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Frequency locking and controllable chaos through exceptional points in optomechanics
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We engineer mechanical gain (loss) in a system formed by two optomechanical cavities (OMCs), that are
mechanically coupled. The gain (loss) is controlled by driving the resonator with laser that is blue (red) detuned.
We predict analytically the existence of multiple exceptional points (EPs), a form of degeneracy where the
eigenvalues of the system coalesce. At each EP, phase transition occurs, and the system switches from weak
to strong coupling regimes and vice versa. In the weak coupling regime, the system locks on an intermediate
frequency, resulting from coalescence at the EP. In the strong coupling regime, however, two or several mechanical
modes are excited depending on system parameters. The mechanical resonators exhibit Rabi oscillations when
two mechanical modes are involved, otherwise the interaction triggers chaos in the strong coupling regime. This
chaos is bounded by EPs, making it easily controllable by tuning these degeneracies. Moreover, this chaotic
attractor shows up for low driving power, compared to what happens when the coupled OMCs are both driven in
blue sidebands. This works opens up promising avenues to use EPs as a new tool to study collective phenomena
(synchronization, locking effects) in nonlinear systems, and to control chaos.
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I. INTRODUCTION

Optomechanical systems provide a promising platform to
explore light-matter interactions for both technological appli-
cations and fundamental physics [1]. Through optomechanics,
a mechanical resonator can be studied from the quantum
ground state [2–4] to the amplified regime characterized with
large displacements [5–7].

At the parametric instability point, where the back-action-
induced mechanical gain overcomes mechanical loss, mechan-
ical self-oscillations start [8–10], and the system enters into
a nonlinear regime. This regime is a prerequisite to study
collective phenomena such as synchronization and frequency
locking [11–15]. Such phenomena have practical applications
in rf communication [16], signal-processing [17], clock syn-
chronization [18], and novel computing and memory concepts
[19]. In [13], two lasers were used to lock two optomechanical
systems, while the all-optical light-mediated locking of three
spatially distant optomechanical oscillators was achieved using
a single laser source in [15]. The threshold of this locking effect
as well as the mechanism behind it are not well predicted,
but occurs spontaneously as the driving strength is increasing
[13,15]. Therefore, predictability and controllability of locking
phenomenon become relevant.

In optomechanics, it is well known that strong driving
strength induces period doubling and chaos [20–23]. Chaotic
behavior is useful for generating random numbers and imple-
menting secret information processing (see [24] and references
therein). However, to apply chaos into a secret communica-
tion scheme, good controllability and low-power threshold
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are required [25,26]. Low-driving threshold chaos has been
achieved in [25], using optical PT-symmetry in an optome-
chanical system; while controllable chaos with a low-driving
threshold has been investigated in an electro-optomechanical
system in [26]. A system that can handle these issues con-
cerning locking phenomenon and chaos, would be a good
benchmark for technological applications based on nonlinear
optomechanics.

Here, we investigate a system that provides both control-
lability and low-power threshold for chaos as well as the
predictability and control of frequency locking phenomenon.
The key point of this is the exceptional points (EPs), a
form of degeneracy in gain and loss systems, where the
eigenvalues coalesce and become conjugate complex numbers
[27]. The proposal system is formed by two OMCs, that
are mechanically coupled. The gain and loss are created by
symmetrically driving the cavities with blue and red detuned
lasers, respectively. Interesting counter-intuitive features and
intriguing effects such as stopping light [28], loss-induced
suppression and revival of lasing, pump-induced lasing death,
and unidirectional invisibility have been observed in the
vicinity of EPs (see [29] and references therein). Owing to
these interesting properties of EPs, here we show that: (i)
chaos and multistability vanish at the EP and (ii) frequency
locking effect is induced by EP. This dual effect results from the
coalescence of modes. Therefore, switching from multimode
to single mode scrucially depends on the EP. These results
pave a way to control chaos and to predict locking effects in
large-scale networks of nonlinear systems by exploiting EPs.
This work is organized as follows. In Sec. II, the system and
the dynamical equations are described. The predictability of
frequency locking effect and control of chaos are presented
in Sec. III. Section IV is devoted to investigate the transient
chaotic behavior and out of phase synchronization, while
Sec. V concludes the work.
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FIG. 1. (a) Generic setup. (b) Numerical diagram depicting the possible regimes involved. (c) Locked frequency and its corresponding phase
space representation (see inset, p is the momentum). (d) and (e) Regular and chaotic Rabi oscillations, respectively. Blue (magenta dashed) color
is related to the blue (red) mechanical supermode. In (c)–(e), J = 2.2 × 10−2ωm and αin = (4.3 × 102, 4.5 × 102, 5.5 × 102)

√
ωm, respectively.

