systems, e.g., spin-spin interactions or weak
environmental coupling.

A random matrix transition ensemble is used to derive
the entanglement properties of two interacting subsystems.
Based on a perturbative treatment, the single universal
transition parameter � is determined in terms of the
interaction. Starting from the noninteracting case � = 0,
the entanglement between the subsystems increases to being
nearly maximal, i.e., to that of random states in the full Hilbert
space. Quantitatively, the entanglement may be characterized
by the purity, HCT entropies, and the von Neumann entropy.
All these can be computed using the Schmidt eigenvalues
λi of the reduced density matrix. Based on perturbation
theory, explicit expressions for the largest and second largest

eigenvalue of the reduced matrix are obtained. Using an
appropriate regularization, predictions for the averages λ1

and λ2 are derived, which are valid for small values of
√

�.
In this regime, good agreement with numerical results for
the coupled kicked rotors is found. Furthermore, the average
moments

∑
j>1 λα

j and λα
1 are obtained perturbatively up to

O(�). Based on these moments, a perturbative prediction
for the entanglement entropies (7) is obtained. A comparison
with numerical results for the coupled kicked rotors shows
that the perturbative results provide a good approximation
up to about

√
� = 0.3. This indicates that the theoretical

results are robust, in the sense that deviations from ideal
behavior, such as those discussed in Appendix C, do not harm
the agreement. A particularly interesting moment is μ1/2, as
this indicates the distance of the eigenfunction to the closest
maximally entangled state. Here the perturbative result gives
good agreement with numerics up to

√
� = 0.6.

Going beyond the average behavior of the eigenvalue mo-
ments and entanglement entropies, the probability densities
of the eigenvalues of the reduced density matrices are studied.
The probability densities of λ1 and λ2, dependent on the tran-
sition parameter �, show substantial tails. In the perturbative
regime, a suitable rescaling of λ2 has a universal density which
is independent of � and shows a power-law tail, found over
several orders of magnitude. For the density of a rescaled λ1,
which is a sum of heavy-tailed densities, a generalized central
limit theorem implies the Lévy distribution, which also shows
a power-law tail. Closely related is the density of the linear
entropy S2, which also follows the Lévy distribution. In turn,
the purity μ2 = 1 − S2, again rescaled, shows a half-normal
density, which is also seen in the numerical results for the
coupled kicked rotors with good agreement at small

√
� and

deviations showing up for
√

� = 10−1.
In the nonperturbative regime the density of the purity

shows a transition from a small amount of entanglement, μ2

near 1, to large entanglement, μ2 around 2/N . The density
of rescaled Schmidt eigenvalues approaches the Marčenko-
Pastur distribution. Of particular interest is the density of
the largest eigenvalue λ1, which in the limit of large inter-
action follows the Tracy-Widom distribution. Interestingly,
the approach to this limit is much slower than for any of
the other statistical quantities considered in this paper, with
good agreement with numerics only found for

√
� = 14. In

contrast, the approach of the density of the smallest Schmidt
eigenvalue to the exponential density of the random matrix
theory limit appears to be faster.

To obtain a description of the behavior of the entanglement
entropies for the whole transition, a recursively embedded
perturbation theory is invoked. This leads to a remarkably
simple expression (111), which actually captures the essence
of the entire transition. It is found to be in very good agree-
ment with the numerical results for the coupled kicked rotors
(see Fig. 15).

Moreover, eigenstate localization as measured by the
inverse participation ratio is connected to the linear entropy
after subsystem averaging, as was shown in [48]. Thus, using
a spectral averaging, this can be used as a sensitive detector
of nonergodic behaviors. An interesting future direction
concerns the relation between entropies and eigenvector
moments.
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Anderson localization of electrons due to disorder and
the associated metal-insulator transition has a long history;
for example, see the reviews in [113,114], and for a discus-
sion of multifractal states in the integer quantum Hall effect
(wherein disorder plays a crucial role) see [115]. Universal
size-independent distributions of quantities such as conduc-
tance and nearest-neighbor spacings at the critical point have
been uncovered [116–118]. Thus, it is interesting that the
rate of growth of entanglement entropy Sα as a function of
the transition parameter, studied in the present paper, has
precisely the same form as the αth multifractal exponent of
eigenstates of critical random matrix ensembles describing
the physics of Anderson transitions [119,120]. For example,
compare the leading-order term in Eq. (76) with Eq. (3.20)
of [120]. This is no coincidence as both are derived as a con-
sequence of a degenerate perturbation theory that starts from
Poissonian spectra. However, beyond this similarity, although
there are power laws in the systems we are investigating, if
there is criticality in some sense remains to be seen. The
critical random matrix ensembles are modeling single-particle
systems [120–122], but it would be interesting to investigate
whether criticality can arise as a consequence of coupling
chaotic systems.

