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Information dynamics is an emerging description of information processing in complex systems that describes
systems in terms of intrinsic computation, identifying computational primitives of information storage and transfer.
In this paper we make a formal analogy between information dynamics and stochastic thermodynamics that
describes the thermal behavior of small irreversible systems. As stochastic dynamics is increasingly being utilized
to quantify the thermodynamics associated with the processing of information we suggest such an analogy
is instructive, highlighting that existing thermodynamic quantities can be described solely in terms of extant
information theoretic measures related to information processing. In this contribution we construct irreversibility
measures in terms of these quantities and relate them to the physical entropy productions that characterize the
behavior of single and composite systems in stochastic thermodynamics illustrating them with simple examples.
Moreover, we can apply such a formalism to systems that do not have a bipartite structure. In particular we
demonstrate that, given suitable nonbipartite processes, the heat flow in a subsystem can still be identified,
and one requires the present formalism to recover generalizations of the second law. In these systems residual
irreversibility is associated with neither subsystem and this must be included in the generalized second laws.
This opens up the possibility of describing all physical systems in terms of computation allowing us to propose
a framework for discussing the reversibility of systems traditionally out of scope of stochastic thermodynamics.
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I. INTRODUCTION

In the early 1990s Evans and coworkers [1] first measured
the probability of “second law violations” that occur in small
systems. This newfound ability to quantify thermodynamic
quantities at scales where uncertainties dominate opened up
a new frontier in modern thermodynamics leading, notably, to
the now famous work relations of Crooks and Jarzynski [2–5].
Later, a unifying framework for general stochastic systems [6]
has formed the basis for a now indispensable tool for the study
of small noisy systems, named stochastic thermodynamics
[7,8]. More recently, however, such formalisms have impli-
cated information theoretic measures introduced in contexts
such as the exploitation of pure order [9–13], or more generally
where feedback and/or measurement, is occurring [14–25]
providing powerful relationships between physical quantities
and information. A concerted effort is now being levelled at
utilizing such a connection to understand the thermodynamics
of computation [26–31].

Quite separately, however, there is an alternative viewpoint
of physical (or otherwise) processes, which posits that they
support intrinsic computation [32,33]. In this view, subse-
quent states of a dynamical process are considered to have
been computed from earlier ones. In practice, however, the
confidence in the precise values of such subsequent states
is never perfect (arising through inherent coarse-graining,
imprecise initial conditions, or in abstract, pure noise). Given
this unavoidable reality, the central approach becomes the
quantification of these uncertainties in a nonparametric manner
through the introduction of information theory. This in turn
provides a natural viewpoint for the characterization of the
information processing supported by the dynamical process. In

this view, the exact structure of physical dynamics gives way to
the phenomenological predictive capacities and probabilities
derived from them, from which, in turn, the structure of
the information processing performed by the system can be
characterized.

A. Background

Framing such a discussion is the concept of generalized
computation and a challenge put forward by Langton [34,35]
in the early 1990s: How can emergence of computation and, in
particular, the emergence of complex spatiotemporal dynamics
capable of universal computation, be explained in a dynamic
setting? In doing so, he suggested to dissect computation
into three primitive functions: the transmission, storage, and
modification of information. Over the past decade, this decom-
position has been formalized through an emerging field called
information dynamics [36–46], proving itself to be useful
in revealing or explaining generic mechanisms underlying
dynamics of distributed information processing.

A common feature in several studies that used the primitive
information-processing functions in tracing information dy-
namics is the distributed but coherent nature of the underlying
computation [47]. For example, the coherent behavior given by
swarms of animals that self-organize in complex large-scale
spatial patterns is often explained by “collective memory”
[48] and “collective communications” expressed via wave-
like cascades of information transfer [49]. Interestingly, the
information cascades have been conjectured to correspond to
long range communications that either dynamically reorganize
the swarm reducing the “fragility of mass behavior” [50] or
propagate incorrect decisions [51].
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It has been conjectured that information plays a dynamic
role in such a self-organization [52], and more specifically,
that distributed information-processing enables the groups to
collectively perform computation [53–55]. These conjectures
have been formalized in the context of information dynamics
[56], verifying the hypothesis that the collective memory
within a swarm can be captured by active information storage,
while the information cascades are captured by conditional
transfer entropy [39,41]. This has been further verified for real
biological groups, such as swarms of soldier crabs [57], schools
of zebrafish responding to a robotic animal replica [58], pairs
of bats [59], rummy-nose tetras (Hemigrammus rhodostomus)
fish schools [60], and so on.

A more abstract set of examples is given by dynamics
of random Boolean networks—a canonical model for Gene
Regulatory Networks (GRNs) [61]. When the average con-
nectivity or activity level is varied, the dynamics undergo a
phase transition between order and chaos, and it has been
shown that the information storage and information transfer are
maximized on either side of the critical point: For fully random
topologies the information storage dominates the ordered
phase of dynamics and the information transfer is the primary
information-processing primitive at the chaotic phase [62].
When the underlying topology changes as well, specifically
when it undergoes an order—small-world—randomness tran-
sition, the interplay between information storage and transfer
attains a balance so that the network near the small-world state
retains a sufficient amount of storage capability while being
able to transfer information at a high rate [63].

Information dynamics methods have also been successfully
used for online machine learning in robotic and artificial
life scenarios [64–68], again allowing the designers to guide
the automated learning process along specific information-
processing primitives and fine-tune the computational bal-
ances, in addition to providing novel insights across a broad
range of fields, including in canonical complex systems such as
cellular automata [36], interpretation of dynamics in [43] and
improved algorithms for machine learning [46], characteriz-
ing information processing signatures in biological signaling
networks [44], nonlinear time-series forecasting [69], and in
computational neuroscience applications in identifying neural
information flows from brain imaging data [45,70,71], infer-
ring effective network structure [72–74], providing evidence
for the predictive coding hypothesis [75], and identifying dif-
ferences in predictive information in autism spectrum disorder
subjects and controls [76].

Despite these developments, the character of physical
entropic balances between the information-processing prim-
itives engaged in a distributed computation has not been
fully elucidated. And indeed, until now the separate perspec-
tives of stochastic thermodynamics and information dynamics
have not been comprehensively understood in terms of each
other.

As such our study has the following motivation—How
might the computational primitives described in information
dynamics manifest themselves in thermodynamics?—and in
what way might physical bounds or constraints upon the system
be expressed solely in terms of the computational primitives
that the system supports? And do such quantities point to a
dynamic generalization of the current thermodynamic bounds

purely in terms of information theoretic characterizations of
the dynamics?

B. Outline

In this paper, to answer the above questions, we explicitly
introduce the notion of irreversibility into the language of dis-
tributed computation and in doing so make a formal connection
between information dynamics and stochastic thermodynam-
ics, specifically in terms of stored and transferred information
and the bounds they place on each other.

Through the definition of an appropriate time-reversed
computation, we discuss the storage and transfer of infor-
mation of time-reversed behavior and consequently identify
irreversibility measures associated with stored and transferred
information. Importantly, for physical systems that permit
identification of an unambiguous entropy production, this
total entropy production is identically equal to the sum of
irreversibilities associated with storage and transfer of infor-
mation. This allows us to identify contributions to the physical
entropy production solely in terms of computational primitives.

We illustrate the behavior of such entropy production
contributions in a variety of increasingly broad situations. First,
we consider the canonical situation in stochastic thermody-
namics, namely, that of a system controlled by an external
protocol, illustrating that the entropy production associated
with information transfer to the protocol is intimately related
to the irreversibility in the dynamics of that protocol, demon-
strating different bounds on the contributions for reversible and
irreversible protocol dynamics. We then apply the framework
to composite systems, considering first bipartite systems.
We show that our framework identifies the physical entropy
contributions that allow the second law to be locally broken for
individual subsystems, for instance, in the context of feedback,
in contrast to previous approaches and results which aim to
bound such terms with information theoretic measures. In
considering such composite systems, we introduce a principle
of conserved predictive capacity, which constrains the extent
to which computational primitives of the total system can be
associated with the individual subsystems. We find that such a
principle always leads to the existence of an interaction term
understood to be a predictive capacity not uniquely attributable
to any individual subsystem. Further, this interaction term is
essential for constructing generalizations of the second law
in terms of stored and transferred information. For bipartite
systems this interaction term reduces to the change in mutual
information recovering previous results where such terms are
introduced ad hoc to construct the appropriate bounds.

Moreover, because our formalism identifies contributions to
the entropy production using physically agnostic information
theoretic measures, the resultant relations are valid where pre-
vious ones are not. Specifically, they apply to nonbipartite sys-
tems where we can still associate computational irreversibility
despite unambiguous heat flows not necessarily being well
defined. Importantly, in these systems the relations from our
formalism that hold for bipartite systems remain unchanged,
naturally accounting for intrinsic correlation in the dynamics
of the subsystems. We emphasize that systems that are phys-
ically meaningful are not restricted to the bipartite case, yet
previously no theory of how entropy production should be
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associated with the behavior of individual subsystems has been
provided. As such we posit that such a framework is a natural
approach to the phenomena of irreversibility, applicable to all
distributed computing systems, from which known bounds in
stochastic thermodynamics emerge where the relevant physical
assumptions hold.

We illustrate our results on two simple models. The first is
a simple bipartite model allowing illustration of both entropy
associated with storage and transfer of information. The second
is a nonbipartite linear model of a feedback controller with
system and controller driven by correlated noise. Until now
we are aware of no formalism describing the information ther-
modynamics of this setup. We emphasize that physical heats
are identifiable in such a system, that previous generalizations
of the second law with information theoretic terms fail in this
context, but the bounds from the present formalism do hold for
any degree of correlation in the dynamics.

II. INTRINSIC COMPUTATION
AND INFORMATION DYNAMICS

The outlook that intrinsic computation may be decom-
posed into distinct primitives naturally frames the discussion
of computation in terms of identifying precise measures of
information processing which information dynamics [36–46]
aims to quantify.

Originally formulated in the context of distributed com-
puting systems, possessing a characteristic update interval, in
discrete time, the central object in information dynamics is
the predictive capacity which quantifies the transformation of
uncertainty in the “output,” some next state in a given time
series, when all previous “input” states, all current and previous
time series data, are known. This predictive capacity, measured
in bits or nats, is characterized by a mutual information, defined
between two variables A and B taking values a ∈ A and b ∈ B,
respectively, as

IM (A; B ) =
∑
a∈A
b∈B

p(A = a, B = b) ln
p(A = a, B = b)

p(A = a)p(B = b)

=
〈
ln

p(A = a, B = b)

p(A = a)p(B = b)

〉
, (1)

such that 〈. . .〉 indicates an ensemble expectation. Specifically,
the predictive capacity is the mutual information between the
complete past of the universe and the next computed state of
the variable in question. We characterize the evolution of the
variable in question, X, taking values x ∈ X , as a time series
X0:i ≡ {X0, X1, . . . , Xi}, taking values x0:i ≡ {x0, x1, . . . , xi}
in a space X0:i = X⊗(i+1), such that xi = x(t = i). Similarly,
the rest of the universe is captured by an extraneous variable
Y taking values in y ∈ Y which equally is characterized
as a time series Y0:i ≡ {Y0, Y1, . . . , Yi}, taking values y0:i ≡
{y0, y1, . . . , yi} in a spaceY0:i = Y⊗(i+1). As such we consider
the predictive capacity, C

{i,i+1}
X , from time t = i to t = i + 1,

for a process started at time t = 0 as

C
{i,i+1}
X = IM (Xi+1; X0:iY0:i )

= H (Xi+1) − H (Xi+1|X0:i , Y0:i ). (2)

The superscripts indicate, explicitly, that this prediction occurs
over the interval {i, i + 1}. In this sense we understand that
it characterizes the total reduction in uncertainty that can
be achieved about the “computed state,” Xi+1 = xi+1, given
the inputs, namely the previous values of the time series,
{X0:i , Y0:i} = {x0:i , y0:i}. The information theoretic quantities
are then built from ensemble probabilities p(Xi = xi ) and
transition probabilities p(Xi+1 = xi+1|X0:i = x0:i ) such that

H (Xi+1) = −
∑

xi+1∈Xi+1

p(Xi+1 = xi+1) ln p(Xi+1 = xi+1)

H (Xi+1|X0:i , Y0:i )

= −
∑

x0:i+1∈X⊗(i+2)

y0:i∈Y⊗(i+1)

p(X0:i+1=x0:i+1, Y0:i = y0:i )

× ln p(Xi+1 = xi+1|X0;i = x0:i , Y0:i = y0:i ), (3)

etc., where here and throughout we will assume time homo-
geneity such that any and all time variation in the dynam-
ics/transition probabilities experienced by X is parametrized
through Y .

