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Small world of Ulam networks for chaotic Hamiltonian dynamics
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We show that the Ulam method applied to dynamical symplectic maps generates Ulam networks which belong
to the class of small-world networks appearing for social networks of people, actors, power grids, biological
networks, and Facebook. We analyze the small-world properties of Ulam networks on examples of the Chirikov
standard map and the Arnold cat map showing that the number of degrees of separation, or the Erdös number,
grows logarithmically with the network size for the regime of strong chaos. This growth is related to the
Lyapunov instability of chaotic dynamics. The presence of stability islands leads to an algebraic growth of
the Erdös number with the network size. We also compare the time scales related with the Erdös number and the
relaxation times of the Perron-Frobenius operator showing that they have a different behavior.
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I. INTRODUCTION

In 1960 Ulam proposed a method [1], known now as the
Ulam method, for generating discrete, a finite cell approxi-
mate of the Perron-Frobenius operator for a chaotic map in
a continuous phase space. The transition probabilities from
one cell to the others are determined from an ensemble
of trajectories which generates the probabilities of Markov
transitions [2] between cells after one map iteration. In this
way the Ulam method produces the Ulam networks with
weighted probability transitions between nodes corresponding
to phase-space cells. For one-dimensional (1D) fully chaotic
maps [3,4] the convergence of the discrete dynamics of this
Ulam approximate of the Perron-Frobenius operator (UPFO),
at cell size going to zero to the continuous dynamics has
been mathematically proven in Ref. [5]. The properties of
UPFO was studied for 1D [6–8] and 2D [9–12] maps. It was
shown that the UPFO finds useful applications for analysis of
dynamics of molecular systems [13] and coherent structures
in dynamical flows [14]. Recent studies [15,16] demonstrated
similarities between the UPFO, corresponding to Ulam net-
works, and the Google matrix of complex directed networks of
World Wide Web, Wikipedia, world trade, and other systems
[17–19].

From a physical point of view the finite cell size of
UPFO corresponds to the introduction of a finite noise with
amplitude given by a discretization cell size. For dynamical
maps with a divided phase space, like the Chirikov standard
map [20], such a noise leads to the destruction of invariant
Kolmogorov-Arnold-Moser (KAM) curves [3,20,21] so that
the original Ulam method is not operating in a correct way
for such maps. However, the method can be considered in
its generalized form [22] when the Markov transitions are
generated by specific trajectories starting only inside one
chaotic component thus producing Markov transitions be-
tween cells belonging only to this chaotic component. Due
to ergodicity on the chaotic component even only one long
chaotic trajectory can generate a complete UPFO avoiding the
destruction of KAM curves and stability islands. It was also
shown numerically that the spectrum of the finite-size UPFO

matrix converges to a limiting density at cell sizes going to
zero [22].

Certain similarities between the spectrum of UPFO ma-
trices of Ulam networks and those of a Google matrix of
complex directed networks have already been discussed in
the literature (see, e.g., Ref. [19]). Here we address another
feature of Ulam networks showing that they have small-world
properties, meaning that almost any two nodes are indirectly
connected by a small number of links. Such a small-world
property with its six degrees of separation is typical for social
networks of people [23], actors, power grids, and biological
and other networks [24–26]. Thus the whole Facebook net-
work of about 700 million users has only four degrees of
separation [27].

The paper is organized as follows: Section II presents
the main properties of the two symplectic maps considered;
construction of Ulam networks is described in Sec. III;
small-world properties of Ulam networks are analyzed in
Sec. IV; and the relaxation rates of the coarse-grained Perron-
Frobenius operator are considered in Sec. V. The obtained
results are discussed in the Sec. VI.

II. DYNAMICAL SYMPLECTIC MAPS

We analyze the properties of Ulam networks for two ex-
amples, the Chirikov standard map [20] and the Arnold cat
map [21]. Both maps capture the important generic features
of Hamiltonian dynamics and find a variety of applications for
the description of real physical systems (see, e.g., Ref. [28]).

The Chirikov standard map has the form:

p̄ = p + K

2π
sin(2πx) , x̄ = x + p̄ (mod 1). (1)

Here bars mark the variables after one map iteration and
we consider the dynamics to be periodic on a torus so that
0 � x � 1, 0 � p � 1. It is argued that the last KAM curve
is the one with the golden rotation number being destroyed
at critical Kc = Kg = 0.971635406 . . . [29]. Indeed, further
mathematical analysis [30] showed that all KAM curves are
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destroyed for K � 63/64 while the numerical analysis [31]
showed that Kc − Kg < 2.5 × 104. Thus it is most probable
that Kc = Kg and the golden KAM curve is the last to be
destroyed (see also the review in Ref. [32]).