The other used parameters are γm = 10−3ωm, κ = 10−1ωm, g = 2.5 × 10−4ωm, ω01 = 1.002ωm, ω02 = ωm, �1 = −ωm, and �2 = ωm.

II. MODELLING AND DYNAMICAL EQUATIONS

The system of our proposal is the one in Fig. 1(a), where
the cavity labeled 1 (labelled 2), is driven with a red (blue)
detuned laser. In the rotating frame of the driving fields, the
Hamiltonian (h̄ = 1) describing this system is

H = HOM + Hint + Hdrive (1)

with

HOM =
∑
j=1,2

[−�j a
†
j aj + ω0j b

†
j bj − ga

†
j aj (b†j + bj )]

Hint = −J (b1b
†
2 + b

†
1b2) (2)

Hdrive =
∑
j=1,2

E(a†
j + aj ).

In this Hamiltonian, ω0j (ω01 �= ω02) and �j = ω
j
p − ω

j
cav are

the mechanical frequency of the j th resonator and the optical
detuning between the j th optical drive (ωj

p) and the j th cavity
eigenfrequency (ωj

cav), respectively. The quantities aj and bj

are the annihilation bosonic field operators describing the op-
tical and mechanical resonators, respectively. The mechanical
displacements xj are connected to bj as xj = xZPF (bj + b

†
j ),

where xZPF is the zero-point fluctuation amplitude of the me-
chanical resonator. The mechanical coupling strength between
the two mechanical resonators is J , and the optomechanical
coupling is g. The amplitude of the driving pump is E. The

quantum Langevin equations (QLEs) for the operators of the
optical and the mechanical modes are derived from Eq. (2) as

ȧj =
[
i(�j + g(b†j + bj )) − κ

2

]
aj − i

√
κ
(
ain + ξaj

)
,

(3)

ḃj = −
(

iω0j + γm

2

)
bj + iJ b3−j + iga

†
j aj + √

γmξbj
,

where optical (κ) and mechanical (γm) dissipations have been
added, and the amplitude of the driving pump has been
substituted as E = √

κain in order to account for losses. In

this form, the input laser power Pin acts through ain =
√

Pin
h̄ωp

.

The term ξaj
(ξbj

) denotes the optical (thermal) Langevin noise
at room temperature.

We seek to investigate in the classical limit, where photon
and phonon numbers are assumed large in the system, and
noise terms can be neglected in our analysis. Thus, we rewrite
Eq. (3) into a set of differential equations for the four complex
scalar fields, {αj }j=1,2 for the optics and {βj }j=1,2 for the
mechanics, standing for the mean values of the operators
〈a〉 = αj and 〈b〉 = βj . This leads to the following set of
nonlinear equations:

α̇j =
[
i(�j + g(β∗

j + βj )) − κ

2

]
αj − i

√
καin,

(4)
β̇j = −

(
iω0j + γm

2

)
βj + iJβ3−j + igα∗

j αj .
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For simplicity, the parameters (γm, g, κ) are assumed to
be degenerated for both cavities. Throughout the work, we
assume the hierarchy of parameters γm, g � κ � ω0j , similar
to the experiments carried out in the resolved sideband regime
[30,31].