The insight from information dynamics is to divide this total
predictive capacity into computationally relevant quantities in
the spirit of Langton’s conception of generalized computation.
The pertinent division is that which separates the predictive
capacity due to the process X and the predictive capacity over
and above that of X due to Y . This is written

C
{i,i+1}
X = H (Xi+1) − H (Xi+1|X0:i )

+ H (Xi+1|X0:i ) − H (xi+1|X0:i , Y0:i )

= IM (Xi+1; X0:i ) + IM (Xi+1; Y0:i |X0:i )

= A
{i,i+1}
X + T

{i,i+1}
Y→X , (4)

where IM (A; B|C) = IM (A; B,C) − IM (A; C) is a condi-
tional mutual information between A and B given C. Here
A

{i,i+1}
X is known as the active information storage [42] and

T
{i,i+1}
Y→X as the transfer entropy [77], a well known nonpara-

metric measure of predictability used in many areas of science,
in this instance from Y to X. We denote this division of the
predictive capacity, the computational signature of the process
(such a division has been explored previously; see, for example,
Ref. [47]). The active information storage is interpreted as the
stored information in X which is utilized in making a transition,
while the transfer entropy is interpreted as the transferred
information from Y utilized in making a transition in the
context of the full history of X. Importantly, since both AX

and TY→X can be written as (conditional) mutual informations
they are thus rigorously nonnegative.

Recent developments have stressed that these quantities
should be understood as expectation values of suitable specific,
pointwise or local, quantities [42,78]. These are known as the
local active information storage ax and local transfer entropy
ty→x , where we write

A
{i,i+1}
X = 〈

a{i,i+1}
x

〉
,

(5)
T

{i,i+1}
Y→X = 〈

t {i,i+1}
y→x

〉
,
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with

a{i,i+1}
x = ln

p(Xi+1 = xi+1|X0:i = x0:i )

p(Xi+1 = xi+1)
,

(6)

t {i,i+1}
y→x = ln

p(Xi+1 = xi+1|X0:i = x0:i , Y0:i = y0:i )

p(Xi+1 = xi+1|X0:i = x0:i )
,

which together comprise the local predictive capacity

c{i,i+1}
x = a{i,i+1}

x + t {i,i+1}
y→x

= ln
p(Xi+1 = xi+1|X0:i = x0:i , Y0:i = y0:i )

p(Xi+1 = xi+1)
, (7)

withC
{i,i+1}
X = 〈c{i,i+1}

x 〉. In purely information theoretic terms,
such local quantities may be interpreted as the differences
in code lengths between competing models of the observed
behavior in Xi+1. It is important to note that such local
values have no bound on their sign and thus may be negative.
Such an approach allows significance to placed on single
realizations of a process, allowing fine characterization of
spatial temporal features, such as the identification of dynamics
that are informative, but especially those which are misin-
formative, characterized by negative local values. Detailed
understanding of these individual realizations using such local
quantities has yielded important identification and insights into
distributed computing behavior. This ability to attribute storage
and transfer of information to individual realizations is crucial
to the following developments.

III. TIME-REVERSED COMPUTATIONS

Modern thermodynamics makes explicit links between the
dynamic irreversibility of a physical process and the total
entropy production of the universe. Indeed, this “total entropy
production,” comprising the change in internal uncertainty
and the heat dissipated to an environment, can be, under
the right circumstances, considered equal to the log-ratio of
the probability of observing the “forward” behavior relative
to the probability of observing the “reverse” behavior, having
started from an ensemble characterized by the distribution
at the end of the forward process. This entails, if not the
construction, the consideration of a suitable “reverse process”
with which the normal, forward dynamics are contrasted.

We wish to give an alternative account of irreversibility in
computational terms, understood in the sense of information
dynamics. To do so we need to attribute computational quan-
tities to the time-reverse behavior of the system. Accordingly,
and in contrast to the reverse process considered in stochas-
tic thermodynamics, we define a time-reversed computation
through an analogous time-reversed predictive capacity. Such
an object is defined axiomatically, on a local, pointwise,
scale, as the predictive capacity with all constitute elements
time-reversed relative to the transition being considered in the
context of the whole process from t0 to tn, viz.

c†,{n−(i+1),n−i}
x = ln

p†(Xi+1 = x
†
i+1|X0:i = x

†
0:i , Y0:i = y

†
0:i )

p†(Xi+1 = x
†
i+1)

,

(8)

noting that this has been defined for the transition from time
n − i − 1 → n − i. Here we have introduced

(1) The time-reversed transform denoted by the † symbol
which time reverses and reflects sequences on the interval
[0, n]. This leads to the time-reversed path x

†
0:n, which in the

absence of odd parity variables amounts to the reverse sequence
of x0:n, i.e., x

†
0:n = xn:0 = {xn, . . . , x0}, such that x

†
i = xn−i .

(2) The time-reversed ensemble probability, appearing in
the denominator, defined as p†(Xi = x

†
i ) = p(X†

i = x
†
i ) =

p(Xn−i = xn−i ).
(3) The time-reversed dynamics [6,79,80], appearing in the

numerator, which in contrast accounts for any differences that
occur under time reversal in the generator of the process.
This can arise due to dependence on odd quantities with
respect to time reversal (e.g., magnetic fields/torques etc.) or
differences in evolution related to intervention in the system,
e.g., in extraneous variables Y . Unless otherwise stated we
will consider p† = p relating to autonomous, time invariant,
behavior.

We emphasize that the probability in the numerator is of the
reverse trajectory as if it were evolving forward in time under
dynamics denoted p†. In this sense it remains a prediction of
a hypothetical future evolution of the system. We emphasize
that p† is not a probability associated with retrodiction, i.e.,
not p†(X†

i+1 = x
†
i+1|X†

0:i = x
†
0:i , Y

†
0:i = y

†
0:i ).

For brevity we subsequently drop the explicit reference to
the variables and write the probabilities solely in terms of the
realized values such that we write

c{i,i+1}
x = ln

p(xi+1|x0:i , y0:i )

p(xi+1)
,

c†,{n−i−1,n−i}
x = ln

p†(x†
i+1|x†

0:i , y
†
0:i )

p†(x†
i+1)

= ln
p†(xn−i−1|xn:n−i , yn:n−i )

p(xn−i−1)
, (9)

and so, for the transition i → i + 1,

c†,{i,i+1}
x = ln

p†(xi |xn:i+1, yn:i+1)

p(xi )
, (10)

where we may understand p(xi ) ≡ p(Xi = xi ), p(xi+1|xi ) ≡
p(Xi+1 = xi+1|Xi = xi ), p†(xi |xi+1) ≡ p†(Xn−i = xi |
Xn−i−1 = xi+1), and so on. We also note that by time
homogeneity we may also write p†(Xn−i = xi |Xn−i−1 =
xi+1) = p†(Xi+1 = xi |Xi = xi+1). Some of these quantities,
in the context of continuous time, are illustrated in Fig. 1. Here
we observe two path realizations x[t0,τ ] ≡ {x(t ), t ∈ [t0, τ ]}
and y[t0,τ ] ≡ {y(t ), t ∈ [t0, τ ]} of X and Y , defined between
the time origin t0 (t = 0 in discrete time) and time horizon τ

(t = n in discrete time) illustrated in full in the first subplot.
The second subplot concerns the prediction associated with
the intrinsic computation at a given time t , which can be
understood as the midpoint between times i and i + 1
in discrete time. When X is the computing quantity the
predictive capacity quantifies the ability to predict the next
step along the dashed blue line given knowledge of the solid
blue and red lines. The capacity derived from the dark line
is the active information storage whilst the capacity derived
from the light line is the transfer entropy. The third subplot
concerns the time-reversed prediction associated with the
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(a)

(b)

prediction

reverse prediction (c)

retrodiction (d)

FIG. 1. Illustration of the intrinsic and reverse computations and
predictions. In subfigure (a) we plot two paths associated with random
functions X[t0,τ ] and Y[t0,τ ] with time origin and horizon t0 and τ , with a
specific intermediate point, t0 < t < τ , being considered. At this time
the forward (ensemble) computation in X concerns the prediction of
the dashed dark line on the right-hand side in subfigure (b) from the
solid dark and light lines on the left-hand side using the ensemble
dynamics p. The reverse computation in X concerns the prediction
of the dashed dark line in subfigure (c) from right to left using the
time-reversed dynamics p†. This is to be contrasted with retrodiction
illustrated in subfigure (d).

time-reversed computation. Here the reverse sequence of X

is being predicted about time t ; however, the prediction is
in the same direction as the time evolution as the physical,
time-reversed dynamics are being utilized. The fourth subplot
serves to distinguish the reverse prediction from a retrodiction:
in this plot, previous values of X are being retrodicted after
the fact from the subsequent trajectories.

Importantly, as with the intrinsic computation, the time-
reversed predictive capacity naturally divides into two compo-
nents:

c†,{i,i+1}
x = ln

p†(xi |xn:i+1, yn:i+1)

p(xi )

= ln
p†(xi |xn:i+1)

p(xi )
+ ln

p†(xi |xn:i+1, yn:i+1)

p†(xi |xn:i+1)
. (11)

The first characterizes the uncertainty reduction due to the
history of the variable which defines the computed quantity,
X, and the second characterizes uncertainty reduction due to
the extraneous time series, Y . The second quantity exists in the
literature and is the local time-reversed transfer entropy [81],

t†,{i,i+1}
y→x = ln

p†(xi |xn:i+1, yn:i+1)

p†(xi |xn:i+1)
, (12)

which becomes a pathwise quantity when integrated along a
path [82]. The first quantity, however, has not previously been
addressed and is a quantity we introduce which we call the

local time-reversed active information storage

a†,{i,i+1}
x = ln

p†(xi |xn:i+1)

p(xi )
. (13)

Together, these quantities characterize the distributed structure
of time-reversed computation and crucially do so on a local
scale for individual realizations of the process.

IV. A MEASURE OF COMPUTATIONAL
IRREVERSIBILITY

In quantifying the irreversibility of the computation we seek
to contrast the computational signature of the intrinsic compu-
tation with the computational signature of the time-reversed
computation. Further, any such measure should characterize
individual realizations of a process. We identify such a quantity
as the difference between computational signatures, character-
izing, on the local level, the difference in predictive capacity
between the two predictions/computations. We introduce such
a quantity, which we call the computational irreversibility, as
follows:

I{i,i+1}
x = c{i,i+1}

x − c†,{i,i+1}
x

= a{i,i+1}
x − a†,{i,i+1}

x + t {i,i+1}
y→x − t†,{i,i+1}

y→x , (14)

where we identify components that contribute due to the
predictive influence of Y and X as follows:

I{i,i+1}
x = IA,{i,i+1}

x + IT ,{i,i+1}
x←y

IA,{i,i+1}
x = a{i,i+1}

x − a†,{i,i+1}
x (15)

IT ,{i,i+1}
x←y = t {i,i+1}

y→x − t†,{i,i+1}
y→x .

As such we identify IA,{i,i+1}
x as intrinsic computational

irreversibility associated with storage of information in the
transition from time i to i + 1 and IT ,{i,i+1}

x←y as extrinsic
computational irreversibility associated with the transfer of
information over that transition. Just as the active information
storage quantifies the total predictability that can be extracted
from the history of a time series, the intrinsic irreversibility
quantifies the total irreversibility that can be identified using
only that time series. Analogously, as the transfer entropy quan-
tifies the additional predictability an extraneous time series
provides, the extrinsic irreversibility quantifies the additional
irreversibility that arises when Y is known in addition to X.