The Arnold cat map [21] of the form

p̄ = p + x (mod L), x̄ = x + p̄ (mod 1), (2)

is the cornerstone model of classical dynamical chaos [3].
This symplectic map belongs to the class of Anosov systems;
it has the positive Kolmogorov-Sinai entropy h = ln[(3 +√

5)/2)] ≈ 0.9624 and is fully chaotic [3]. Here the first
equation can be seen as a kick which changes the momentum
p of a particle on a torus while the second one corresponds
to a free phase rotation in the interval −0.5 � x < 0.5; bars
mark the new values of canonical variables (x, p). The map
dynamics takes place on a torus of integer length L in the
p direction with −L/2 < p � L/2. The usual case of the
Arnold cat map corresponds to L = 1 but it is more interesting
to study the map on a torus of longer integer size L > 1
generating a diffusive dynamics in p [33,34]. For L � 1
the diffusive process for the probability density w(p, t ) is
described by the Fokker-Planck equation:

∂w(p, t )

∂t
= D

2

∂2w(p, t )

∂p2
, (3)

with the diffusion coefficient D ≈ 〈x2〉 = 1/12 and t being
iteration time. As a result, for times t � L2/D the distribution
converges to the ergodic equilibrium with a homogeneous
density in the plane (x, p) [34].

III. CONSTRUCTION OF ULAM NETWORKS

We construct the Ulam network and related UPFO for the
map (1) as described in Ref. [22]. First we reduce the phase
space to the region 0 � x < 1 and 0 � p < 0.5 exploiting
the symmetry x → 1 − x and p → 1 − p. The reduced phase
space is divided into M × (M/2) cells with certain integer
values M in the range 25 � M � 3200. To determine the clas-
sical transition probabilities between cells we iterate one very
long trajectory of 1012 iterations starting inside the chaotic
component at x = p = 0.1/(2π ) and count the number of
transitions from a cell i to a cell j . Depending on the value
of K it is possible that there are stable islands or other
nonaccessible regions where the trajectory never enters. This
corresponds to certain cells that do not contribute to the Ulam
network. In practice, we perform trajectory iterations only for
the largest two values M = 3200 and M = 2240 and apply
an exact renormalization scheme to reduce successively the
value of M by a factor of 2 down to M = 25 and M = 35
(for these two cases the vertical cell number is chosen as
(M + 1)/2 with the top line of cells only covering half cells).
We consider the dynamics for four different values of K: the
golden critical value K = Kg = 0.971635406, K = 5, K =
7, and K = 7 + 2π . There are small stability islands for the
last three cases. The original Ulam method [1] computes the
transition probabilities from one cell to other cells using many
random initial conditions per cell but for the Chirikov standard
map this would imply that the implicit coarse graining of
the method produces a diffusion into the stable islands or
other classically nonaccessible regions which we want to

avoid. The typical network size (of contributing nodes/cells)
is approximately Nd ≈ M2/2 (Nd ≈ M2/4) for the cases with
K � 5 (K = Kg).

For the Arnold cat map (2) we divide the phase space
−0.5 � x < 0.5 and −L/2 � p < L/2 into M × LM cells
where in this work we mostly choose L = 3 and M is taken
from a sequence of prime numbers starting with M = 29 and
increasing M roughly by a factor of 1.4 in order to minimize
certain arithmetic effects from nonprime numbers. Since the
Arnold cat map does not have any inaccessible regions, both
variants of the Ulam method, with many random initial condi-
tions or one long trajectory (using a suitable irrational choice
of the initial position), work very well.

However, due to the exact linear form of (2) it is even pos-
sible to compute directly very efficiently and exactly (without
any averaging procedure) the transition probabilities. Details
of this procedure for the Arnold cat map together with a
discussion of related properties of the UPFO for the standard
map are given in Appendix. The results for the UPFO for the
cat map given below in this work have all been obtained for
the exact UPFO computed in this way.

IV. SMALL-WORLD PROPERTIES OF ULAM NETWORKS

To study the small-world properties of the Ulam networks
we compute a quantity which we call the Erdös number NE

(or number of degrees of separation) [26,35]. This number
represents the minimal number of links necessary to reach
indirectly a specific node via other intermediate nodes from a
particular node called the hub. Here the (nonvanishing) transi-
tion probabilities are not important and only the existence of a
link between two nodes is relevant. The recursive computation
of NE for all nodes can be done very efficiently for large
networks by keeping a list of nodes with same NE found in the
last iteration and which is used to construct a new list of nodes
with NE increased by unity as all nodes being connected to
a node of the initial list and not yet having a valid smaller
value of NE (for nodes found in a former iteration). After each
iteration the list will be updated with the new list and the initial
list of this procedure at NE = 0 is chosen to contain one node
being the hub.

Figure 1 shows the probability distributions wE (NE ) of the
Erdös number NE [using a hub cell at x = 0.1/(2π ), p = 0]
and the number of links Nl per node of the UPFO for the
Chirikov standard map at K = 7 and K = 7 + 2π for the
three largest values of M = 1600, 2240, 3200 considered.
The distributions of NE are quite sharp with mean values of
NE around 8 (or 7) for K = 7 (K = 7 + 2π ) being slightly
increasing with M . Even though the maximal possible values
are larger [N (max)

E = 33 for K = 7 and N
(max)
E = 21 for K =

7 + 2π at M = 3200] the big majority of nodes have a value
NE � 12 (10) for K = 7 (K = 7 + 2π ), clearly confirming
the small-world structure of these networks.