In Figs. 1(b)–1(e), we show the overall properties of the
steady state solutions of Eq. (4), where all the transient
dynamics has died out. Three regimes can be identified in
(αin, J ) parameter’s space. As the driving αin increases for
a fixed J = 2.2 × 10−2ωm (see dashed line in Fig. 1(b)), the
system switches from the linearized regime (white area) to
the nonlinear one (gray and green colors) through the onset
of the self-induced oscillations. In the nonlinear regime, the
system switches twice into weak coupling regimes (gray color),
and once into a strong coupling regime (green color). The
meaning of weak (strong) coupling regime will be given later
on. Each transition in weak coupling regime is followed by
limit cycle oscillations, and both mechanical resonators lock
and start oscillating with a common frequency (see Fig. 1(c)).
However, this frequency locking phenomenon is destroyed
when the system jumps into the strong coupling regime, where
Rabi oscillations show up (see Figs. 1(d) and 1(e)). These Rabi
oscillations can be regular Fig. 1(d) or chaotic like-behavior
Fig. 1(e) and light green area in Fig. 1(b). This chaotic attractor
is bounded between two limit cycle regimes. Such phase transi-
tions, between weak and strong couplings in coupled gain/loss
system, are reminiscent of EP [32,33]. It results that (i) our
system features multiple EPs [34], which are useful: (ii) to
induce frequency locking, (iii) and to control chaotic dynamics.

To get insight of the EP features, we approach the limit cycle
oscillations by the ansatz, βj (t ) = β̄j + Aj exp(−iωlock t ) [35].
β̄j is a constant shift in the origin of the movement, Aj is
the slowly time dependent amplitude of the cycles, and ωlock

is the mechanical locked frequency. Similar to multistability
in optomechanics [35], this ansatz aims to provide analytical
tools, describing the feature of multiple EPs. Using this ansatz,
it is straightforward to integrate αj (t ) out of the full system
(see Appendix B), resulting in effective equations of motion for
just the mechanical resonators having the form i∂t� = Heff�.
We have set the state vector � = (β1, β2)T and the effective
Hamiltonian is

Heff =
[
ω1

eff − i
γ 1

eff
2 −J

−J ω2
eff − i

γ 2
eff
2

]
. (5)

This Hamiltonian has the eigenvalues

λ± � ω1
eff + ω2

eff

2
− i

4

(
γ 1

eff + γ 2
eff

) ± σ

2
. (6)

Here, ω
j

eff = ω0j + δωj and γ
j

eff = γm + γ
j
opt are the effective

frequencies and dampings, respectively. The quantity σ ≈√
4J 2 − �γ 2

eff
4 with �γeff = γ 2

eff − γ 1
eff , is amplitude dependent

through the normalized amplitude εj = 2gRe(Aj )
ωlock

. Indeed, the

optical dampings γ
j
opt are expressed as

γ
j
opt = 2(gκαin )2

εj

∑
n

Jn+1(−εj )Jn(−εj )∣∣hj∗
n+1h

j
n

∣∣2 , (7)

FIG. 2. (a), (b) Real and imaginary part of the eigenmodes,
respectively. Inset of (a) shows (mechanical) Rabi oscillations at
αin = 3 × 102√ωm. The coupling strength is J = 2.2 × 10−2ωm and
the other parameters are as in Fig. 1.

where Jn is the Bessel function, hj
n = i(nωlock − �̃j ) + κ

2 , and
�̃j = �j + δj with δj = 2g(β̄j ), is the nonlinear detuning
(see Appendix B). The eigenfrequencies and the dampings of
the system are defined as the real [ω± = 
(λ±)] and imaginary
[γ± = �(λ±)] parts of λ±, respectively. However, the quanti-
ties ω± and γ± depend on σ , delimiting the weak and strong
regimes aforementioned in Fig. 1(b). The strong coupling
regime is defined for J >

�γeff

4 , while the weak coupling
one holds for J <

�γeff

4 . The EPs, phase transitions between
these two regimes, are defined by J = �γeff

4 . This induces
σ = 0, whose solutions predict multiple EPs [34], owing to
the oscillating nature of σ (see the dashed line in Fig. 1(b)).
After demonstrating the emergence of multiple EPs, we take a
step further, showing that EPs can be used as a new paradigm
both for achieving frequency locking and to control chaos.

III. FREQUENCY LOCKING AND CHAOS

A. Frequency locking

In the linear regime, εj → 0, we use {σ (εj ), μ(εj )} → {σ0,
μ(0)}, where μ stands for any amplitude-dependent term. The
mechanical resonators oscillate with two eigenfrequencies (see
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FIG. 3. (a) Frequency shift and origin of nonlinearities. (b) Frequencies of the mechanical resonators versus αin. (c) Corresponding Lyapunov
exponent (LE) versus αin. The inset of (c) is the LE for the analog blue-blue configuration. (d) Overview of dynamical states related to frequency
mismatch ω01 − ω02 at J = 2.2 × 10−2ωm.