To proceed we need to associate such quantities with com-
plete paths. As formulated, information dynamics considers
its measures of storage and transfer to be associated with
individual time steps. Consequently, we consider the difference
in cumulatively utilized information storage and information
transfer along entire paths by considering the sum of those
individual storage and transfer measures associated with each
time step, here from a time origin t = 0 to a time horizon t = n

obtaining, first, for the intrinsic irreversibility

�IA,{0,n}
x =

n−1∑
i=0

IA,{i,i+1}
x

=
n−1∑
i=0

a{i,i+1}
x − a†,{i,i+1}

x
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=
n−1∑
i=0

ln
p(xi+1|x0:i )

p(xi+1)

p(xi )

p†(xi |xn:i+1)

= ln
p(x0)

p(xn)
+

n−1∑
i=0

ln
p(xi+1|x0:i )

p†(xi |xn:i+1)

= ln
p(x0:n)

p†(xn:0 )
. (16)

Similarly the cumulative extrinsic irreversibility is defined as

�IT ,{0,n}
x←y =

n−1∑
i=0

IT ,{i,i+1}
x←y

=
n−1∑
i=0

t {i,i+1}
y→x − t†,{i,i+1}

y→x

=
n−1∑
i=0

ln
p(xi+1|x0:i , y0:i )

p(xi+1|x0:i )

p†(xi |xn:i+1)

p†(xi |xn:i+1, yn:i+1)

= ln
p†(xn-1:0|xn)

p(x1:n|x0)

p(x1:n|x0, {y0:n-1})

p†(xn-1:0|xn, {yn:1})
, (17)

where we utilize notation for probabilities of complete paths
as follows:

p(x1:n|x0) =
n∏

i=1

p(xi |x0:i−1),

p†(xn−1:0|xn) =
n−1∏
i=0

p(xi |xn:i+1),

p(x0:n) = p(x0)p(x1:n|x0),
(18)

p†(xn:0 ) = p(xn)p(xn−1:0|xn),

p(x1:n|x0, {y0:n-1}) =
n−1∏
i=0

p(xi+1|x0:i , y0:i ),

p†(xn−1:0|xn, {yn:1}) =
n−1∏
i=0

p(xi |xn:i+1, yn:i+1),

with notation {} emphasizing that p(x1:n|x0, {y0:n-1}) 	=
p(x1:n|x0, y0:n-1) as future values of Y are causally blocked
along evaluation of the path.

Explicitly, �IA,{0,n}
x is the difference between the cumu-

lative use of stored information utilized in a specific path
for all computational steps from t = 0 through to t = n and
the cumulative use of stored information in all steps of the
appropriate reverse computation sequenced from n to 0. Anal-
ogously, �IT ,{0,n}

x←y is the difference between the cumulatively
transferred information in the forward computations and the
cumulatively transferred information in the appropriate reverse
computations. Both of these are expressible as probabilities
assigned to total path realizations, i.e., x0:n, etc.

Importantly, these accumulated quantities along such paths
can be expressed as functionals consisting of ratios of the con-
structed path probabilities. This supports their existence when a

limit in the discretization is taken in the approach to continuous
time (thus permitting a rate). In the continuum regime we are
concerned with such quantities formulated for continuous path
functions written xA ≡ {x(t ′) : t ′ ∈ A}. We construct these
quantities by considering an interval [t0, τ ] and constructing a
discretization running from i = 0 to i = n = (τ − t0)/�t such
that xi = x(t0 + i�t ) then taking �t → 0 such that x0:n →
x[t0,τ ], x1:n → x(t0,τ ], and so on. In this limit, measures replace
probabilities and computational signatures and irreversibilities
become differential quantities defined instantaneously; i.e.,
I{i,i+1}

x → dIx (t ). We consequently identify the accumulated
quantities with logarithms of Radon-Nikodym derivatives
between these path measures [82,83], such that for a process
running from t = t0 to t = τ we write

�IA
x =

∫ τ

t0

dIA
x (t ) = lim

�t→0
ln

p(x0:n)

p†(xn:0 )
= ln

dp
[
x[t0,τ ]

]
dp†

[
x[t0,τ ]

] ,
�IT

x←y =
∫ τ

t0

dIT
x←y (t )

= lim
�t→0

ln
p†(xn-1:0|xn)

p(x1:n|x0)

p(x1:n|x0, {y0:n-1})

p†(xn-1:0|xn, {yn:1})

= ln
dp†[x(τ,t0]

∣∣xτ

]
dp

[
x(t0,τ ]

∣∣xt0

] dp
[
x(t0,τ ]

∣∣xt0 ,
{
y[t0,τ )

}]
dp†

[
x(τ,t0]

∣∣xτ ,
{
y[τ,t0 )

}] . (19)

For clarity, however, we utilize a deliberate abuse of notation
rewriting measures as path probability “densities” such that∫

dp[x[t0,τ ]] ≡
∫

dx[t0,τ ] p
[
x[t0,τ ]

]
=

∫
dx[t0,τ ] p

[
x(t0,τ ]

∣∣xt0

]
p
(
xt0

)
, (20)

since this permits a more natural discussion and intuitive
manipulation when dealing with familiar objects such as
mutual informations, etc., without altering any of the results.

Before progressing we note that the intrinsic irreversibility
associated with information storage permits a nonnegative
ensemble average viz.

〈
�IA

x

〉 =
∫

dx[t0,τ ] p
[
x[t0,τ ]

]
ln

p
[
x[t0,τ ]

]
p†

[
x[τ,t0]

] � 0, (21)

but no bound exists for 〈�Ix〉 or 〈�IT
x←y〉, properties that we

shall return to.

V. COMPUTATIONAL IRREVERSIBILITY
IN PHYSICAL SYSTEMS

The measures 〈�Ix〉, 〈�IA
x 〉, and 〈�IT

x←y〉 are very general
objects which quantify irreversibility for any dynamics where
the relevant probability measures can be defined. However,
to understand their potential role in, and connection with,
(stochastic) thermodynamics we must consider their behavior
in relevant physical systems. This will necessarily involve
a constraining of the nature of the systems considered. To
understand the relevant constraints it is instructive to give a
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brief account of how irreversibility in physical systems can be
identified thermodynamically as entropy production.

A. Entropy production in stochastic thermodynamics

Here we give a brief account of how entropy production can
be understood in terms of dynamic irreversibility in systems
that obey such Markovian dynamics, thus giving a brief
overview of the necessary features of stochastic thermody-
namics. As with all thermodynamic descriptions, we consider
a division of the universe into a system of interest with degrees
of freedom that we are aware of and an environment that we
are mostly unconcerned with and so remain ignorant of. If
the system is small enough, this ignorance of the environment
renders the behavior of the system unpredictable, or stochastic
due to our failure to track its precise evolution. Further, if we
have performed such a division sensibly, the environmental
degrees of freedom will be fast in comparison to the system
allowing us to make an assumption that the induced proba-
bilistic dynamics are Markov, but also the assumption that the
environment is at equilibrium. In such situations a powerful
principle arises known as local detailed balance [84–91],
which relates the transition rates that arise from exposure to the
environment to the exported entropy production realized in the
environment.

If we consider such a continuous time Markovian process
in X on a discrete state space we may describe its behavior as
a sequence of instantaneous transitions. On an interval [t0, τ ]
there is a countable number of transitions, N , occurring at times
t0 < t1 < . . . < tN < τ between states Xt = xi , t ∈ [ti , ti+1).
The dynamics are consequently described by a set of transition
rates k

y

x→x ′ concerning a transition from x to x ′, which we
also allow to be parametrized by a smoothly varying switching
protocol Y . In such a scenario any such transition is mediated
by the equilibrium environment and thus the local detailed
balance relation stipulates that it is accompanied by an entropy
change in the environment, at time ti , equal to (setting kB = 1
here and throughout)

ln
k

yti
xi−1→xi

k
yti
xi→xi−1

= �Sx
env(ti ), (22)

manifesting as a heat flow scaled by the environmental temper-
ature when the environment is a heat bath. By definition, the
probability of observing such a transition in a given time �t

is then written p(Xt+�t = x ′|Xt = x, Yt = y) = k
y

x→x ′�t +
O(�t2) such that we can associate the above with transition
probabilities on a short timescale,

�Sx
env(ti )

= ln
kxi−1→xi

kxi→xi−1

= lim
�t→0

ln
p
(
Xti = xi

∣∣Xti−�t = xi−1, Yti−�t = yti−�t

)
p
(
Xti = xi−1

∣∣Xti−�t = xi, Yti−�t = yti

) .

(23)

If we have invariance in the time-reversed dynamics p† = p

(i.e. k
y

x→x ′ = k
y,†
x→x ′ ) and Y is suitably smooth then we may

rewrite the above as

�Sx
env(ti )

= lim
�t→0

ln
p
(
Xti = xi

∣∣Xti−�t = xi−1, Yti−�t = yti−�t

)
p†

(
Xti = xi−1

∣∣Xti−�t = xi, Yti−�t = yti−�t

)
= lim

�t→0
ln

p
(
xti

∣∣xti−�t , yti−�t

)
p†

(
xti−�t

∣∣xti , yti

) , (24)

i.e., in a form represented by the time-reversed dynamics and
path sequence.

In contrast, an absence of entropy production in the en-
vironment (due to X) is associated with the times between
transitions, understood physically as an absence of exchange
of energy with the environment. This too can be captured in
terms of probabilities of the transition sequence by simply
observing the probability of such an absence in the forward
and time-reversed dynamics to be exponentially distributed
due to the Markovian dynamics and thus given by

ln
p
(
X(ti ,ti+1 ) = xi

∣∣Xti = xi,
{
Y[ti ,ti+1 ) = y[ti ,ti+1 )

})
p†

(
X(ti ,ti+1 ) = xi

∣∣Xti = xi,
{
Y[ti ,ti+1 ) = y[ti+1,ti )

})
=

∑
x ′

∫ ti+1

ti

(
k

y(t ),†
xi→x ′ − k

y(t )
xi→x ′

)
dt, (25)

which vanishes when p = p† such that kx→x ′ = k
†
x→x ′ . These

contributions can be constructed in a piecewise fashion, with
waiting times interleaved between transitions, allowing us to
consider the ratio of the conditional probability of the entire
path x[t0,τ ] and the conditional probability of the entire path
x[τ,t0] under the time-reversed dynamics allowing us to express
the total entropy exported by the system X to the environment,
along an entire path x[t0,τ ] as [6,92]

�Sx
env

[
x[t0,τ ]

] =
∫ τ

t0

dSx
env(t ) = ln

p
[
x(t0,τ ]

∣∣xt0 ,
{
y[t0,τ )

}]
p†

[
x(τ,t0]

∣∣xτ ,
{
y[τ,t0 )

}] ,
(26)

in this case with dSx
env(t ) = δ(t − ti )�Senv(ti ). While we have

described the above for a jump process, the above relationship
is very robust, holding for all Markov systems that possess a
local detailed balance relationship. This can be understood by
recognizing that continuous dynamics, realized, for instance,
as stochastic differential equations, may be achieved through
the appropriate limit of such a jump process (i.e., the Fokker
Planck equation may be derived from the master equation).

Having established the form of the exported entropy produc-
tion, one of the key insights of stochastic thermodynamics is to
observe that when augmenting such a quantity with a change
in pointwise (or local) Shannon entropy of the system, the sum
then represents the total entropy production, in model, of the
universe [6] (consisting of the system and the environment) and
obeys the requisite statistical requirements to satisfy a second
law. Such a change in Shannon entropy, for any class of system
on the interval [t0, τ ], reads

�Sx
sys

[
x[t0,τ ]

] = ln
p
(
xt0

)
p(xτ )

. (27)

If we consider such a change between the start and end of the
process on x[t,τ ] this provides an initial condition for the path
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probabilities appearing in Eq. (26) such that

�Sx
tot

[
x[t0,τ ], y[t0,τ ]

]
= �Sx

sys

[
x[t0,τ ], y[t0,τ ]

] + �Sx
med

[
x[t0,τ ], y[t0,τ ]

]
= ln

p
[
x[t0,τ ]|xt0 ,

{
y[t0,τ )

}]
p
(
xt0

)
p†

[
x[τ,t0]|xτ ,

{
y[τ,t0 )

}]
p(xτ )

= ln
p
[
x[t0,τ ]

∣∣{y[t0,τ ]
}]

p†
[
x[τ,t0 )

∣∣{y[τ,t0 )
}] .