The corresponding distribution wl (Nl ) of number of links
Nl shows that Nl takes essentially only even values in the
range 4 � Nl � N

(max)
l with N

(max)
l = 18 (32) for K = 7

(K = 7 + 2π ). This behavior can be understood in the frame-
work of the discussion in Appendix showing that the image
of an initial square cell is (up to nonlinear corrections) a par-
allelogram with extreme points (relative to a certain reference
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FIG. 1. Left panels: Probability distribution wE of Erdös number
NE for the Ulam network of the Chirikov standard map at K = 7
(a) and K = 7 + 2π (c) for three different numbers of nodes (cells)
Nd ≈ M2/2 using a hub cell at x = 0.1/(2π ), p = 0. [(b) and (d)]
Probability distribution wl of number of links Nl per node of the
networks of panels (a) and (c), respectively. In all cases the Ulam
network was constructed with one trajectory of 1012 iterations using
the initial condition x = 0.1/(2π ), p = 0.1/(2π ).

cell) �s(ξ0, ξ0) and �s(ξ0 + A + 2, ξ0 + A + 1), where ξ0 is
a quasirandom uniformly distributed quantity in the interval
ξ0 ∈ [0, 1[ and �s = 1/M is the linear cell size. Here we
assume that A = K cos(2π�s xi ) > 0 (the argumentation for
A < 0 is rather similar with A → |A|). The parallelogram
covers in horizontal direction nearly always two cells and in
diagonal direction 	ξ0 + A + 1
 � 2 cells where 	u
 is the
ceil function of u being the smallest integer larger or equal
than u. Therefore typical values of Nl = 2	ξ0 + A + 1
 are
indeed even numbers with 4 � Nl � N

(max)
l , where N

(max)
l =

2	2 + K
 is in agreement with the observed values in Fig. 1.
Actually for K = 7 + 2π ≈ 13.283 we also understand

that the probability for Nl = N
(max)
l = 32 is quite strongly

reduced because even for maximal A = K we need that the
offset satisfies ξ0 > 1 − 0.283 which is statistically less likely.
Apart from this there is also a slight increase of histogram
bins with larger values of Nl due to the cosine factor in
A applied on a uniformly distributed phase. For sufficiently
large M this argumentation does not depend on system or
network size. We mention that for very small values of M

there are deviations from this general picture, with some small
probabilities for odd values of Nl due to boundary effects,
also related to stable islands and inaccessible phase-space
regions (especially for K = Kg). For the largest values M =
3200, 2240 and K = 7 + 2π the figure shows some small
deviations due to statistical fluctuations since the average ratio
of trajectory transitions per link 1012/[NdN

(max)
l ] ≈ 6000 is

rather modest. Furthermore, the data for K = 5 (not shown
in Fig. 1) are also in agreement with this general picture with
N

(max)
l = 14 and typically NE ≈ 11 ± 3.
According to Fig. 2 the average Erdös number for the three

cases with K � 5 behaves approximately as

〈NE〉 ≈ C1 + C2 ln(Nd ). (4)
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FIG. 2. Dependence of the average Erdös number 〈NE〉 on the
number of nodes (cells) Nd for the Ulam network of the Chirikov
standard map at K = 5 (top data points, black dots), K = 7 (both
sets of center data symbols of red pluses and green squares), and
K = 7 + 2π ≈ 13.28 (bottom data points, blue stars). The hub cell is
either at x = 0.1/(2π ), p = 0 (top, center with red plus symbols and
bottom) or at x = 0.1/(2π ), p = 0.1/(2π ) (center data with green
squares).

Here C1, C2 are some numerical constants which have no
significant dependence on the hub choice as long it is not
close to some stable island or similar. The typical values of
C2 are close to h−1 with h = ln(K/2) being the Lyapunov
exponent of the standard map (for K > 4) [20]. This is due
to the theoretically expected behavior Nf (NE ) ≈ ehNE for
NE < 〈NE〉 and where Nf (NE ) = NdwE (NE ) is the number
of cells indirectly connected to the hub after NE iterations.
This theoretical behavior is rather well confirmed by the data
of the left panel of Fig. 1 (when presented in log presentation
for the y axis and multiplied with Nd ). The exponential
increase saturates at NE = 〈NE〉 with eh〈NE〉 ≈ αNd and α

being a constant of order of unity implying C2 = 1/h and
C1 = ln(α)/h.

We have performed a similar analysis of Nl and NE also
for the Arnold cat map. Here the link number Nl is constant
for all nodes with values 4, 5, or 6 depending on the parity
of M or LM as explained in Appendix. The behavior of
NE is presented in Fig. 3 showing the frequency distribution
Nf (NE ) = NdwE (NE ) (left panel) and the dependence 〈NE〉
on Nd (right panel) for L = 3 and several (prime) values of
M . The expected theoretical behavior of both quantities is
very clearly confirmed providing accurate fit values of the
Lyapunov exponent being numerically very close to the the-
oretical value hth = ln[(3 + √

5)/2] ≈ 0.9624. Furthermore,
the saturation of the exponential growth of Nf (NE ) for NE �
〈NE〉 happens quite abruptly with N

(max)
E = 〈NE〉 + 3. We

also computed the restricted average of NE over the center
square box (of L = 3 squares) with |x| < 0.5 and |p| < 0.5
which turns out to be quite close to the full average with
|x| < 0.5 and |p| < L/2 showing that for the Erdös number
the diffusive dynamics is apparently not very relevant.