Fig. 2(a)),

ω± � ω1
eff (0) + ω2

eff (0)

2
± σ0

2
, (8)

that exchange energy through Rabi oscillations [32,33] as
depicted in the inset of Fig. 2(a). These Rabi oscillations
have an exponentially decaying profile whose is defined by
the imaginary parts of the eigenvalues (see Fig. 2(b)),

γ± = −(
γ 1

eff (0) + γ 2
eff (0)

)
4

. (9)

The quantity �γeff is quadratic in αin [see Eq. (7)], and
it will overcome 4J 2 as αin is increasing, that is at EP1.
Consequently, the two mechanical resonators spontaneously

lock at the frequency ωlock = ω1
eff +ω2

eff
2 , as it can be deduced from

Eq. (8). This locking effect persists until another EP is reached.
This constitutes one of our findings, showing that frequency
locking is achieved through EP. This result opens up novel
prospects for applications of EPs in realizing locking modes
in optomechanics and others similar devices.

B. Chaos

In the nonlinear regime, linear approximation is preserved
for weak amplitudes (εj � 1) [30,36], and both dissipa-
tions (γ±) keep the same sign (see inset of Fig. 2(b)). For

non-negligible εj , the oscillations ofσ can lead to multiple EPs.
For J = 2.2 × 10−2ωm for instance, EP2 and EP3 are induced
as shown in Figs. 3(a) and 3(b) (see also vertical and horizontal
line intersections in Fig. 1(b)). Weak coupling holds between
EP1 and EP2. Beyond EP2, the system jumps into a strong
coupling regime, where Rabi oscillation emerge (see Fig. 1(d)).
As the driving increases, the optical nonlinearity δj splits into
multistable solutions (see Fig. 3(a)), affecting the frequency of
Rabi oscillations σ . In our proposal, this multistability process
constitutes a route to chaos [23]. When the optomechanical
nonlinearities become comparable to the optical linewidth
(δj ∼ κ

2 ), chaotic oscillations are triggered in the system.
This can be seen in Fig. 3(b), showing range of frequencies
continuum. This figure is obtained by collecting peaks and
corresponding frequencies, of the mechanical steady states,
from fast Fourier transform (FFT). Such bifurcation diagram
in frequency space is useful here, since it has the advantage of
well-tracking dynamics of Rabi oscillations (see Appendix A).
Through the Lyapunov exponent (LE) [24,25], we have con-
firmed this chaotic behavior in Fig. 3(c). The negative (positive)
value of LE indicates that the system exhibits periodic (chaotic)
dynamics. For quasi-periodic behavior, discrete frequencies in
Fig. 3(b), LE is close to zero. As the driving strength is growing,
EP3 is reached, and the system switches back into the weak cou-
pling regime. Features stemming from the presence of EP3 are
the disappearance of Rabi oscillations [32] and the spontaneous
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FIG. 4. (a) Transient chaos induced π -synchronization at αin = 5.7 × 102√ωm. (b) Frequency locking with transient Rabi oscillations at
J = 5.9 × 10−3ωm. (a), (b) correspond to the coupling strength J = 2.2 × 10−2ωm.

emergence of frequency locking (see Fig. 3(b) for αin ∼
5.6 × 102√ωm). It results that, the chaotic attractor is bounded
between EP2 and EP3. Threshold of this chaos can be controlled
by tuning EPs through system’s parameters. We focus our in-
vestigation here on the mechanical frequency mismatch ω01 −
ω02. The reason lies on the difficuties to engineer two identical
mechanical resonators, that have exactly the same frequencies.
For a fixed J = 2.2 × 10−2ωm, Fig. 3(d) shows that, the me-
chanical resonators can be no longer strongly coupled if their
frequency mismatch exceeds (ω01 − ω02) � 10−2ωm. Further-
more, large frequency mismatch destroys chaotic dynamics,
since chaos is limited for (ω01 − ω02) � 5 × 10−3ωm as shown
by the light green color in Fig. 3(d). It follows that an increase
(decrease) of the mechanical frequency mismatch controls (in-
duces) chaotic dynamics. Conversely, increasing (ω01 − ω02)
enhances frequency locking effect. This provides a method
of manipulating and controlling chaos through EPs, making it
useful in large technological platforms [23]. This is our second
finding, suggesting a bounded and controllable chaos through
EPs in coupled OMCs. The main ingredient for the emergence
of this chaos is a strong coupling between the mechanical
resonators, instead of being a strong driving strength [20–23].