(28)

It is this quantity that the second law governs, and it does so
on a statistical level. As such, assuming no feedback between
the system X and switching protocol Y (i.e., Y cannot depend
on X), the following holds:〈

�Sx
tot

〉 = 〈
�Sx

sys

〉 + 〈
�Sx

env

〉
� 0, (29)

representing the second law.
Finally, however, it is important to note two key assump-

tions. The first is the assumption of no feedback. If this is not
met then the second law as written above need not hold. To
recover the second law in such cases either the definition of
the system must be expanded or the result generalized. The
second is the assumption of smoothness in Y in the preceding
identification of the entropy production and its representation
in terms of dynamical probabilities. If such a criterion is not
met the notion of a heat physically dissipated by X can become
fundamentally ambiguous since the value y that enters the
local detailed balance condition is not well defined. This can
occur notably if (i) both X and Y are continuous but nowhere
differentiable (as in the case of Langevin equations) and driven
by correlated noise or (ii) both X and Y are discrete variables
which can simultaneously transition. In the latter, such a
situation can be avoided by insisting that joint transitions are
disallowed such that the dynamics of both X and Y , governed
by the transition rates k

y→y ′
x→x ′ ({x, y} 	= {x ′, y ′}), may be written

k
y→y ′
x→x ′ = (1 − δx,x ′ )δy,y ′k

y

x→x ′ + (1 − δy,y ′ )δx,x ′ky→y ′
x , (30)

such that
∑

y ′ k
y→y ′
x→x ′ = k

y

x→x ′ and
∑

x ′ k
y→y ′
x→x ′ = k

y→y ′
x . More

broadly, such a requirement specifies conditional indepen-
dence in the subsequent values of X and Y given the preceding
history over small timescales, arising here since the transition
times of X and Y are not correlated as they do not transition
together, almost surely. This conditional independence is
expressed by the following:

lim
dt→0

p(xt+dt , yt+dt |xt , yt )

= lim
dt→0

p(xt+dt |xt , yt )p(yt+dt |xt , yt ), (31)

which we can observe to hold for the discrete space case by
considering a transition x → x ′ 	= x, y = y ′, without loss of
generality, such that we have

p(Xt+dt = x ′|Xt = x, Yt = y)p(Yt+dt = y|Xt = x, Yt = y)

= k
y

x→x ′dt

⎛
⎝1 −

∑
y ′

ky→y ′
x dt

⎞
⎠ + O(dt2)

= k
y

x→x ′dt + O(dt2)

= p(Xt+dt = x ′, Yt+dt = y|Xt = x, Yt = y) + O(dt2).
(32)

In the former case with continuous paths such a conditional in-
dependence requirement manifests as statistical independence
of any noise terms between X and Y . When such a requirement
is met then one may write

ln
p(xt+dt |xt , yt )

p†(xt |xt+dt , yt+dt )
= ln

p(xt+dt |xt , yt )

p†(xt |xt+dt , yt )
+ O(dt2), (33)

identifying a term representing the local detailed balance
condition on the right-hand side and recovering Eq. (26).

This property of conditional independence, manifest as
independence in noise terms in continuous dynamics and
illegality of joint transitions in discrete dynamics, is called
a bipartite property.

B. Relating computational irreversibility
and physical entropy production

Here we make an explicit connection between the measures
of computational irreversibility established in Sec. IV and
the thermodynamic quantities described above. To do so we
consider, first, a system where the physical assumptions listed
above are true, namely, that (i) an equilibrium environment
leads to stochastic dynamics in a system, X, which are Markov,
thus leading to a local detailed balance relation, and that (ii) the
joint dynamics of the system X and some extraneous parameter
Y , which may represent an external protocol or some other
coupled subsystem, are bipartite such that we observe no joint
transitions or consider independence of noise in the continuous
limit.

In this case we straightforwardly compare the contents
of Eqs. (28) and (19) and immediately recognize a central
observation:

�Ix = �Sx
tot. (34)

Explicitly, the computational irreversibility reduces to the total
thermodynamic entropy production in the case of Markovian
bipartite dynamics revealing that the central measure of intrin-
sic computation, the predictive capacity, can be seen to be an
implicitly central quantity in stochastic thermodynamics. In
other words, entropy production can be equivalently described
by physical irreversibility and computational irreversibility as
measured by information dynamics.

Since thermodynamic and computational irreversibility are
equivalent in such a setting and the computational irreversibil-
ity is designed around a division in storage and transfer of
information, it is instructive to translate such a division, real-
ized in the intrinsic and extrinsic computation irreversibilities
in Eq. (19), into divisions of physical entropy production. As
such we therefore explicitly write

dSx
tot = dSx

storage + dSx←y

transfer, (35)

where we identify dSx
storage = dIA

x as the physical entropy
production associated with the active storage of information
and dSx←y

transfer = dIT
x←y as the physical entropy production

associated with the transfer of information based on the
identification dSx

tot = dIx = dIA
x + dIT

x←y . The last quantity,
dSx←y

transfer, was used in the construction of a measure of informa-
tion theoretic time asymmetry, an “information theoretic arrow
of time” [81]. We emphasize here, however, that we are making
a complete division of the entropy production associated with
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the computational primitives, deriving from general measures
of irreversibility.

Such a division is to be contrasted with other important
divisions of the total entropy production of the universe, such
as the usual division into the entropy change attributed to
the system and the environment [6] (or in the language of
Prigogine, the system into the internal and external productions
[93]),

dSx
tot = dSx

sys + dSx
env, (36)

or the more recent division of the total entropy production into
adiabatic and nonadiabatic contributions [92,94–97]:

dSx
tot = dSx

na + dSx
a . (37)

All of the above divisions of the total entropy production are
based, in some sense, on how they manifest. The division in
Eq. (36) characterizes the location associated with the entropy
change: dSx

sys concerns the entropy change associated with the
system, while dSx

env concerns the entropy change of the envi-
ronment. The division in Eq. (37) characterizes the ensemble
level mechanisms that lead to dissipation: dSx

na concerns the
entropy production associated with driving and relaxation and
dSx

a concerns the entropy production associated with steady
nonequilibrium constraints. Our division in Eq. (35) does so
based on the manifestation of computational behavior (storage
and transfer), defined in terms of predictive capacity based on
the terms laid out in Sec. II.

Finally, we mention that since the total computational irre-
versibility can be associated with physical entropy production,
by assuming a heat bath at constant temperature β−1 (we use
kB = 1 throughout), we can write

dSx
storage = dSsys + dβQx

storage,

dSx←y

transfer = dβQ
x←y

transfer, (38)

where

�Qx = �Qx
storage + �Q

x←y

transfer, (39)

reminiscent of the identification of the nonadiabatic entropy
production with the system entropy and excess heat [92,98] and
the adiabatic entropy production with the house keeping heat
[92,99,100]. That is we can identify contributions to physical
heat flows associated with storage and transfer of information.

Next, we turn our attention to the behavior of these con-
tributions to the total entropy production. First, we consider
the situation outlined above, that of Markovian bipartite dy-
namics before considering how they behave when the bipartite
assumption is dropped.

VI. BIPARTITE SYSTEMS

In this section we explore the behavior of the entropy
productions associated with the storage and transfer of infor-
mation in systems that are described through the dynamics of
two variables X and Y and where the dynamics are of these
variables are both bipartite and Markov. To reiterate, these are
systems where, if jumps in the variables are permitted, they
cannot occur simultaneously in both X and Y . Continuous
bipartite dynamics can be considered by considering the

limiting behavior of such systems resulting in a conditional
independence condition.

It is important to understand that such dynamics may
describe both a system comprising two components of a total
physical system in contact with a heat reservoir, or a single
variable X controlled by switching protocol Y as the dynamic
assumptions in both cases are identical. As such, in this section
we first consider the contributions associated with system X

in the context of a protocol Y , before describing the joint
contributions of the composite system.

A. Single variable and switching protocol

Here, we consider the simplest systems available for con-
sideration. These systems are the typical, canonical, systems
found in the original literature of stochastic thermodynamics
consisting of a single particle or object of interest denoted the
“system” (which may be a composite system itself), repre-
sented here by X, and a switching protocol that determines the
nature of the dynamics through the change of a potential/nature
of a heat bath, etc., represented here by Y . In addition to
the specification of Markov and bipartite dynamics, and in
contrast to systems we consider subsequently, we do not permit
any feedback between the switching protocol and the particle.
Consequently, it follows that we may write the probability of
observing the joint path {x[t0,τ ], y[t0,τ ]},

p
[
x[t0,τ ], y[t0,τ ]

]
= p

(
xt0 , yt0

)
p
[
x(t0,τ ]

∣∣xt0 ,
{
y[t0,τ )

}]
p
[
y(t0,τ ]

∣∣yt0 ,
{
x[t0,τ )

}]
= p

[
x(t0,τ ]

∣∣xt0 ,
{
y(t0,τ ]

}]
p
[
y(t0,τ ]

∣∣yt0

]
p
(
xt0 |yt0

)
p
(
yt0

)
= p

[
x[t0,τ ]

∣∣y[t0,τ ]
]
p
[
y[t0,τ ]

]
, (40)

noting that here the evolution of Y is independent of
X, i.e., p[y(t0,τ ]|yt0 , {x[t0,τ )}] = p[y(t0,τ ]|yt0 ], and thus that
p[x(t0,τ ]|xt0 , {y[t0,τ )}] = p[x(t0,τ ]|xt0 , y[t0,τ )].

The division in Eq. (39) identifies heat flows based on
information theoretic constructs, on the level of individual
behavior, provided by the physical dynamics, but also by
the statistics of the ensemble which serves to change the
character of the predictability of the process. Explicitly this
means changing the properties of the ensemble amounts to
changing the amount of information that can be deemed to be
in active storage or being transferred and thus the irreversibility
associated with it.

As such it is illustrative to consider different situations
where one observes different storage and transfer behavior and
thus different contributions to the total entropy production. To
do so under the system/protocol paradigm without feedback
we consider three cases, each with increasing constraint.

1. Irreversible protocols

First, we consider the case where the protocol is cho-
sen randomly according to p[y[t0,τ ]], and not necessarily
reversibly, i.e., p[y[t0,τ ]] 	= p†[y[τ,t0]]. In this case we have, in
addition to 〈�Sx

storage〉 � 0 [which emerges from Eq. (21)],
an integral fluctuation theorem regarding the total entropy
production in X, plus a change in correlation between sys-
tem and protocol over the process (captured by a change
in a local mutual information, �iM , where 〈iM〉 = IM and
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iM = ln{p(x, y)/[p(x)p(y)]}). Specifically, we may write〈
exp

[−�Sx
storage − �Sx←y

transfer + �iM
]〉

=
∫

dx[t0,τ ]

∫
dy[t0,τ ]

× p
[
y[t0,τ ]

]
p
[
x(t0,τ ]

∣∣xt0 ,
{
y[t0,τ )

}]
p
(
xt0

∣∣yt0

)
× p†[x(τ,t0]

∣∣xτ ,
{
y[τ,t0 )

}]
p(xτ )p

(
xt0

)
p(xτ |yτ )

p
[
x(t0,τ ]

∣∣xt0 ,
{
y[t0,τ )

}]
p
(
xt0

)
p
(
xt0 |yt0

)
p(xτ )

=
∫

dy[t0,τ ] p
[
y[t0,τ ]

]
×

∫
dx[t0,τ ]p

†[x(τ,t0]

∣∣xτ ,
{
y[τ,t0 )

}]
p(xτ |yτ )

= 1, (41)

such that we have 〈�Sx
storage + �Sx←y

transfer〉 − �IM � 0 follow-
ing from Jensen’s inequality. Consequently, we see that we
have the bound〈

�Sx←y

transfer

〉
� �IM − 〈

�Sx
storage

〉
(42)

or rather

�Sx − �IM + β
〈
�Qx

storage

〉 + β
〈
�Q

x←y

transfer

〉
� 0, (43)

where �Sx = 〈�Sx
sys〉. We note that the final mutual informa-

tion is not strictly necessary for the relation Eq. (43) to hold,
meaning that for an initially uncorrelated system and protocol,

we find 〈
�Sx←y

transfer

〉
� −〈

�Sx
storage

〉
. (44)

Since 〈�Sx
storage〉 � 0, 〈�Sx←y

transfer〉 can be negative, but not
enough so that the total entropy production becomes negative.
This forms a central behavior of the two contributions to
entropy production: the intrinsic entropy production due to
storage is nonnegative, yet the extrinsic entropy production
due to transfer may take negative values, potentially offsetting
contributions from its surroundings. The above result points
out that even when the total entropy production (their sum) is
nonnegative the entropy due to transfer may still be negative.