To understand the spatial structure of the Erdös number of
nodes we show in top panels of Fig. 4 density plots of the
phase-space probability distribution after a few iterations of
the UPFO for the map (1) at K = 7 and M = 400 applied
to an initial cell state. One can clearly identify the chaotic
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FIG. 3. Properties of the Erdös number NE for the Ulam network
of the Arnold cat map on a torus with L = 3 with hub cell at position
x = p = 0. (a) Frequency distribution Nf (NE ) for three different
values of M . The pink line corresponds to the fit Nf (E) = C ehNE

for M = 14 699 using the fit range 2 � NE � 18 with C = 1.777 ±
0.005 and h = 0.9629 ± 0.0002. (b) Dependence of average 〈NE〉
on the number of nodes (cells) Nd = LM2 (red plus symbols). The
blue stars correspond to a restricted average over nodes being in the
center square box with |x| < 0.5 and |p| < 0.5 (instead of |x| < 0.5
and |p| < L/2 for the full average). The pink line corresponds to the
fit (of top data points) 〈NE〉 = d + ln(Nd )/h̃ with d = −1.25 ± 0.08
and h̃ = 0.957 ± 0.005. The two values of h and h̃ compare to the
theoretical Lyapunov exponent hth = ln[(3 + √

5)/2] ≈ 0.9624. The
Ulam network for the Arnold cat map was constructed from exact
theoretical transition probabilities as described in Appendix. The
number of links per node is constant for all nodes: Nl = 5 (4 or 6)
if M and LM are odd (M and LM even or M odd and LM even,
respectively).

spreading along a one-dimensional manifold which fills up
the phase space due to refolding induced by the periodic
boundary conditions. The lower panels show the full spatial
distribution of the Erdös number by a color plot using red
(green, light blue) for nodes with smallest (medium, largest)
Erdös number. Dark blue is used for nonaccessible nodes in
the stable islands which have no Erdös number. Furthermore,
for a better visibility we consider a full square box with
0 � x < 1 and −0.5 � p < 0.5, where the data for p < 0
is obtained by the transformation x → 1 − x and p → −p

from the data with p � 0. In this way the two small stable
islands at p = 0 for K = 7 have a full visibility (the influence
of orbits sticking near these islands on Poincaré recurrences is
discussed in Ref. [36]). Nodes with the smallest Erdös number
follow the same one-dimensional unstable manifold as the
chaotic stretching and nodes with maximal Erdös number are
close to the outer boundaries of the stable islands which are
last reached when starting from the hub.

Figure 5 shows the probability distributions of NE and Nl

for the standard map at the golden critical value K = Kg =
0.971635406 with a complicated structure of stable islands
inside the main chaotic component. The distribution of NE

is now rather large with nonvanishing probabilities at values
NE ∼ 102 and several local maxima due to the complicated
phase-space structure with different layers of initial diffusive
spreading (limited by the golden curve). The distribution of
Nl is mostly concentrated on the two values Nl = 4 and 6
in agreement with the above discussion since N

(max)
l = 2	2 +

Kg
 = 6.
The spatial distribution of NE for K = Kg [using a hub

cell at x = 0.1/(2π ) and p = 0] is illustrated in the top panel
of Fig. 6 by the same type of color plot used for the lower

)b()a(

)d()c(

FIG. 4. Top: Color density plot of the probability distribu-
tion in the phase plane (x, p) obtained after t = 4 (a) or t = 7
(b) iterations of the UPFO (M = 400, resolution 400 × 200 boxes)
for the Chirikov standard map at K = 7 with an initial state being
localized in one cell at x = p = 0.1/(2π ). The colors red, green,
and blue correspond to maximum, medium, and minimal values.
(c) Density plots of the Erdös number of nodes or cells for the Ulam
network (standard map, K = 7, same hub position as in Fig. 1) in
the phase plane (x, p) with red, green, and light blue corresponding
to smallest, medium, and largest Erdös numbers. The dark blue cells
correspond to nonaccessible islands which do not contribute as nodes
for the Ulam network. Left panel corresponds to one full square
box of the phase space given by 0 � x < 1 and −0.5 � p < 0.5 for
M = 400 (resolution 400 × 400 boxes). Panel (d) shows a zoom of
200 × 200 cells with bottom left corner at cell position (935,1500)
for M = 3200 and containing the left of the two islands (for K = 7).
In both bottom panels data for cells with p < 0 are obtained from the
symmetry: p → −p and x → 1 − x.

panels of Fig. 5. In this case NE follows clearly the (very slow)
diffusive spreading with smallest NE values in the layers close
to the hub and maximal NE values closest to the top layers just
below the golden curve.