An important future application of the results for the ran-
dom matrix transition ensemble is that this provides a means
to detect nonuniversal behaviors in terms of deviations from
the obtained universal results. For example, for the situation
in which one or both of the subsystems shows a mixed phase
space or some kind of localization of eigenstates, the results
given here represent an important limit to compare with. It is
reasonable to expect that at any given interaction strength the
entropies derived herein are an upper bound in typical systems
such as in the coupled kicked rotors.

The application of the results in the context of weakly
interacting many-body system, such as spin chains, will be
of particular interest. This work raises the question of how
to determine the transition parameter � in such situations
and then investigate the universality of statistics dependent
on �. Besides investigating the properties of spectra and
eigenfunctions, also the time evolution of wave packets is
expected to follow a universal behavior dependent on the
transition parameter. This should also pave the way for ex-
perimental studies, e.g., using cold-atom experiments. Such
results will be of importance for dynamical systems, quantum
information, and condensed matter theory.
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APPENDIX A: PERTURBATION THEORY
WITH UNITARY MATRICES

Here we derive the perturbation theory results for eigenval-
ues and eigenfunctions of unitary matrices. The eigenvalue re-
sults of this appendix can be found in the book by Peres [123].
Consider a unitary operator of the form

U (ε) = (UA ⊗ UB )UAB (ε),

UAB (ε) = exp(iεV ), (A1)

where HA and HB (dimensions NA � NB , respectively) are
assumed to be symmetry reduced subspaces and hence there
are no systematic degeneracies. It has unperturbed eigenstates
separately for the individual subspaces of the direct product
space, given by

UA|jA〉 = eiθA
j |jA〉, UB |kB〉 = eiθB

k |kB〉 (A2)

and therefore

(UA ⊗ UB )|jA〉|kB〉 = eiθjk |jA〉|kB〉, θjk = θA
j + θB

k .

(A3)

The eigenstates of the full system can be denoted by a double
index label jk. Then

(UA ⊗ UB )UAB (ε)|�jk〉 = eiϕjk |�jk〉, (A4)

where in the ε → 0 limit, |�jk〉 → |jA〉|kB〉 (=|jk〉) and
ϕjk → θjk . The standard perturbation approach is to insist that
〈jk|�jk〉 = 1, thereby implying that 〈�jk|�jk〉 > 1, and it is
necessary to renormalize the eigenvectors in a second step.
The Ansätze for the unnormalized eigenvector and eigenangle
are

|�jk〉 = |jk〉 +
∞∑

n=1

εn
∣∣�(n)

jk

〉
,

ϕjk =
∞∑

n=0

εnϕ
(n)
jk , (A5)

where it remains to calculate the nth-order corrections |�(n)
jk 〉

and the eigenangle ϕ
(n)
jk . The equations to all orders can be

generated by projecting a complete set of states using the
unperturbed basis onto Eq. (A4),

NANB∑
j ′k′=1

|j ′k′〉〈j ′k′|(UA ⊗ UB )UAB (ε)|�jk〉

= eiϕjk

NANB∑
j ′k′=1

|j ′k′〉〈j ′k′|�jk〉

= eiθj ′k′
NANB∑
j ′k′=1

|j ′k′〉〈j ′k′|UAB (ε)|�jk〉, (A6)

then substituting the Ansätze (A5), the exponential form of the
interaction in Eq. (A1), and creating a hierarchy of equations
by collecting terms of equal order in ε. Each equation must
hold individually for any particular term in the summation jk′
above. The first equation is

eiθjk
[
iδjk,j ′k′ϕ

(1)
jk + (1 − δjk,j ′k′ )

〈
j ′k′∣∣�(1)

jk

〉]
= eiθ

j ′k′ [(1 − δjk,j ′k′ )
〈
j ′k′∣∣�(1)

jk

〉+ i〈j ′k′|V |jk〉]. (A7)

The jk = j ′k′ term gives the expected relation

ϕ1
jk = 〈jk|V |jk〉 (A8)

and the jk �= j ′k′ terms give

〈
j ′k′∣∣�(1)

jk

〉 = i〈j ′k′|V |jk〉
ei(θjk−θj ′k′ ) − 1

. (A9)
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In the limit of NA → ∞, only differentially small-angle dif-
ferences are perturbative and this equation reduces to the
familiar form arising with perturbation theory of Hamiltonian
systems,

〈
j ′k′∣∣�(1)

jk

〉 = 〈j ′k′|V |jk〉
θjk − θj ′k′

, (A10)

where the eigenangles appear instead of the eigenenergies.