2. Reversible protocols

To see why 〈�Sx←y

transfer〉 can take negative values, it is instruc-
tive to consider progressively more restrictive processes. As
such we consider a process where there is no irreversibility in
the protocol: this can be considered to mean that the evolution
of the protocol is purely diffusive, in both the forward and
reverse processes, or rather that the protocol in the reverse
process is guaranteed to be the time-reversed protocol of the
forward process. Alternatively, one may simply posit that
protocols are chosen from a distribution that is symmetric
with respect to time reversal. All, however, yield the same
condition, p[y[t0,τ ]] = p†[y[τ,t0]]. When such a condition holds,
in addition to the positivity of the storage entropy production
〈�Sx

storage〉 � 0, 〈�Sx
sys + β�Qx

storage〉 � 0, following from
Eq. (21), we may write

〈
exp

[
�iM − �Sx←y

transfer

]〉 =
∫

dx[t0,τ ]

∫
dy[t0,τ ]p

(
xt0

∣∣yt0

)
p
[
x(t0,τ ]

∣∣xt0 ,
{
y[t0,τ )

}]
p[y[t0,τ ]]

× p
(
xt0

)
p(xτ )

p(xτ |yτ )

p
(
xt0

∣∣yt0

) p
[
x(t0,τ ]

∣∣xt0

]
p
[
x(t0,τ ]

∣∣xt0 ,
{
y[t0,τ )

}] p†[x(τ,t0]

∣∣xτ ,
{
y[τ,t0 )

}]
p†

[
x(τ,t0]|xτ

]
=

∫
dx[t0,τ ]

∫
dy[t0,τ ] p(xτ |yτ )p†[x(τ,t0]

∣∣xτ ,
{
y(τ,t0]

}]
p
[
y[t0,τ ]

] p
[
x[t0,τ ]

]
p†

[
x[τ,t0]

]
=

∫
dx[t0,τ ]

∫
dy[t0,τ ] p(xτ |yτ )p†[x(t0,τ ]

∣∣xτ ,
{
y[t0,τ )

}]
p†[y[τ,t0]

] p
[
x[t0,τ ]

]
p†

[
x[τ,t0]

]
=

∫
dx[t0,τ ] p†[x[τ,t0]]

p
[
x[t0,τ ]

]
p†

[
x[τ,t0]

] = 1, (45)

such that, again, by Jensen’s inequality,

−�IM + 〈
�Sx←y

transfer

〉 = −�IM + 〈
β�Q

x←y

transfer

〉
� 0. (46)

That is, in this picture the single relation of Eq. (43) decom-
poses into two distinct relations that we may write as two
Clausius-like statements for these processes, namely,

�Sx � −β

∫ t

t0

〈
dQx

storage

〉
,

−�IM � −β

∫ t

t0

〈
dQ

x←y

transfer

〉
, (47)

differences in uncertainty and correlation, bound heat flows
associated with storage and transfer of information, respec-

tively. That is, both reflect heat flows that are associated with
behavior attributable to X and its interaction with extrinsic
variables. Crucially, however, we must understand that the
absence of irreversibility in the extrinsic process has lead to
the decomposition into two separate bounds facilitated by
the stronger bound on 〈�Sx←y

transfer〉. In other words, there is
no irreversibility extrinsic to X which the entropy due to
information transfer need offset and thus the additional bound
emerges.

3. Deterministic protocols

Finally, for completeness, we can consider the more
traditional conception of a process driven by a switch-
ing protocol, namely, that there is a single protocol
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y[t0,τ ] = −→
y , which can be reliably selected, repeatedly, such

that we have p[y[t0,τ ]] = δ(y[t0,τ ] − −→
y ). This in turn leads

to p[x(t0,τ ]|xt0 ] → p[x(t0,τ ]|xt0 , {−→y }] and thus �Sx←y

transfer =
�Sx←∅

transfer = 0 for all realizations. This simply serves to illus-
trate the fact that information is only deemed to be in transfer
when there is a nonsingular ensemble associated with the
extrinsic behavior, such that the division of entropy into stored
and transferred components is trivial here.

In summary, we see that when there is no variation in
the extrinsic process, no transfer of information occurs and
thus no entropy production can be associated with transfer of
information since knowledge of the protocol adds no predictive
capacity to the underlying computations. When this condition
is relaxed, but we assert that the extrinsic process is perfectly
reversible, the entropy due to transfer of information behaves
like an additional physical heat flow, leading to two distinct
second laws, as it is rigorously bounded by a change in
uncertainty in the process. Finally, we see that this second
bound is lost when the dynamics of the protocol can be
intrinsically irreversible.

The mechanism by which this happens is important. When
the protocol is irreversible, on average the realized y[t0,τ ]

is more probable than the corresponding reverse protocol,
y
†
[t0,τ ] = y[τ,t0]. By definition, the forward protocol is a less sur-

prising event in the ensemble that characterizes the marginal-
ized dynamics p[x(t0,τ ]|xt0 ] than the reverse protocol. This
indicates that the reverse protocol has more predictive power
in the reverse process because it is rarer than the forward
protocol. This in turn leads to a reduced entropy production
arising from the transfer of information: one gains more
predictive power using Y in the reverse process than in the
forward process precisely because it is rarer. This property,
where the entropy production due to transfer of information
is (negatively) sensitive to the irreversibility of the extrinsic
processes is a feature that underlies much of its behavior in
more complicated processes.

Finally, we note in this section that we have introduced
boundary mutual information terms, required for the relevant
integral fluctuation theorems to hold, in a seemingly ad hoc and
unprincipled way. Indeed, similar terms appear in the literature
[101]. In the next section we offer a rationalization for the
inclusion of such terms based on a principle of conservation
of predictive capacity.

B. Bipartite systems with feedback

Next, we extend the systems considered above to systems
where X and Y , while remaining bipartite, may evolve depen-
dently on each other such that they effect feedback. This allows
one to consider models of protocols (Y ) which can respond
to the system (X) or to consider a joint, composite, system,
{X, Y }, identifying contributions to the entropy production
from each.

Especially relevant to the latter case is the fact that we
may observe the evolution on different levels of description,
each of which on has distinct characterizations both in terms
of their thermodynamics and their intrinsic computation. So
far we have only discussed the intrinsic computation and
thermodynamics of individual subsystems, but to understand
the role of entropy exchange in terms of intrinsic computation

in such systems we must also understand those behaviours on
the level of the composite system.

To do so we must discuss the intrinsic computation, compu-
tational irreversibility and thus entropy production associated
with the joint system. The joint system is one with only an
intrinsic component and thus has a predictive capacity equal
to its information storage; i.e.,

cxy = axy. (48)

We now seek to relate this predictive capacity to the informa-
tion processing that is occurring on the level of the individual
subsystems characterized through cx and cy . To do so we posit
a principle that any coherent characterization of the composite
system should assign predictive capacity to subcomponents in
such a way so as to conserve the total of the joint system. To
this end we write

cxy = cx + cy + c
xy

int, (49)

where

cx = ax + ty→x, cy = ay + tx→y (50)

are the predictive capacities of the individual subsystems.
We emphasize the appearance of c

xy

int , a new quantity, which
we call the the interaction prediction. This quantifies the
predictive power that emerges only when jointly predicting
both X and Y , i.e. the portion of the computational signature
of the joint process which cannot be uniquely attached to
any individual sub-system and arises from this necessity of
conserving predictive capacity. Importantly, unlike cxy , cx , cy

or their constituent quantities, c
xy

int has, in general, no bound
on its sign in expectation except for bipartite systems where it
must be negative. This occurs for bipartite systems since in this
case c

xy

int is given by the negative pointwise mutual information,

c
xy

int = iM = − ln
p(x, y)

p(x)p(y)
. (51)

Further, to relate such a decomposition to the computational
irreversibilities and entropy production contributions we must
attribute an irreversibility term to this interaction prediction.
Using the definition of time-reversed computations laid out
in Sec. III we may identify an appropriate time-reversed
interaction prediction,

cint,†
xy = c†xy − c†x − c†y, (52)

which analogously leads to an interaction irreversibility,

dI int
xy = cint

xy − cint,†
xy . (53)

Since in these systems we identify dIxy = dSxy
tot and dIx =

dSx
tot , we identify the interaction irreversibility with an interac-

tion entropy production, dI int
xy = dSxy

int . Importantly, for these
bipartite structures this simply reduces to the negative change
in pointwise mutual information,

�Sxy

int = −�iM,
〈
�Sxy

int

〉 = −�IM. (54)

This then provides a coherent framework for the inclusion of
the mutual information in Eqs. (43) and (47): it is accounting
for computational irreversibility which cannot be associated
with either X or Y . Moreover, we shall see that such a principle
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forms the basis of a general approach to systems where fewer
assumptions about the dynamics hold.

Proceeding, as mentioned, a particular benefit of the bipar-
tite assumption is that it explicitly allows us to establish heat
flows associated with each component of the system, since the
conditional independence of the transition probabilities leads
to a joint local detailed balance condition decomposing into
separate contributions from both X and Y [15] such that we
can write

�Sxy
tot = �Sxy

int + �Sx
tot + �S

y
tot

= −�IM + �Sx
storage + �S

x←y

transfer

+ �S
y
storage + �S

y←x

transfer

= −�IM + �Sx
sys + β�Qx

storage + β�Q
x←y

transfer

+ �Sy
sys + β�Q

y
storage + β�Q

y←x

transfer, (55)

with the division of heat flows obeying

�Qxy = �Qx + �Qy

= �Qx
storage + �Q

x←y

transfer + �Q
y
storage + �Q

y←x

transfer.

(56)

Importantly, however, no individual contribution, e.g. �Sx
tot =

�Sx
storage + �S

x←y

transfer, nor, even sums of contributions, �Sx
tot +

�S
y
tot, has a bound on its sign in expectation; in the context of

multi-component systems the irreversibility of one component
can be negative if it is commensurately offset by positive
irreversibility in the remaining components. The second law
applies to the total system (and environment), not necessarily
on each component in isolation. Importantly, however, the
remaining components which offset such a reduction must
include the interaction entropy production.

The precise nature of how this phenomenon manifests
has attracted much attention in terms of information flows,
having its origins in measurement and feedback systems,
identifying minimal correlations that can be exploited to reduce
the entropy of a subsystem. In this work we take a different
approach and identify the physical entropy that can be offset in
different subsystems, arguing that it is the entropy production
due to information transfer that can cause negative entropy
productions and indeed that it is the entropy production due
to information transfer associated with other subsystems that
have the ability to offset this reduction. The bounds that then
arise from the these interactions then work in interplay with
the interaction entropy production.