The bottom panel of Fig. 6 shows the NE color plot (with
hub cell at p = x = 0) for the Arnold cat map at L = 3 and
the rather small value M = 59 for a better visibility. As for
the case K = 7 of map (1) the Erdös number follows a one-
dimensional unstable manifold (a straight refolded line for the
cat map) and the chaotic spreading reaches quite quickly the
two outer square boxes (with |p| > 0.5). We have verified
that this behavior is also confirmed by the corresponding NE
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FIG. 5. Same as in Fig. 1 but for the golden critical value K =
Kg = 0.971635406 of map (1).
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(a)

(b)

FIG. 6. Density plots of Erdös number (similar as in bottom
panels of Fig. 4) for the Ulam network of the Chirikov standard map
at the golden critical value K = Kg = 0.971635406 for M = 3200
[top panel (a), hub cell at position x = 0.1/(2π ), p = 0, resolution
3200 × 1600 boxes] and of the Arnold cat map for M = 59, L = 3
[bottom panel (b), hub cell at position x = p = 0, resolution 59 ×
177 boxes]. In the latter case the roles of the x and p axes have been
exchanged for a better visibility.

color plots at larger values of M . The evolution of the nodes
with smallest NE values does not follow the classical diffusion
which can be understood by the fact that the Erdös number
only cares about reaching a cell as such even with a very small
probability while the diffusive dynamics applies to the evolu-
tion of the probability occupation of each cell. This is similar
to a one-dimensional random walk with a diffusive spreading
∼√

Dt of the spatial probability distribution while the Erdös
number (i.e., set of “touched” cells) increases ballistically in
time ∼t .

Figure 7 shows the dependence of the average 〈NE〉 on
Nd for K = Kg which follows a power law 〈NE〉 ∼ Nb

d with
b = 0.297 ± 0.004. For this case the logarithmic behavior

101
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Nd

FIG. 7. Dependence of the average Erdös number 〈NE〉 on the
number of nodes (cells) Nd for the Ulam network of the Chirikov
standard map at K = Kg (red plus symbols) with hub cell at x =
0.1/(2π ), p = 0 in a double logarithmic representation. The blue
line corresponds to the fit 〈NE〉 = CNb

d with C = 1.15 ± 0.04 and
b = 0.297 ± 0.004.

〈NE〉 ∼ ln Nd (4) observed for K � 5 is not valid due to
the small Lyapunov exponent and complicated phase-space
structure with slow diffusive spreading and complications
from orbits trapped around stable islands.

To explain the obtained dependence NE ∼ N0.3
d we give

the following heuristic argument. According to the renormal-
ization description of the critical golden curve the typical time
scale of motion in the vicinity of a certain resonance with the
Fibonacci approximate of the golden rotation number rn =
qn−1/qn → rg = (

√
5 − 1)/2 with qn = 1, 2, 3, 5, 8, . . . is

tn ∼ qn (same for the symmetric golden curve with r = 1 −
rg) [29,37]. At the same time the area of one cell close to the
resonance qn with typical size 1/q2

n scales approximately as
An ∼ 1/(q2

n tn) ∼ 1/q3
n . Since a cell of the Ulam network has

an area 1/Nd ∼ An we obtain that tn ∼ N
1/3
d . We expect that

the typical time to reach the resonance with largest qn value
that can be resolved by the UPFO discretization is of the order
of the most probable Erdös number such that NE ∼ tn ∼ N

1/3
d

leading to b = 1/3 comparable with the obtained numerical
value. Of course, this handwaving argument is very simplified
since in addition to Fibonacci resonance approximates there
are other resonances which play a role in long time sticking of
trajectories and algebraic decay of Poincaré recurrences (see,
e.g., Refs. [38–40]). Also as discussed above the Erdös num-
ber is for a network with equal weights of transitions while
in the UPFO for the Chirikov standard map the transition
weights are different.

Indeed, since the Erdös number does not depend on the
weight wl of a link it follows in principle a different dynamics
than the UPFO applied on an initial localized state. Therefore
we also analyzed the statistical distribution of link weights
wl . Figure 8 shows the integrated weight distribution Pw(wl )
(fraction of links with weight below wl) of the UPFO for
the Chirikov standard map for different values of K and M .
The vertical lines at some minimal value correspond to the
smallest possible weight values w

(min)
l = Nd/1012 being the

typical inverse number of trajectory crossings per cell and are
due to the finite length of the the iteration trajectory. Apart
from this, in the regime w

(min)
l < wl < 0.1, the behavior is

very close to a power law Pw(wl ) ∼ wb
l with some exponent

rather close to b ≈ 0.5 depending on K values and fit ranges.
This leads to a square root singularity in the probability
distribution pw(wl ) = Pw

′(wl ) ∼ w−0.5
l .

To understand this dependence we note that according
to the discussion in Appendix the weights wl are given as
the relative intersection areas of a certain parallelogram (the
image of one Ulam cell by the map) with the target Ulam cells
and that the bottom corner point of the parallelogram (relative
to its target cell) is given by �s(ξ0, ξ0), where ξ0 ∈ [0, 1[
has a uniform quasirandom distribution (see also the bottom
right panel of Fig. 11 in Appendix). If 1 − ξ0 
 1, then this
provides the triangle area (relative to the cell size �s2) as
wl = C(A)(1 − ξ0)2/2 with a coefficient dependent on the
parameter A = K cos(2π�s xi ), and also if we consider the
triangle in the cell around the lowest corner point or the cell
right next to it (which may have a smaller area depending on
A). Since ξ0 is uniformly distributed we find (after an addi-
tional average over the initial cells, i.e., over the parameter A)
immediately that pw(wl ) ∼ w