In the above discussion, we considered the blue-red con-
figuration of coupled cavities. For a matter of comparison,
the inset of Fig. 3(c) shows the LE obtained in the analog
blue-blue configuration, using the same parameters. It results
that the threshold of chaos is reduced almost four times in our
proposal (see also [24,25]). Lowering threshold of chaos is a
requiring element in a secret communication scheme, and our
work provides a new paradigm based on tunability of EP.

IV. TRANSIENT CHAOS AND π -SYNCHRONIZATION

A. Transient chaos

The phenomenon of transient chaos was recently studied
in optomechanics [37]. Besides being a physically meaningful
phenomenon by itself, these authors have shown that transient
chaos constitutes a bridge for the quantum-classical transition.
However, we show here that transient chaos induces transition
towards frequency locking. At the EP3, chaotic dynamics
vanishes, and the system locks back at ωlock (see Fig. 3(b)).

This locked state depends on whether there is a coexistence
between transient chaos and limit cycle attractors or not. In
the former case, this coexistence locks the system on a higher
energy state, otherwise the locking is achieved on the lower
energy state. As we can see in the gray area in Fig. 3(b),
the system starts on the upper branch (higher energy), and
gradually switches on the lower branch (lower energy) as the
driving strength is increasing. This is depicted in Fig. 4, where
we have chosen two values of αin, one for the upper branch (see
Fig. 4(a)) and the other on the lower branch (see Fig. 4(b)). It
results that transient chaos and limit cycle attractors coexist on
the upper branch, while Rabi oscillations precede limit cycles
on the lower branch. When transient chaos is involved, the
LE starts diverging, and decays over time in order to match
the appropriate limit cycle dynamics. However, this relaxation
time is long that the chaotic signature persists in the LE (see the
green box in Fig. 3(c)). As the configuration in Fig. 4(b) is more
stable than the one in Fig. 4(a) [37], after a short competition
between upper and lower branches, the system finally settles
into the lower branch that is more stable. Besides its dynamical
aspect, the transient state determines the kind of collective
phenomenon exhibited by the final steady state (see zooms
in Figs. 4(a) and 4(b)).

B. π -synchronization

Beyond this transient regime (gray area in Fig. 3(b)),
only the locked state with the lower energy persists and the
mechanical resonators exhibit two different behaviors based
on their phase difference. Either they oscillate out of phase or
they exhibit limit cycle oscillations with different dissipations,

γ± = −(
γ 1

eff + γ 2
eff

)
4

± σ

2
. (10)

In the latter case, the asymmetry between the dissipation
rates (|γ−| �= |γ+|) induces unidirectional flow of phonons
[38,39] between the resonators as shown in Fig. 5(a). However,
the first case happens when γ 1

eff ∼ −γ 2
eff , leading to γ± ∼

± σ
2 [33]. Consequently, the mechanical resonators carry out

approximately broken PT -symmetry dynamics, resulting in a
π -synchronization (�φ = φ1 − φ2 = π ) as a signature. This
is shown in Fig. 5(b), where the standard deviation of �φ is
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FIG. 5. (a) Asymmetric dissipation at J = 5 × 10−3ωm. (b)
Standard deviation of δφ showing π -synchronization for J = 6 ×
10−2ωm. The insets in (a) and (b) show limit cycle and time propaga-
tion at αin = 8 × 102√ωm. The other parameters are as in Fig. 1.

represented. The phase is defined as being tan(φj ) = Im(βj )
Re(βj )

,
confirming the phase difference of π when γ± ∼ ± σ

2 .

The parameters we have used here are similar to those in
the recent experiments [30,31]. This offers the prospects to
experimentally reproduce the present results. Moreover, this
study can be extended to a wide variety of optomechani-
cal systems, including hybrid optical-microwave setups and
electromechanical systems. Our findings do not necessarily
need PT -symmetry, and the resonators can have different
frequencies (see Fig. 3(d)).