First, we establish that the total entropy of the entire system
is, necessarily, positive in expectation in accordance with
the second law, formulated here as a contribution entirely
associated with information storage and thus is rigorously
nonnegative by Eq. (21), i.e.,

〈
�Sxy

tot

〉 =
∫

dx[t0,τ ]

∫
dy[t0,τ ] p

[
x[t0,τ ], y[t0,τ ]

]
× ln

p
[
x[t0,τ ], y[t0,τ ]

]
p†

[
x[τ,t0], y[τ,t0]

] � 0. (57)

Next, however, we consider the following quantity〈
exp

[−(�Sxy

int + �Sx
tot + �Sy

tot − �Sx
storage

]〉
=

∫
dx[t0,τ ]

∫
dy[t0,τ ] p(xt0 , yt0 )p

[
x(t0,τ ], y(t0,τ ]

∣∣xt0 , yt0

]
× p(xτ , yτ )p†[x(τ,t0], y(τ,t0]

∣∣xτ , yτ

]
p(xt0 , yt0 )p

[
x(t0,τ ], y(t0,τ ]

∣∣xt0 , yt0

] p
[
x[t0,τ ]

]
p†

[
x[τ,t0]

]
=

∫
dx[t0,τ ] p†[x[τ,t0]

] p
[
x[t0,τ ]

]
p†

[
x[τ,t0]

]
= 1, (58)

such that we have the bound〈
�Sxy

tot − �Sx
storage

〉
� 0, (59)

which may be considered equivalent to〈
�Sxy

int

〉 + 〈
�Sx←y

transfer

〉
� −〈

�Sy
tot

〉
. (60)

This, along with the property 〈�Sy
storage〉 � 0 indicates that

if the total entropy production of subsystem Y is negative,
it arises because of negative 〈�Sy←x

transfer〉 components that
outweigh the information storage entropy, but moreover that
this negative entropy is balanced by the entropy due to transfer
of information into X along with the interaction entropy. In the
bipartite systems considered here, in the steady state, this may
be expressed 〈

�Sx←y

transfer

〉
� −〈

�Sy
tot

〉
(61)

since the mutual information is unchanged, demonstrating
explicitly how the extrinsic entropy production in X controls
the second law breakage in Y .

Again, as with the treatment of switching protocols without
feedback, we see a direct inverse relationship between the
irreversibility in an extraneous time series, here Y , and the
irreversibility in X that arises from information transfer from
that variable. Despite the presence of feedback, the mechanism
is the same as in the case of a stochastic protocol. With
increased irreversibility in Y , reflected in a positive �Sy

tot,
most sequences y[t0,τ ] are common trajectories and thus well
reflected in the coarse grained dynamics making them not
particularly informative, while y

†
[t0,τ ] = y[τ,t0] are rare and are

thus more informative leading to negative entropy production
due to information transfer. However, when �Sy

tot is negative,
sequences y[t0,τ ] are chosen that are relatively uncommon (with
respect to their time reverse, y

†
[t0,τ ] = y[τ,t0], in construction of

the marginal dynamics), leading to more informative realiza-
tions in the dynamics of Y in the forward time direction and
thus a positive entropy production due to information transfer.

1. Recovery and generalization of previous
information-thermodynamic bounds

Here we relate the bounds that we have derived, based on
describing the thermodynamic entropy production as formed
from information processing quantities, with previous results
in the literature which generally seek to sharpen or generalize
the second law with information processing quantities.

032141-12



ENTROPY BALANCE AND INFORMATION PROCESSING IN … PHYSICAL REVIEW E 98, 032141 (2018)

A well-known result concerning the transfer entropy rate in
the steady state found in [16,102,103] reads〈

�Ṡx
tot

〉 + Ṫx→y � 0, (62)

which may be integrated over finite times by considering the
pathwise transfer entropy [82],

Tx→y

[
x[t0,t], y[t0,t]

] = ln
p
[
y(t0,t]

∣∣yt0 ,
{
x[t0,t )

}]
p
[
y(t0,t]

∣∣yt0

] , (63)

such that 〈
�Sx

tot

〉 + 〈Tx→y〉 � 0. (64)

Outside of the steady state an analogous expression for
Bayesian networks was given in Ref. [101] by considering the
addition of a mutual information term, which after adapting to
continuous time processes yields〈

�Sx
tot

〉 + 〈Tx→y〉 − �IM � 0. (65)

We emphasize, the distinction between this relation and the
analogous relation in our framework,〈

�Sx
tot

〉 + 〈
�Sy←x

transfer

〉 + 〈
�Sxy

int

〉
� 0, (66)

is that all terms in the latter are understood as components
of the total entropy production of the composite system by
considering the decomposition of the observed irreversibilities
along computational lines. In this way, 〈�Sxy

int 〉 = −�IM is not
an ad hoc introduction to satisfy the bound, but the irreversibil-
ity associated with the joint prediction and computation in the
system which must be accounted for. In contrast, 〈�Sy←x

transfer〉 	=
〈Tx→y〉, with the former identified as a component of the
entropy production in Y while the latter is a pure information
term. However, our formalism can be seen to reduce to the
above if a specific choice of reverse process is considered,
common to the original literature on feedback protocols [21],
whereby the reverse process forces the extraneous variable,
e.g., Y , to exactly retrace the path it traced in the forward
realization, independently of X such that the reverse dynamics
are distinct from the forward dynamics, i.e., p 	= p†. This has
the specific result of setting p†[y[τ,t0], {x[τ,t0]}] = p[y[t0,τ ]] =
p†[y[τ,t0]], precisely returning 〈�Sy←x

transfer〉 = 〈Tx→y〉.
This may give some insight into the thermodynamic mean-

ing, if any, of the bare transfer entropy as it is equal to the
irreversibility 〈�IT

y←x〉 analogous to the the entropy produc-
tion 〈�Sy←x

transfer〉 in the case of nonautonomous feedback. That
is, the transfer entropy is a limit case of 〈�Sy←x

transfer〉 when Y

has no direct energetic, or thermal, interpretation as in the case
of a nonautonomous feedback controller.

There is no general bound characterizing the relationship
between 〈�Sy←x

transfer〉 and 〈Tx→y〉, with the former in certain
situations being larger or smaller than the transfer entropy
depending on the nature of the dynamics and the reverse be-
havior. However, their equality in the case of nonautonomous
protocols, where it is relevant, allows confirmation of the bound
in cases where 〈Tx→y〉 is computable, but 〈�Sy←x

transfer〉 is not,
which we shall find of use when we illustrate the generalized
application of our results in a nonbipartite system consisting of
a thermodynamic system of interest and a feedback controller.

VII. BEYOND THE BIPARTITE ASSUMPTION

In this section we apply our formalism to systems that do
not possess the bipartite structure considered thus far. While
the thermodynamics and entropy production of such systems
may, at least in the case of discrete state spaces, be treated
as a whole using conventional stochastic thermodynamics,
treatment of the entropy production associated with their
individual components ordinarily cannot. As discussed, this
inability arises because under such dynamics the heat exported
to the environment does not divide into components that can be
exclusively associated with each subsystem. Rather, at least in
some sense, there must be a component of the heat flow which
is shared between the subsystems. When considering only dis-
crete space, continuous time systems such as those described
as a master equation it might seem natural to categorize such
heat flows based on the nature of the transition, with a shared
heat flow being associated with those not permitted in bipartite
systems, namely joint transitions. However, in effect, this is
merely categorizing distinct transitions as bipartite (individ-
ual) or nonbipartite (joint) and leaves fundamental questions
unanswered. For instance, if all transitions are joint transitions
one would conclude that all heat flow should be identified as
belonging to the joint system. However, one may still track only
the probabilistic behavior of X in the context of Y and seek to
characterize its irreversibility. Is this irreversibility related to
the irreversibility of the joint system or that of subsystem Y ?
What if only the energetics of one sub-system can be defined
if the other corresponds to a nonthermal process such as a
feedback controller? These questions go entirely unanswered if
the formalism simply assigns all irreversibility to the composite
system. Furthermore, in the limit of continuous dynamics
the bipartite condition interpreted as noncoincident transitions
is no longer applicable with such a property resulting in
conditional independence in the dynamics. In these systems
both X and Y simultaneously fluctuate on all timescales and
so the identification of heat flows is generally nontrivial, but
not necessarily ill defined. For instance, as we shall explore
later, such continuous, nonbipartite, systems, if representing a
physical system and correlated feedback controller, the heat
dissipated by the physical system can be captured by the
computational irreversibility.

It is in answering these questions that we propose our
formalism has particular merit since, because it is based on
information theory, it is agnostic to the precise nature of
the physical dynamics which are leading to the probability
distributions, yet is consistent with conventional stochastic
thermodynamics where heat flows can be identified as per the
previous section.

Explicitly we concern ourselves with systems where the
relation in Eq. (31) does not hold; i.e.,

lim
dt→0

p(xt+dt , yt+dt |xt , yt )

	= lim
dt→0

p(xt+dt |xt , yt )p(yt+dt |xt , yt ). (67)

To proceed, however, we take precisely the same course of
action as before, establishing the interaction irreversibility
based on a principle of conservation of predictive capacity
according to Eq. (49), which must hold independently of
the physical energetics of the system or whether they are
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identifiable. This is given by

�I int
xy = − �IM + ln

p
[
x(t0,τ ], y(t0,τ ]

∣∣xt0 , yt0

]
p†

[
x(τ,t0], y(τ,t0]

∣∣xt , yt

]
+ ln

p†[x(τ,t0]

∣∣xt ,
{
y[τ,t0 )

}]
p†[y(τ,t0]

∣∣yt ,
{
x[τ,t0 )

}]
p
[
x(t0,τ ]

∣∣xt0 ,
{
y[t0,τ )

}]
p
[
y(t0,τ ]

∣∣yt0 ,
{
x[t0,τ )

}]
= − �IM + β�Q

xy

int. (68)

Explicitly, the interaction irreversibility is comprised of a
change in mutual information which appeared in the bipartite
description and a heat contribution that did not appear. Again,
this heat is not identified by joint transitions in the composite
system, but rather by the irreversibility which cannot be
observed in the individual subsystems. At this point we remain
agnostic as to whether �Sx

tot has a precise meaning in these
circumstances (though we shall argue that it can in a subsequent
example) and so strictly we may deal with the computation
irreversibilities �Ix = �IA

x + �IT
x←y . However, the total

entropy production of the composite system is well defined
and so we may still identify the contributions to this composite
entropy production in terms of storage and transfer, i.e., �Ix =
�Sx

storage + �Sx←y

transfer and �Ixy

int = �Sxy

int , such that

�Sxy
tot = �Ix + �Iy + �I int

xy

= �Sx
storage + �Sy

storage

+ �Sx←y

transfer + �Sy←x

transfer + �Sxy

int

= �Sx
sys + β�Qx

storage + �Sy
sys + β�Q

y
storage

+ β�Q
x←y

transfer + β�Q
y←x

transfer − �IM + β�Q
xy

int,

(69)

such that

�Qxy = �Qx
storage + �Q

y
storage + �Q

x←y

transfer

+ �Q
y←x

transfer + �Q
xy

int. (70)

At this point we reiterate: These are divisions of the total heat,
which is well defined, but due to the lack of bipartite dynam-
ics we cannot necessarily associate �Qx

storage + �Q
x←y

transfer =
�Qx as we could in the previous section.

Importantly, however, these entropy productions follow
exactly the same relationships as for the bipartite case, by
construction, with the same integral fluctuation theorems
holding, namely,〈

exp
[−(

�Sxy

int + �Sx
storage + �Sx←y

transfer + �Sy←x

transfer

)]〉 = 1,

(71)

again such that〈
�Sxy

int

〉 + 〈
�Sy←x

transfer

〉
� −〈

�Sx
storage

〉 − 〈
�Sx←y

transfer

〉 = −〈�Ix〉, (72)

as before, lending weight to the generality of the proposed
measures of irreversibility.

Moreover, the above bound also holds when �Sy←x

transfer is
replaced by the bare pathwise transfer entropy Tx→y , as in the
bipartite case, allowing us to write

〈�Ix〉 + 〈
�I int

xy

〉
� −〈Tx→y〉 (73)

or rather

〈�Ixy〉 − 〈�Iy〉 � −〈Tx→y〉, (74)

which may equivalently be expressed in the rate form 〈�İx〉 +
〈�İ int

xy 〉 � −Ṫx→y . This is a central result and can be seen to
generalize the well known information-thermodynamic bound
〈�Ṡx

tot〉 � −Ṫx→y and 〈�Ṡx
tot〉 � �İM − Ṫx→y explored in

depth in several other works [16,101–104] to the case of
nonbipartite dynamics. Explicitly, when bipartite dynamics are
employed �İx reduces to �Ṡx

tot and �İ int
xy reduces to �İM ,

which then vanishes in the steady state. It is important to
note that in both regimes the transfer entropy Ṫx→y bounds
the irreversibility associated with the subsystem X and the
irreversibility associated with its interaction with Y .