The equation for the second-order corrections is longer and
it is simpler to isolate the δjk,j ′k′ terms from those with 1 −
δjk,j ′k′ . First, the δjk,j ′k′ terms lead to

iϕ
(2)
jk −

(
ϕ

(1)
jk

)2

2
= i〈jk|V ∣∣�(1)

jk

〉− 1

2
〈jk|V 2|jk〉. (A11)

Substituting in the solutions from the first-order equations gives

ϕ
(2)
jk =

NANB∑
j ′k′ �=jk

[
i

ei(θjk−θj ′k′ ) − 1
+ i

2

]
|〈j ′k′|V |jk〉|2. (A12)

Perhaps it is less than immediately obvious that the second-order eigenangle correction is real, but consider that

i

ei(θjk−θj ′k′ ) − 1
+ i

2
= sin(θjk − θj ′k′ )

4 sin2
( θjk−θj ′k′

2

) = 1

2
cot

(
θjk − θj ′k′

2

)
(A13)

and also in the NA → ∞ limit, the usual form of the second-order eigenvalue correction is recovered

ϕ
(2)
jk =

NANB∑
j ′k′ �=jk

|〈j ′k′|V |jk〉|2

θjk − θj ′k′
. (A14)

That leaves the equation resulting from the second-order terms without the j ′k′ = jk terms. After a bit of algebra and grouping
terms, this gives

〈j ′k′∣∣�(2)
jk

〉 = i

ei(θjk−θj ′k′ ) − 1

⎡
⎣ NANB∑

j ′′k′′ �=jk

〈j ′k′|V |j ′′k′′〉〈j ′′k′′|V |jk〉 sin(θjk − θj ′′k′′ )

4 sin2
( θjk−θj ′′k′′

2

) + 〈j ′k′|V |jk〉〈jk|V |jk〉 sin(θjk − θj ′k′ )

4 sin2
( θjk−θj ′k′

2

)
⎤
⎦,

(A15)

which also reduces to the expected expressions in the NA→∞
limit. Renormalizing the eigenfunction alters the unit coeffi-
cient in front of |jk〉 in the expansion to

|�jk〉 =
⎡
⎣1 − ε2

8

NANB∑
j ′k′ �=jk

|〈j ′k′|V |jk〉|2

sin2
( θjk−θj ′k′

2

)
⎤
⎦|jk〉 + · · · ,

(A16)

also with the expected NA → ∞ limit.

APPENDIX B: TRANSITION PARAMETER

In this Appendix we derive the expression (42) for the
transition parameter �. Consider the bipartite unitary operator
(2) for which we want to calculate v2, the mean-square off-
diagonal matrix element of UAB (ε) in the basis in which
UA and UB are diagonal. To simplify notation we omit the
dependence on ε. Moreover, for convenience we assume that
UA,B are sampled independently from the CUE (of NA × NA

and NB × NB unitary matrices respectively) and averaging is
also performed over this ensemble.

In the unperturbed basis, we define the off-diagonal matrix
element

zkl;k′l′ =
NA∑

m=1

NB∑
n=1

ukmu∗
k′mwlnw

∗
l′n(UAB )mn,

where (k, l) �= (k′, l′) and (UAB )mn = 〈mn|UAB |mn〉 is a di-
agonal matrix element due to the interaction and u and w are
two independent NA- and NB-dimensional unitary matrices,
respectively, which diagonalize the unperturbed part. The
averaging is done over the Haar measure on unitary matrices.
Using the independence of u and w and the relation

ukmuk′m′u∗
k′mu∗

km′ = δmm′−1/Na

N2
A − 1

gives

v2 = |zkl;k′l′ |2

=
∑NA

m,m′
∑NB

n,n′
[
δmm′δnn′ − δnn′

NA
− δmm′

NB
+ 1

NANB

]
(
N2

A − 1
)(

N2
B − 1

)
× (UAB )mn(UAB )∗m′n′ . (B1)

This series can be rewritten as

v2 = N2
AN2

B(
N2

A − 1
)(

N2
B − 1

)
(

1 +
∣∣∣∣ trUAB

NANB

∣∣∣∣
2

− 1

NA

∥∥∥∥U (A)