−1/2
l . It is also possible that the
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FIG. 8. Double logarithmic representation of fraction P (wl ) of
links with weight below wl of the Ulam network for the Chirikov
standard map with various values of K and M . The lower curves
are successively shifted down by a factor of 10 for a better visibil-
ity. The top straight blue line corresponds to the simplified power
law behavior ∼w0.5

l . The power law fits Pw (wl ) = C wb
l for the

range 5 × 10−5 < wl < 2.5 × 10−2 for K � 5 (10−4 < wl < 5 ×
10−1 for K = Kg) provide the fit values (top to bottom curves): C =
2.63 ± 0.03, 1.64 ± 0.01, 1.68 ± 0.02, 1.31 ± 0.01, 1.39 ± 0.02
and b = 0.584 ± 0.002, 0.521 ± 0.001, 0.525 ± 0.002, 0.542 ±
0.001, 0.571 ± 0.003. The vertical lines of data at the left side
correspond to the smallest possible weight values Nd/1012 being the
typical inverse number of trajectory crossings per cell with Nd ≈
M2/2 for K � 5 or Nd ≈ M2/4 for K = Kg .

top corner point of the parallelogram (instead of the bottom
corner point) may produce the minimal weight (among all
target cells for a given initial cell). However, the top corner
point also lies on the diagonal (relative to its target cell) and
produces therefore the same square root singularity.

The appearance of the singularity is certainly very inter-
esting. However, this singularity is integrable and the main
part of links still have weights wl comparable to its typical
value wl ∼ N−1

l given by the relative intersection areas of
the parallelogram with the other target cells. Furthermore,
despite this singularity, it seems that the dynamics of the Erdös
number follows qualitatively quite well the chaotic dynamics
induced by the direct application of the UPFO as can be seen,
for example, in Figs. 4 and 6.

The results of this section show that in the regime of strong
chaos the Ulam networks are characterized by small values of
the Erdös number NE ∼ ln Nd growing only logarithmically
with the network size Nd . However, the presence of stability
islands can modify the asymptotic behavior leading to a more
rapid growth with NE ∼ N0.3

d as it is the case for the critical
golden curve of the Chirikov standard map where a half of the
total measure is occupied by stability islands.

V. SMALL RELAXATION RATES OF UPFO

The average (or maximal) Erdös number gives the time
scale at which the UPFO touches most (or all) Ulam cells
when applied to an initial state localized at one cell (hub)
but it does not take into account the probability density
associated to the target cells which may be very small
for the cells with largest NE at iteration times t ∼ N

(max)
E .

However, the direct iterated application of the UPFO on a
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FIG. 9. Dependence of the decay rate γ1 = −2 ln |λ1| on network
size where λ1 is the second eigenvalue of the UPFO for the Chirikov
standard map. Top panels correspond to the values K = 5, 7, 7 +
2π [(a) and (b)] and bottom panels [(c) and (d)] to K = Kg . Left
panels show the dependence of γ −1

1 on network size Nd with a
logarithmic representation for Nd (and also for γ −1

1 for bottom panel
with K = Kg). Right panels [(b) and (d)] show the dependence of γ1

on M−1 where Nd ≈ M2/2 (M2/4) for the cases with K � 5 (K =
Kg). The blue line in bottom left panel corresponds to the power law
fit: γ −1

1 = C(Nd )b with C = 1.3 ± 0.2 and b = 0.64 ± 0.01 for the
fit range Nd > 104.

typical localized initial state converges exponentially versus
a (roughly) uniform stationary distribution (for the accessible
cells) as ∼ exp(−γ1t/2), where the decay rate is given by
γ1 = −2 ln(|λ1|) in terms of the second eigenvalue λ1 of the
UPFO (with the first eigenvalue always being λ0 = 1 for a
nondissipative map and its eigenvector being the stationary
homogeneous density distribution over the chaotic component
in the phase plane).

First results for γ1 were given for the Chirikov standard
map in Ref. [22] and the Arnold cat map in Ref. [34]. Here we
present new results for γ1 obtained by the Arnoldi method for
additional values of K and larger M . In most cases an Arnoldi
dimension of nA = 1000 (see Ref. [22] for computational
details) is largely sufficient to get numerical precise values
of γ1 as well as a considerable amount of largest complex
eigenvalues. Only for the Chirikov standard map at K = Kg ,
where the eigenvalue density close to the complex unit circle
is rather elevated, did we use nA = 3000 (4000) for M �
1600 (1600 < M � 3200).

Figure 9 shows two different representations of the de-
pendence of γ1 on M or Nd ∼ M2 for the standard map
and our usual values K = Kg, 5, 7, 7 + 2π . For K � 5 the
plot of the top left panel seems to indicate that γ −1

1 ∼ C1 +
C2 ln(Nd ) (with two different regimes for K = 5) possibly
indicating that γ1 ∼ 1/ ln(Nd ) → 0 for very large system
size. However, the alternative plot of γ1 versus 1/M in top
right panel might indicate a finite limit of γ1 for M → ∞ at
least for K = 7 with a very particular classical behavior due to
the stable island [31] visible in Fig. 4 (bottom left panel). We
think that the numerical data does not allow us to conclude
clearly if the infinite-size limit of γ1 is vanishing or finite
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since the possible logarithmic behavior may manifest itself at
extremely large values of M or Nd numerically not accessible.