It is interesting to consider what physical systems might be
described by such dynamics that do not permit bipartite form.
Two major examples can be considered. The first is when the
whole system is well defined thermodynamically, with defined
heat flows and dissipation, but has interacting parts that evolve
in such a way that it cannot be traditionally decomposed any
further. Alternatively, when considering autonomous measure-
ment and feedback one can imagine a feedback mechanism that
does not meet the bipartite assumption. In both cases either the
total heat of the composite system or the heat flow in the system
being monitored should still be identifiable. However, currently
no formalism exists for characterizing any such division of this
total heat or for characterizing the feedback performance in
these situations. A particular case will be treated in the next
section.

VIII. EXAMPLES

A. Minimal bipartite model

Here we illustrate some of the behavior of the entropy
production contributions with a simple model. This model con-
sists of two subsystems interacting with a bipartite structure.
The first subsystem, X, is composed of three states, x ∈ X =
{A,B1, B2}, while the second subsystem, Y , is composed of
two states, y ∈ Y = {1, 2}, such that there are six effective
global states, {x, y} ∈ X ⊗ Y . The bipartite structure insists
upon strict conditional independence in the updating of these
subsystems, which, in continuous time, means that there are
no instantaneous joint transitions in both X and Y with
probability 1.

The structure is an elaboration on the minimal model intro-
duced in Ref. [103], but with an additional state in subsystem
X. Further, we insist upon a particular transition rate structure
which entails the transition rates governing subsystem Y only
being dependent on whether X is in state A or the collection
of states B = {B1, B2}, such that it cannot distinguish between
states B1 and B2 that comprise B. This structure is illustrated
in Fig. 2 along with specific transition rates, specified up to
the transition rates between the substates B1 and B2. Other
transitions are parametrized by the dimensionless constants
{rx, ry} ∈ [−1, 1] ⊗ [−1, 1] and timescale parameters γx > 0,
γy > 0.

This structure allows us to separate the mechanisms that
pertain to irreversibility associated with storage and transfer
of information. This is because the transitions between B1 and
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FIG. 2. Coupled three- and two-state systems. System X (shown
on left) has transition rates dependent on the instantaneous state of
system Y . System Y (shown on right) has transition rates dependent
on the instantaneous state of system X. System Y can only depend on
the coarse states A and B in X: the transition rates of system Y do not
distinguish between states B1 and B2. Since the system is bipartite,
no joint transitions in systems X and Y can occur.

B2 can introduce irreversibility independently of Y , while the
transitions between the pairs A, B and 1, 2 explicitly interact
with each other but do not introduce any net steady current into
either subsystem when viewed in isolation.

To this end we consider a parametrization of the transition
rates κB1↔B2

y as follows:

κB1→B2
y = γxk

+, ∀y ∈ {1, 2},
(75)

κB2→B1
y = γxk

−, ∀y ∈ {1, 2},

where k+ and k− are arbitrary constants in (0,1). Considering
the steady state and solving the master equation by standard
methods then yields

〈
�Ṡx

storage

〉 = γx (rx + ry − 2rxry )(k+ − k−) ln[k+/k−]

3[(k+ + k−) + (rx + ry − 2rxry )]

+ O(a),〈
�Ṡ

x←y

transfer

〉 = 4

3
γx (rx − ry ) ln

[
1 − rx

rx

]
+ O(a),

〈
�Ṡ

y←x

transfer

〉 = 4

3
γx (ry − rx ) ln

[
1 − ry

ry

]
+ O(a),

〈
�Ṡ

y
storage

〉 = 0, (76)

where a = γx/γy such that we have effected a separation
of timescales to avoid the difficulty associated with calcula-
tion of generally non-Markovian objects. If a further separa-
tion of timescales exists, κB1→B2

y + κB2→B1
y = γ ′

x � γx then
the storage entropy reduces to 〈�Ṡx

storage〉 = (1/3)γ ′
x (k+ −

k−) ln[k+/k−] + O(γ ′
x/γx ). The results in Eqs. (76) are illus-

trated in Fig. 3. Importantly, we see that as we vary the feedback
coefficient ry controlling subsystem Y the entropy due to
transfer in each system is offsetting the other, with the entropy
production associated with storage only varying weakly based
on changes in the stationary solution to the master equation. In-
deed, since in this example we have 〈�Ṡy

storage〉 = 0, a stronger
bound than Eq. (59) holds, with 〈�Ṡx←y

transfer + �Ṡy←x

transfer〉 � 0
holding completely independently of 〈�Ṡx

storage〉 in addition to
〈�Ṡx

tot + �Ṡy←x

transfer〉 � 0. Moreover, if we consider rx and ry to
be fixed, varying only the thermodynamic force causing asym-
metry in the B1 ↔ B2 transition, we see total independence of
in the entropy productions due to transfer as the asymmetric
transitions are not implicated in the feedback between the two
systems. Indeed, we see that the entropy production due to
storage in this example manifests exclusively due to stationary
current which can only arise when k+ and k− are unequal
explaining the behavior with varying k+.

B. Computational and physical irreversibility in nonbipartite
autonomous feedback systems

Generally, there are many systems that do not obey the
bipartite assumption. These range from composite systems that
permit joint transitions between different elements, composite
systems where the subsystems experience thermal (or other)
noise sources that cannot be reliably idealized as being inde-
pendent, through to systems traditionally out of scope ther-
modynamics. However, an investigation of their irreversibility
may yet yield analogous bounds important to their behavior.

In this section, however, we consider a particular example,
that is a system designed to model autonomous feedback by a
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(b)

FIG. 3. Entropy productions arising from the coupled three and two state model. In subfigure (a) we have set γx = 1, k− = 0.1, k+ = 0.9,
rx = 0.3 and allow ry to vary. In subfigure (b) we have set γx = 1, k− = 0.5, rx = 0.3, ry = 0.3 and allow k+ to vary. Both consider zeroth
order contributions in a = γx/γy .
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controller, Y , on a physical system of interest X. A minimal
mathematical model that achieves this is a pair of coupled
Ornstein-Uhlenbeck processes described by the stochastic
differential equations

dx = Axdt + Bydt + VxdWx,
(77)

dy = Cxdt + Dydt + VydWy,

where dWx and dWy represent thermal noise and the inherent
error in the measurement process, respectively. Normally, these
two noise sources are deemed to be statistically independent
resulting in bipartite dynamics, the behavior of which has
been previously studied [16,102,105]. However, we can quite
easily posit that the noise sources are correlated for any
number of plausible physical reasons, for example noise in the
measurement apparatus may be arising, in part, from the same
thermal source such that the measurement suffers from noise
contamination. In this case we have 〈dWxdWy〉 = ρdt where
ρ ∈ [−1, 1] characterizes the noise correlation such that for
ρ = 1 the noise experienced by each of X and Y are identical.

This system is governed by a Fokker-Planck equation of the
form

∂tp(x, y, t ) = −∇ · (Jx, Jy ),

Jx = (Ax + By)p(x, y) − V 2
x

2

∂p(x, y)

∂x

− ρVxVy

2

∂p(x, y)

∂y
,

Jy = (Cx + Dy)p(x, y) − V 2
y

2

∂p(x, y)

∂y

− ρVxVy

2

∂p(x, y)

∂x
, (78)

which has a Gaussian steady state given in Appendix B.
A well-known bound that arises in information thermody-

namics is [16,102,103], as usually stated in the steady state,

dβ〈�Qx〉
dt

+ Ṫx→y � 0, (79)

where Ṫx→y is transfer entropy rate. We emphasize, with
correlated noise this relation does not hold.

1. Identification of information and heat flows

While the framework outlined in Sec. VII describes how
to divide entropy productions along computational divisions
in terms of predictive capacity to arbitrary systems where
individual currents and heats may not be well defined, we
emphasize that for continuous systems of the form in Eq. (77)
we can identify such quantities, under the right circumstances,
despite the lack of a bipartite structure.

To do so we point out that the sampling paths are absolutely
continuous such that, unlike with master equations with joint
transitions, the variables never change discontinuously. As
such the notion of a dissipated heat, by subsystem X, for
instance, is not inappropriate, but more challenging to identify
and depends on the exact nature of the model. For instance,
in the present model it is of consequence that X is the
thermodynamic system in question, while Y represents a
feedback controller. As such, we are not concerned with the

thermodynamics of Y or even the joint system {X, Y } and this
changes the interpretation. As such, the entropy production
of the dynamics of the joint particle and controller system
is immaterial, but their computational irreversibilities still are
well defined.

To proceed and identify such heat flows associated with
the single subsystem X, we must be more careful than just
assuming a conventional local detailed balance relation but
rather appeal to the arguments in the spirit of the founda-
tional stochastic energetics of Sekimoto [106–108]. First, we
consider systems, such as over-damped Langevin dynamics
where the energetics are all determined by the random variables
such that all differentials are stochastic too. In such situations
we state that there is some Hamiltonian, H , controlling X,
which is parametrized by a protocol Y . When this protocol is
deterministic, this traditionally leads to a stochastic version of
the first law as follows:

dH (x, y) = ∂xH (x, y) ◦ dx + ∂yH (x, y)ẏdt, (80)

identifying changes in internal energy, heat, and work (dU =
dQ + dW ) with the crucial use of Stratonovich integration
rules (indicated by the ◦ notation), which render the stochastic
calculus in the form of the usual thermodynamic differentials.
If we allow the protocol Y to be stochastic, we instead write

dH (x, y) = ∂xH (x, y) ◦ dx + ∂yH (x, y) ◦ dy, (81)

with the division of internal energy into heat and work
operating in exactly the same way. Moreover, Eq. (81) re-
mains unchanged under correlated noise such that the heat
and work contributions are still identifiable where we note
that Stratonovich integration includes correlation terms in the
nonbipartite case such that

f (x, y) ◦ dx = f (x, y)dx + V 2
x

2

∂f (x, y)

∂x
dt

+ ρVxVy

2

∂f (x, y)

∂y
dt, (82)

where absence of the ◦ notation indicates the nonanticipating
Itō integral. Under this interpretation we might posit some
over-damped dynamics such that X is a spatial coordinate,
Vx = √

2kBT /mγ and Ax + By = −(mγ )−1∂xHx (x, y),
such that we have a Hamiltonian Hx (x, y) = −mγ [(A +
B )x2 − B(x − y)2], i.e., a harmonic trap with a protocol
controlling an additional harmonic term. Importantly, in this
system the computational irreversibility reflects the ratio of
heat flow to the environment to the environmental temperature,
β∂xH (x, y) ◦ dx, such that �Ix = �Sx

storage + �Sx←y

transfer =
�Sx

sys + β�Qx .
However, in situations where the system contains degrees

of freedom which are not stochastic, but appear in the Hamil-
tonian an additional correlation term appears in the computa-
tional irreversibility which has no thermodynamic analog. In
these cases we must instead identify

�Ix = �Sx
sys + β�Qx + �Sx

corr, (83)

where �Sx
corr is the difference in heat flows between that

which can be physically associated with X and that which is
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associated with the irreversibility of X such that

dSx
corr = βdQx

corr = ln
p†(xt |xt+dt , yt+dt )

p†(xt |xt+dt , yt )
. (84)

This situation arises due to parity differences in the vari-
ables separating the current into reversible and irreversible
components [109]. Consequently, differential forms for the
environmental entropy production introduce a correlation term
that would arise from stochastic integration of the reversible
current but does not emerge in the stochastic energetics since
the energetic term arises from integration with respect to some
deterministic variable (i.e., one not subject to noise), e.g., the
particle position in a full under-damped Langevin description.
We emphasize, in such situations great care must be taken to
identify the exact nature of the dynamics and any Hamiltonian,
if any, they are emerging from to correctly identify irreversible
and reversible currents. We also mention that correlated noise
must be treated carefully in systems with odd variables where
the noise itself may be required to transform under time reversal
[110].