V. CONCLUSION

In conclusion, we have studied two optomechanical systems
that are mechanically coupled. By driving the cavities, one by
blue detuned laser and the other with a red detuned laser, we
have respectively created gain and loss on these mechanical
resonators. We have predicted analytically, the existence of
multiple EPs. The system switches from weak to strong
coupling regimes through these EPs. In the weak coupling
regimes, we demonstrated frequency locking effect induced
by these degeneracies. In the strong coupling regime instead,
we have shown that optical nonlinearities trigger chaos. This
chaotic attractor is bounded between two EPs, providing an
accurate way to control it by adjusting gain/loss parameters.
This work offers the prospects to use EPs as a new tools
for controlling and threshold-less chaos. Furthermore, EPs

FIG. 6. Time propagations. (a) Fixed point state at αin = 3 × 102√ωm. (b) Limit cycle state at αin = 4.3 × 102√ωm. The corresponding
spectrum and phase space trajectory are those of Fig. 1(c). (c) Quasi-periodic state at αin = 5 × 102√ωm. (d) Chaotic state at αin = 5.5 ×
102√ωm. States (c) and (d) can be confirmed from the Lyapunov exponent in the main text. The coupling strength is J = 2.2 × 10−2ωm and
the other parameters remain the same as in Fig. 1. Blue (magenta dashed) color is related to the blue (red) mechanical supermode.
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FIG. 7. Fourier spectra and phase space trajectories. (a) One Rabi cycle and the corresponding phase space, featuring a set of limit cycles.
(b) Regular Rabi oscillations at αin = 4.5 × 102√ωm. The corresponding time propagation is Fig. 1(d). (c) Quasi-periodic state corresponding
to Fig. 6(c), some satellite peaks can be observed. (d) Chaotic state corresponding to Fig. 6(d), several peaks have emerged. Insets of these
figures are their phase space trajectories, which all feature a set of limit cycles. Consequently, Fourier spectra are useful to distinguish these
states, instead of the phase space representations. Blue (magenta dashed) color is related to the blue (red) mechanical supermode.

open up a promising route for realizing collective phenomena
(locking effect, synchronization) in nonlinear devices.
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APPENDIX A: DYNAMICAL STATES

Numerical steady state solutions of Eq. (4) are shown by
Fig. 1(b) in the main text. Three dynamical states are depicted,
the fixed point regime, the limit cycles regime, and the regime
where Rabi oscillations emerge. The aim here is to characterize
dynamically, the steady states solutions in these regimes. For
this purpose, we have fixed J = 2.2 × 10−2ωm, where all these
regimes are met by varying the driving strength αin (see the
horizontal dashed line in Fig. 1(b) in the main text). Hence,
time propagation of some steady state solutions are given
in Fig. 6. Fixed point regime is shown in Fig. 6(a), where
Rabi oscillations are decaying with a same rate as explained
in the main text. The frequency of these Rabi oscillations

is σ0, and the mechanical resonators are in strong coupling
regime. Figure 6(b) represents limit cycle oscillations at αin =
4.3 × 102√ωm, and the system is in a weak coupling regime.
Figures 6(c), 6(d) show Rabi oscillations in the nonlinear
regime (see green area in Fig. 1(b) in the main text). At
αin = 5 × 102√ωm, Fig. 6(c) shows quasi-periodic behavior,
and at less three frequencies can be observed. In Fig. 6(d)
however, several frequencies are involved, resulting in chaotic
dynamics. To further characterize these dynamical states, we
have used bifurcation diagram in frequency space (see Fig. 3(b)
in the main text). The reason lies on the difficulty of catching
Rabi oscillation’s dynamics in phase space. Indeed, Fig. 7(a)
shows one period of Rabi oscillations with its corresponding
phase space representation in the inset. Accordingly, this phase
space trajectory features a set of limit cycles, each of those
corresponds to each amplitude involved in the Rabi cycle
[25]. Figures 7(b)–7(d) are the Fourier spectra corresponding,
respectively, to regular (αin = 4.5 × 102√ωm), quasi-periodic
(αin = 5 × 102√ωm), and chaotic Rabi oscillations (αin =
5.5 × 102√ωm). The insets of these figures are the phase
space representations, and they all feature a set of limit cycles
as in Fig. 7(a). It follows that phase space representation is
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not a useful tool to distinguish between different dynamical
states here. However, Fourier spectra in Figs. 7(b)–7(d) clearly
discriminate the dynamical states involved. Hence, varying
the driving αin at a fixed J = 2.2 × 10−2ωm, we were able
to construct Fig. 3(b) of the main text from the fast Fourier
transform (FFT).