For K = Kg we confirm the power law behavior γ −1
1 ≈

1.3 N0.64
d for Nd > 104 in agreement with the results of

Ref. [22]. However, as discussed in Ref. [22], taking into
account the data with Nd < 104 one may also try a more
complicated fit using a rational function in 1/M providing a
different behavior γ −1

1 ∼ N0.5
d ∼ M but this would be visible

only for extremely large, numerically inaccessible, values
of M . Thus for the case K = Kg we can safely conclude
that γ1 → 0 for M → ∞ in agreement with the power-law
statistics of the Poincaré recurrence time at K = Kg .

Concerning the Arnold cat map, the very efficient algo-
rithm to compute the UPFO described in Appendix combined
with the Arnoldi method allows us to treat rather large values
of M , e.g., up to M = 983 corresponding to Nd ≈ 3 × 106.
We remind that due to the necessity to store simultaneously
∼nA vectors of size Nd it is not possible to consider the
Arnoldi method for values such as M = 14 699 for which
we were able to compute the Erdös number only using the
network link structure. We find that apart from λ0 = 1 (nearly)
all real and complex eigenvalues of the UPFO are double
degenerate due to the symmetry p → −p and x → −x.
Therefore we also implemented a symmetrized version of the
UPFO for the cat map where cells at pi < 0 are identified
with the corresponding cell at pi > 0 (and xi → −xi). This
allows the reduction of Nd by roughly a factor of two (cells
at pi = 0 are kept as such) and lifts the degeneracy allowing
to obtain more different eigenvalues at given value of nA. For
small values of M the symmetrized version may miss a few
eigenvalues but at M = 983 we find that the spectra coincide
numerically (for the amount of reliable eigenvalues which
we were able to compute for the nonsymmetrized UPFO).
Concerning the computation of γ1 this point is not important
since nA = 100 is already sufficient (both symmetrized and
nonsymmetrized UPFO) but we verified all γ1 values also
with nA = 1000. However, the symmetrized UPFO allows to
obtain larger spectra with less effort.

The left panel of Fig. 10 shows the dependence of γ −1
1 on

M for 2 � L � 5 and we see for all cases a clear convergence
for M → ∞ with final constant values already for M > 50.
The numerical values of γ1 can be explained by the diffusive
dynamics (3) in p direction with D = 1/12 which is expected
to be valid for sufficiently large L. Assuming periodic bound-
ary conditions in p direction the diffusive dynamics implies
the classical theoretical decay rate γ

(diff)
1 = D(2π )2/L2 =

π2/(3L2) which agrees quite accurately with our numerical
values for L � 3 (this was also seen in Ref. [34] for smaller
M values). Only for L = 2 the numerical value of γ −1

1 is
roughly a third larger than the theoretical value which is not
astonishing due to the modest value of L = 2 limiting the
applicability of the diffusive model.

Furthermore, we show as illustration in the right panel of
Fig. 10 the top spectrum of ∼4000 eigenvalues for the case
M = 983, L = 3 obtained by the Arnoldi method for nA =
5000 applied to the symmetrized UPFO. We note that apart
from both top eigenvalues (λ0 = 1 and λ1 ≈ 0.834183) the
spectrum is limited to a complex circle of radius ≈0.6 with
a quite particular pattern for the top eigenvalues with 0.55 <

|λj | < 0.6 and a cloud of lower eigenvalues with |λj | < 0.55.
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FIG. 10. (a) Dependence of the inverse decay rate γ −1
1 =

(−2 ln |λ1|)−1 on M where λ1 is the second eigenvalue of the UPFO
for the Arnold cat map for the cases L = 2, 3, 4, 5 and certain
prime numbers 29 � M � 983. The horizontal lines correspond to
the theoretical values [γ (diff)

1 ]−1 = [D(2π )2/L2]−1 = 3L2/π 2 based
on diffusive dynamics in the p direction with diffusion constant
D = 1/12, finite system size L, and periodic boundary conditions.
(b) Complex spectrum of top ∼4000 reliable eigenvalues λj of
the UPFO for the Arnold cat map at L = 3, M = 983 obtained
by the Arnoldi method with Arnoldi dimension 5000 and using a
symmetrized version of the map in p direction for 0 � p < L/2
[symmetrized matrix size N

(sym)
d ≈ LM2/2 ≈ 1.5 × 106]. The green

curve corresponds to the unit circle. The first two eigenvalues λ0 = 1
and λ1 ≈ 0.834183, corresponding to γ1 ≈ 0.362604, are shown as
red dots of increased size.

The results of Fig. 10 for the Arnold cat map clearly
show that the Erdös number, shown in Fig. 3, is not directly
related with the relaxation time 1/γ1 of the UPFO. As already
discussed above on an example of a diffusive process this
is related to the fact that the Erdös number does not take
into account the variations of transition weights and measures
the time when a cell is first touched, leading to a ballistic
type of propagation instead of diffusion, while the relaxation
time measures the convergence to the stationary homogeneous
probability distribution for long time scales.