NB

∥∥∥∥
2

− 1

NB

∥∥∥∥U (B )

NA

∥∥∥∥
2
)

, (B2)

where U (A) = trBUAB , U (B ) = trAUAB , and ‖X‖ = tr(XX†)
is Hilbert-Schmidt norm.
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The transition parameter � = v2/D2, where D = 2π
NANB

is
the mean level spacing, then takes the form

� = N3
AN3

B

4π2
(
N2

A − 1
)(

N2
B − 1

)
(

1 +
∣∣∣∣ trUAB

NANB

∣∣∣∣
2

− 1

NA

∥∥∥∥U (A)

NB

∥∥∥∥
2

− 1

NB

∥∥∥∥U (B )

NA

∥∥∥∥
2
)

. (B3)

Next we evaluate � explicitly for the model in Eq. (2) by
performing the averaging over ξj . For this we treat every term
in the sum in Eq. (B3) separately,

∣∣∣∣ trUAB

NANB

∣∣∣∣
2

= 1

N2
AN2

B

NANB∑
j,j ′=1

e2πiεξj e−2πiεξj ′

= 1

N2
AN2

B

⎡
⎣NANB∑

j=1

1 +
∑
j �=j

e2πiε(ξj −ξj ′ )

⎤
⎦.

As the ξj ’s are independent uniform random variables in
[−1/2, 1/2), their difference z = ξj − ξj ′ has the probability
density function

ρz(x) =
⎧⎨
⎩

1 + x for − 1 < x < 0
1 − x for 0 � x < 1
0 otherwise.

(B4)

Using
∫ 1
−1 e2πiεxρz(x)dx = sin2(πε)

π2ε2 gives

∣∣∣∣ trUAB

NANB

∣∣∣∣
2

= 1

NANB

+
(

1 − 1

NANB

)
sin2(πε)

π2ε2
.

Similarly,

1

NA

∥∥∥∥U (A)

NB

∥∥∥∥
2

= 1

NB

+
(

1 − 1

NB

)
sin2(πε)

π2ε2
,

1

NB

∥∥∥∥U (B )

NA

∥∥∥∥
2

= 1

NA

+
(

1 − 1

NA

)
sin2(πε)

π2ε2
. (B5)

Inserting these results in Eq. (B3) finally gives the result

� = N2
AN2

B

4π2(NA + 1)(NB + 1)

[
1 − sin2(πε)

π2ε2

]
, (B6)

as stated in Eq. (43).
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FIG. 16. Probability density ρ(w) of the (normalized) off-
diagonal matrix elements for the random matrix transition ensemble
and coupled kicked rotors for N = 100. For the random matrix
ensemble the black histogram matches the exponential quite well
[Eq. (33)] (red dashed line), as expected. The density for the coupled
kicked rotors (green histogram) deviates quite a bit.

APPENDIX C: PROBABILITY DENSITY
OF MATRIX ELEMENTS

Consider the density of the off-diagonal matrix elements
|〈jk|V |j ′k′〉|2 for the random matrix ensembles and for the
coupled kicked rotors. The set of vectors {|jk〉} is the eigen-
basis of the two uncoupled systems and V the symmetry-
breaking interaction in Eqs. (24) and (54). It is taken for
granted that for the ensemble (23), after rescaling by the mean
absolute square v2, there is a unit mean random variable w =
|〈jk|V |j ′k′〉|2/v2, which follows an exponential probability
density (33). The quality of this assertion is demonstrated in
Fig. 16, which shows that it is very good.

The situation is more complicated for the coupled kicked
rotors (N = 100), which after all is an actual dynamical
system. The histogram for the kicked rotors deviates quite a
bit from the expected exponential behavior. This could be a
reflection of a correlation between the matrix elements and
eigenvectors, imperfect ergodicity of the system, or the lack
of true randomness of the interaction, all of which would
generally happen, at least to some extent for a real dynamical
system, as opposed to a member of a random matrix ensemble.
Nevertheless, for all the derived universal results throughout
the paper, the coupled kicked rotors followed the theory quite
well. It has long been known within random matrix theory that
many results are robust in the sense that deformed ensembles
or ones with non-Gaussian matrix elements, or many other
kinds of alterations, still lead to the same fluctuation prop-
erties. It appears that even though the coupled kicked rotors
do not approximate a member of the ensemble perfectly, they
lead to the same results for the quantities studied in this paper
and thus lie within the range of robustness of the theory.
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