APPENDIX B: ANALYTICS

In the limit cycles regime, the amplitudes of the mechanical
oscillations change only slowly over time (see Fig. 6(b)). Thus,
we solve the equation for αj assuming a fixed amplitude for
the mechanical oscillations, and then use the result to solve the
equation for βj [35,40]. Under this assumption, the mechanical
oscillation can be described by the ansatz

βj (t ) = β̄j + Aj exp(−iωlockt ), (B1)

where β̄j is a constant shift in the origin of the resonator and
the amplitude Aj is taken to be a slowly varying function of
time. In such a weak coupling regime, we have denoted the
locked frequency by ωlock. We substitute this ansatz into the
equation for αj , and use the assumption of a slowly evolving
amplitude to solve it, first neglecting the time dependence of
Aj [35,40]. We then obtain the intracavity field in the form

αj (t ) = e−iθj (t )
∑

n

αj
ne

inωlock t . (B2)

The phase is θj (t ) = −εj sin ωlockt and the amplitudes of the
different harmonics of the optical field are

αj
n = −i

√
κjα

in Jn(−εj )

h
j
n

, (B3)

where εj = 2gRe(Aj )
ωlock

, �̃j = �j + 2gRe(β̄j ), h
j
n = i(nωlock −

�̃j ) + κ
2 , and Jn is the Bessel function of the first kind of

order n.
As we are interested in the regime of limit cycles of the

resonators, a rotating wave approximation can be made in
which we drop all the terms (in the mechanical dynamics)

except the constant one and the term oscillating at ωlock. Hence,
we substitute Eq. (B2) in the equation for βj [see Eq. (B1)]
which, by equating constant terms, leads to the zero-frequency
components

β̄1 = 1

ω01 − i
γm

2

(
gκ

∑
n

(αinJn(−ε1))2∣∣h1
n

∣∣2 + J β̄2

)
,

(B4)

β̄2 = 1

ω02 − i
γm

2

(
gκ

∑
n

(αinJn(−ε2))2∣∣h2
n

∣∣2 + J β̄1

)
,

that induce a shifts of the cavity frequencies

δj = 2gRe(β̄j ). (B5)

The equations of motion for the oscillating part of βj are de-
duced from β

j
r (t ) = βj (t ) − β̄j ≡ Aj exp(−iωlockt ) and read

β̇1
r (t ) = − i(ω01 + δω1)β1

r − γm + γ 1
opt

2
β1

r + iJβ2
r

(B6)

β̇2
r (t ) = − i(ω02 + δω2)β2

r − γm + γ 2
opt

2
β2

r + iJβ1
r

Here, the optical spring effect δωj and the optical damping
γ

j
opt coming both from the average dynamics of the cavity are

given by

δωj = −2κ (gαin )2

ωlockεj

Re

(∑
n

Jn+1(−εj )Jn(−εj )

h
j∗
n+1h

j
n

)
, (B7)

and

γ
j
opt = 2(gκαin )2

εj

∑
n

Jn+1(−εj )Jn(−εj )∣∣hj∗
n+1h

j
n

∣∣2 . (B8)

For εj � 1, the linear approximation is still valid and both
the optical spring effect and the optical damping can be rewrit-
ten accordingly. Indeed, εj � 1 induces Jn(−εj ) ≈ 1

n! ( −εj

2 )
n

for n � 0 and J−n(−εj ) = Jn(εj ). Using these considerations
in Eqs. (B7) and (B8) yield

δωj (0) ≈ − 2
(
gjα

in
j

)2
κj �̃j

[ 3κ2
j

4 + (ωlock − �̃j )(ωlock + �̃j )
]

( κ2
j

4

[ κ2
j

4 + (ωlock − �̃j )(ωlock + �̃j )
] − κj �̃

2
j

)2 + �̃2
j

[ 3κ2
j

4 + (ωlock − �̃j )(ωlock + �̃j )
]2

, (B9)

γ
j
opt (0) ≈ − �̃jωlock

(
2gjκjα

in
j

)2

(
�̃2

j + κ2
j

4

)[
(ωlock + �̃j )2 + κ2

j

4

][
(ωlock − �̃j )2 + κ2

j

4

] . (B10)

These expressions are well in agreement with what is
obtained in the linear regime [40], where both δωj and γ

j
opt

are not amplitude dependent.