VI. DISCUSSION

We analyzed the properties of Ulam networks generated by
dynamical symplectic maps. Our results show that in the case
of strongly chaotic dynamics these networks belong to the
class of small-world networks with the number of degrees of
separation, or the Erdös number NE , growing logarithmically
with the network size Nd . This growth is related to the Lya-
punov exponent of chaotic dynamics. However, the obtained
results show that in presence of significant stability islands
the Erdös number growth is stronger with NE ∼ N0.3

d being
related to orbits sticking in a vicinity of islands. We also show
that the Erdös number is not directly related to the largest
relaxation times which remain size independent in the case
of a diffusive process like for the Arnold cat map on a long
torus. We hope that our results will stimulate further useful
inter-exchange between the fields of dynamical systems and
directed complex networks.
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APPENDIX: EXACT UPFO FOR THE ARNOLD CAT MAP

The exact linear form of (2) allows to compute exactly
(without any averaging procedure) the transition probabilities
needed for the UPFO of the Arnold cat map. For this we
write each phase-space point in the form x = xi �s + �x

and p = pi �s + �p with �s = 1/M being the linear cell
size and xi , pi being integer values. Depending on the parity
of M (or LM) we have 0 � �x < �s (0 � �p < �s) for
even M (even LM) or −�s/2 � �x < �s/2 (−�s/2 �
�p < �s/2) for odd M (odd LM) such that each value of
the integer vector (xi, pi ) corresponds exactly to one Ulam
cell. The image of the grid point �s(xi, pi ) by the cat map
is exactly another grid point �s(x̄i , p̄i ) with integer values
x̄i and p̄i . These grid points are either at the left (bottom)
corner/boundary of the corresponding Ulam cell for even
values of M (or ML) or in the middle of the Ulam cell for
odd values of M (or ML).

The image of an initial Ulam square cell under the Arnold
cat map becomes a parallelogram of the same area, spanned
by the two vectors (�s, �s) and (2�s, �s), which intersects
with 4 (both M and LM even), 5 (both M and LM odd), or 6
target cells (M odd but LM even) as can be seen in Fig. 11.
The relative intersection areas of the parallelogram with each
cell provide the exact theoretical transition probabilities given
as multiples of small powers of 1/2. For example for the
most relevant case of this work, where both M and LM

are odd, there are for each initial cell one target cell with
transition probability of 1/2 and four other target cells with
probability 1/8. For the other cases we have four target cells
with probability 1/4 (both M and LM even) or two target
cells with probability 3/8 and four target cells with probability
1/16 (M odd and LM even).

Furthermore, Fig. 11 also shows the relative positions of
the concerned target cell with respect to a reference point
being the image of the grid point of the initial Ulam cell.
In this way it is possible to compute very efficiently and
directly the exact Ulam network for the Arnold cat map which
allowed us to choose M up to M = 14 699 corresponding
to the network size Nd = LM2 ≈ 6.5 × 108. We have also
verified that our exact computation scheme is in agreement
with the two other variants of the Ulam method (apart from
statistical fluctuations in the latter).

We may also try a similar analysis of the UPFO for
the Chirikov standard map which gives three complica-
tions: (i) the standard map is only locally linear for large
values of M and the scheme will only be approximate
due to nonlinear corrections; (ii) we have to add a cer-
tain (rather random/complicated) offset ξ0�s [with ξ0 =
K sin(2πxi�s)/(2π�s) mod 1] in the above expressions in
terms of xi or pi since an initial point on the integer grid is
no longer exactly mapped to another point of this grid as it
was the case with the Arnold cat map; and, finally, (iii) the
parallelogram is now spanned by the two vectors �s(1, 1)
and �s(1 + A,A). Here the parameter A ≈ K cos(2π�s xi )
may take rather large values depending on K and depends on
the phase-space position x ≈ �s xi . The bottom right panel

(a)

)d()c(

(b)

FIG. 11. Parallelogram image of one initial square Ulam cell
shown in the grid of possible target cells. The panels correspond
to the Arnold cat map with both M and LM even (a), M odd and
LM even (b), both M and LM odd (c), and the Chirikov standard
map with parameters ξ0 = 0.8 and A = 1.5 (d). The thick black
dots correspond to the map image of a reference point on the grid
(xi�s, pi�s ) with integer xi , pi and linear cell size �s = 1/M . The
relative intersection areas of the parallelogram with possible target
cells provide exactly (approximately) the transition probability of the
UPFO for the cat (standard) map. For the Arnold cat map we have
four target cells with probability 1/4 (both M and LM even), two
target cells with probability 3/8 and four target cells with probability
1/16 (M odd and LM even) or one target cell with probability 1/2
and four target cells with probability 1/8 (both M and LM odd).

of Fig. 11 shows an example of such a shifted parallelogram
with ξ0 = 0.8 and A = 1.5.

For these reasons, this scheme is not suitable to construct
numerically a reliable UPFO for the map (1). However, it is
still very useful to understand quite well the distribution of
the number Nl of connected cells from one initial cell and
also the square root singularity in the distribution of weights
pw(wl ) of the UFPO for the standard map (see discussions in
Sec. IV for both points).

We note that the obtained UPFO for the Arnold cat map
gives us the Markov transition probabilities from one cell to
another. The weights of transitions from one cell to others
is given by the matrix elements in the corresponding matrix
column. The time evolution is obtained by a multiplication of
an initial state vector by the matrix. On a physical grounds
such evolution corresponds to the exact dynamics given by
the Arnold cat map with an additional noise which amplitude
is comparable with the cell size. We also note that here we
consider the map with a few period cells L in the momentum
direction with L > 1, while the usually considered case is
L = 1 (see, e.g., Ref. [3]).
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