APPENDIX C: EFFECTIVE HAMILTONIAN

From Eq. (B6), it is possible to define effective Hamiltonian
in order to figure out supermodes involved in the system.
Such supermodes will be deduced from the eigenmodes of the
effective model, describing the mechanical resonators. Indeed,
the real parts of the eigenmodes give the eigenfrequencies of
the coupled system while their imaginary parts stand for the

dissipations rate of the system. In the limit cycles regime,
the constant shift β̄j is weak compared to the amplitude of
the mechanical resonator (β̄j � Aj ). This means that βj (t ) ∼=
β

j
r (t ), and Eq. (B6) can be assumed as a set of equations

describing the effective system that reads

β̇1 = −
(

iω1
eff + γ 1

eff

2

)
β1 + iJβ2,

(C1)

β̇2 = −
(

iω2
eff + γ 2

eff

2

)
β2 + iJβ1,

032201-8



FREQUENCY LOCKING AND CONTROLLABLE CHAOS … PHYSICAL REVIEW E 98, 032201 (2018)

where ω
j

eff = ω0j + δωj and γ
j

eff = γm ± γ
j
opt define the effec-

tive frequencies and the effective damping, respectively.
Furthermore, Eq. (C1) can be rewritten in the compact form

∂t� = −iHeff� (C2)

with the effective Hamiltonian

Heff =
[
ω1

eff − i
γ 1

eff
2 −J

−J ω2
eff − i

γ 2
eff
2

]
(C3)

and the state vector � = (β1, β2)T .
The eigenvalues of the Hamiltonian given in Eq. (C3) are

obtained by solving the equation

det(Heff − λI ) = 0, (C4)

and that yields to the following eigenvalues λ− and λ+:

λ± � ω1
eff + ω2

eff

2
− i

4

(
γ 1

eff + γ 2
eff

) ± σ

2
(C5)

with σ =
√

4J 2 − �γ 2
eff

4 and �γeff = γ 1
eff − γ 2

eff . The frequen-
cies and the dissipations of the supermodes are given by the
real and imaginary parts of λ±, respectively,

ω± = Re(λ±) and γ± = Im(λ±).

From Eq. (C5), we deduce whether the system is in strong
coupling regime or not. Indeed, for J >

�γeff

4 , σ is real and this

induces two distinct frequencies

ω± = ω1
eff + ω2

eff

2
± σ

2
, (C6)

that are spectrally separated by

σ = ω+ − ω− =
√

4J 2 − �γ 2
eff

4
. (C7)

This splitting modes is the sign of strong coupling between
the resonators and σ is the frequency of Rabi oscillations that
emerge. The mechanical resonators have the same damping

γ± = −(γ 1
eff +γ 2

eff )
4 . However, for J <

�γeff

4 , σ is imaginary and
the resonators oscillate at the same frequency,

ω± = ω1
eff + ω2

eff

2
, (C8)

with two distinct dissipations,

γ± = −(
γ 1

eff + γ 2
eff

)
4

± σ

2
. (C9)

This corresponds to a regime where the mechanical resonators
are weakly coupled. The phase transition between these two
regimes happens at the exceptional point (EP), where J = �γeff

4
that is equivalent to σ = 0. To demonstrate the feature of
multiple EPs, we need to show that σ = 0 can leads to multiple
solutions. For this purpose, let us remind that �γeff ≡ �γ

j
opt.

Then, using Eq. (B8) in Eq. (C7), leads straightforwardly to
understand that σ is amplitude-dependent through the Bessel
functions. Due to these Bessel functions, σ = 0 oscillates.
These oscillations of σ , depending on the system’s parameters,
induce multiple solutions of σ = 0, resulting in multiple EPs
feature.
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