For the remainder we shall consider the case of the
former, where, in the steady state we consider 〈�Sx

storage +
�Sx←y

transfer〉 = β〈�Qx〉, for brevity, but acknowledge the pos-
sibility of this additional step in the identification of the
environmental entropy production in different models.

Returning to the model in question we reiterate that the naive
application of the traditional information theoretic bound on
the computational and physical irreversibility does not hold,
i.e.,

d
〈
�Sx

storage

〉
dt

+ d
〈
�Sx←y

transfer

〉
dt

+ Ṫx→y � 0. (85)

Instead, to find reliable bounds we must turn to our formulation
in terms of computational irreversibilities, which accounts for
the interaction entropy production. As such the appropriate
bound is

d
〈
�Sx

tot

〉
dt

+ d
〈
�I int

xy

〉
dt

+ d
〈
�Sy←x

transfer

〉
dt

� 0 (86)

or

d
〈
�Sx

tot

〉
dt

+ d
〈
�I int

xy

〉
dt

+ Ṫx→y � 0. (87)

to account for the nonbipartite dynamics. We note the inclusion
of the more general �I int

xy rather that �Sxy

int in the bound
because, as discussed, while the computational irreversibility
of the joint particle and controller system is well defined, it is
not related to an entropy production in this case.

For the present example we are in a position to illustrate
such a bound mathematically. In the steady state, the transfer
entropy of this system permits an analytical solution, adapted
from Ref. [16] (see also Ref. [111]), derived in Appendix C,

Ṫx→y = 1

2

(√
A2 − 2ρAC

Vx

Vy

+ C2
V 2

x

V 2
y

−
√

A2 − ρC
Vx

Vy

)
.

(88)

Meanwhile, the rate of computational irreversibility in X in
the steady state, here equal to the entropy production rate, is

-1 -0.5 0 0.5 1
-0.5

0

0.5

1

1.5

FIG. 4. Coupled linear feedback model. We set A = −2, D =
−4, B = C = 1, Vx = 2, Vy = 3/2, and we allow the correlation, ρ,
to vary.

given by

d
〈
�Sx

tot

〉
dt

= B
{
CV 2

x − Vy[ρ(A − D)Vx + BVy]
}

(A + D)V 2
x

. (89)

For completeness we also point out that for this system we
have

d
〈
�Sx

corr

〉
dt

= ρBVy

Vx

. (90)

We may then in turn compute the interaction entropy rate, again
in the steady state, which due to a slightly cumbersome form
we report in Appendix B. Together, these objects obey the
bound in Eq. (87). These are illustrated in Fig. 4, where they
are contrasted with the usual bipartite relation and, again for
completeness, the bound with �Sx

tot replaced with �Sx
tot −

�Scorr
x . Importantly, we see that the previous conception of

the generalized second law in such a system fails for some
value of correlation ρ, holding for ρ = 0 where the system
reduces to the usual bipartite model.

IX. DISCUSSION AND CONCLUSIONS

In this paper we have considered computations described in
the framework of information dynamics. Using such a frame-
work we have defined appropriate time-reversed computations
and shown that the difference between each results in a measure
of irreversibility that can be divided into computationally
meaningful quantities: those that relate to the storage and
transfer of information. By applying such a framework to
physical systems we have shown that such a measure of compu-
tational irreversibility maps onto the total entropy production
in stochastic thermodynamics revealing that not only can
information processing lead to bounds on thermodynamics,
as previously conceptualized, but that thermodynamics may
be entirely described in terms of information processing.

Moreover, the framework based on information dynam-
ics that we have presented is not restricted to the bipartite
and multipartite systems previously considered in stochastic
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thermodynamics. By dividing irreversibility along the lines
of computational primitives, components of the total physical
heat can be associated with irreversibility even when the
physical heats exported by the subsystems are ambiguous.
Further, we have shown that these irreversibilities based on
storage and transfer are critically implicated in the resulting
bounds that generalize the second law both when a bipartite
assumption holds and when it does not. In both cases the
bounds are achieved by correctly accounting for an interaction
entropy production, which is always involved in its formulation
and derived from a principle of conserved predictive capacity.
Further, through the use of continuous dynamics with feedback
and correlated noise we have presented a system where the
physical heat exported by a subsystem is identifiable despite
being governed by nonbipartite dynamics. Importantly, for this
system, we have demonstrated that previous generalizations
of the second law which account for feedback fail, while the
bound arising from this formalism holds.

We hope that such a framework will allow discussion of
irreversibility in systems where identification of individual
heat flows are problematic and, moreover, allow discussion of
thermodynamic processes in terms of distributed computation.

APPENDIX A: GENERALISED COMPUTATIONS

While not strictly necessary for the development of irre-
versibility measures, the intrinsic (forward) and time-reversed
computations can be unified through the notion of a generalized
intrinsic computation. To define such an object we appreciate
that the basic structure of the intrinsic computation is the
reduction in uncertainty of the next step in a time series, relative
to an ensemble prior using the past sequence of events and a
transition probability. And it is this notion that we seem to
generalize based on the recognition of its structure in terms
of uncertainties. First, we allow the prediction, or reduction of
uncertainty, of some arbitrary event ε, taking values in some
space E , rather than merely the next step in the time series. This
event must be computable with a sequence of states of variable

X, that we write
−→
X , taking values −→

x ∈ −→X . Consequently,

we write ε = f (−→x ) such that f :
−→X → E . We then wish to

discuss the realizations of X that lead to the event ε such that
we consider the preimage of ε,

f −1(ε) = {−→x ∈ −→X |f (−→x ) = ε}. (A1)

Associated with this set of realizations −→
x we have a prior

distribution on
−→
X , denoted Q(−→x ∈ A), which represents our

prior uncertainty in sets of −→
x . As such, the prior uncertainty in

the specific event ε corresponds to A = f −1(ε), i.e., Q[−→x ∈
f −1(ε)].

Finally, we consider an inference scheme that provides a
posterior, which quantifies uncertainty in ε in the presence

of some evidence
−→
Z taking values −→

z ∈ −→Z , where, like
−→
X ,−→

Z consists of some time series. This inference scheme is
represented with a probability measure P(−→x ∈ A|−→z ), where

A ⊆ −→X , where, again, the set corresponding to the event ε is
A = f −1(ε), such that the uncertainty under inference scheme
P and evidence −→

z is P(−→x ∈ f −1(ε)|−→z ).

Specifying all such quantities defines a tuple C =
{−→X , f,

−→
Z ,P,Q} that entirely characterizes the local compu-

tational signature of this generalized computation through the
consideration of

cC = ln
dP[−→x ∈ f −1(ε)|−→z ]

dQ[−→x ∈ f −1(ε)]
. (A2)

In these terms we can identify the (forward) intrinsic compu-
tation, at time i, as being characterized by the tuple,

C{i,i+1} = {Xi+1:n,Xi+1, {X0:i , Y0:i},
pXi+1:n|X0:i ,Y0:i (·|·), pXi+1:n (·)}. (A3)

That is, the sequence of X from which the event is deter-
mined is the future states of the system, Xi+1:n. The pre-
dicted event is the trivial choice of the next state the sys-
tem evolves to, ε = f (xi+1:n) = xi+1. The preimage f −1(ε)
is therefore the set of all paths Xi+1:n that has xi+1 = ε,
f −1(ε) = {xi+1:n ∈ Xi+1:n : xi+1 = ε}. The evidence is the
entirety of previous states of all available time series

−→
Z =

{X0:i , Y0:i}. Using these objects the prior belief is then that
of the inherent uncertainty in the future paths of the system
Q(xi+1:n) = p(Xi+1:n = xi+1:n) ≡ pXi+1:n (xi+1:n) and the in-
ference strategy is provided by the same ensemble dynam-
ics P(xi+1:n|x0:i , y0:i ) = p(Xi+1:n = xi+1:n|X0:i = x0:i , Y0:i =
y0:i ) ≡ pXi+1:n|X0:i ,Y0:i (xi+1:n|x0:i , y0:i ). One then returns the pre-
dictive capacity of the intrinsic computation by recognizing
that

pXi+1:n|X0:i ,Y0:i (xi+1:n ∈ f −1(xi+1)|x0:i , y0:i )

= pXi+1|X0:i ,Y0:i (xi+1|x0:i , y0:i )

= p(Xi+1 = xi+1|X0:i = x0:i , Y0:i = y0:i ),

pXi+1:n (xi+1:n ∈ f −1(xi+1))

= pXi+1 (xi+1) = p(Xi+1 = xi+1). (A4)

In these terms one can define other information-theoretic
quantities with other choices. For example, the predictive
information, closely related to the excess entropy, results from
the following choice, in the limit n − i → ∞, i → ∞,

Cpred
{i,i+1} = {Xi+1:n,Xi+1:n,X0:i , pXi+1:n|X0:i (·|·), pXi+1:n (·)}.

(A5)

In contrast, the definition of the time-reversed computation
emerges through the tuple,

C†
{i,i+1} = {

Xi:0, Xi, {Xn:i+1, Yn:i+1},
p
†
Xn−i:n|X0:n−i−1,Y0:n−i−1

(·, ·), pXi:0 (·)}. (A6)

That is, the sequence from which the predicted event is
computed is the time-reversed sequence of past states

−→
X =

Xi:0, the event is simply the “next” state in this sequence,
f (Xi:0 ) = Xi and the evidence sequence is the collection of
time-reversed future states

−→
Z = {Xn:i+1, Yn:i+1}. Using these

objects the prior distribution Q−→
X

is, as before, the ensemble

probability of the sequence
−→
X , i.e., p

X
†
n−i:n

(xi:0 ) = pXi:0 (xi:0 ).
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Finally, the inference strategy utilizes the time-reversed dy-
namics p

†
Xn−i:n|X0:n−i−1,Y0:n−i−1

(·, ·).

APPENDIX B: TREATMENT OF THE CORRELATED
COUPLED ORNSTEIN-UHLENBECK PROCESSES

The Fokker-Planck equation in Eq. (78) has a stationary
solution of the form

ps (x, y) = (2π |�|)− 1
2 exp [zT �−1z], (B1)

where

z =
(

x
y

)
; � =

(
�xx �xy

�yx �yy

)
, (B2)

and

�xx = (BC − AD)V 2
x + 2BDρVxVy − D2V 2

x − B2V 2
y

2(A + D)(AD − BC)
,

�yy = (BC − AD)V 2
y + 2CAρVxVy − A2V 2

y − C2V 2
x

2(A + D)(AD − BC)
,

(B3)

�xy = �yx = CDV 2
x − 2ADρVxVy + ABV 2

y

2(A + D)(AD − BC)
.

Utilizing such a solution with Eq. (68) by first converting to Itō
form, replacing 〈dx〉 with Axdt + Bydt then averaging over
ps (x, y) yields the interaction entropy production

d
〈
�Sxy

int

〉
dt

= ρ
{
CV 2

x − Vy[(A − D)ρVx + BVy]
}{

ρCV 2
x − Vy[(A − D)Vx + ρBVy]

}
(A + D)(ρ2 − 1)V 2

x V 2
y

. (B4)

APPENDIX C: CALCULATION OF TRANSFER ENTROPY
RATES OF THE CORRELATED COUPLED

ORNSTEIN-UHLENBECK PROCESSES

In this Appendix we consider the coupled stochastic differ-
ential equations,

dx = Axdt + Bydt + VxdWx,
(C1)

dy = Cxdt + Dydt + VydWy,

with noise properties 〈dWx (t )dWx (t ′)〉 = 〈dWy (t )dWy (t ′)〉 =
δ(t − t ′)dt and 〈dWx (t )dWy (t ′)〉 = ρδ(t − t ′)dt with ρ ∈
[−1, 1]. This can be equivalently constructed by the following
SDEs:

dx = Axdt + Bydt +
√

1 − ρ2VxdW1 + ρVxdW2,
(C2)

dy = Cxdt + Dydt + VydW2,

with properties dW1(t )dW2(t ′) = 0. This leads to a diffusion
matrix [

V 2
x

2
ρVxVy

2
ρVxVy

2
V 2

y

2

]
. (C3)

This is a Gaussian process, since the noise is Gaussian and the
driving terms are linear. Importantly, the coarse-grained pro-
cess in X is also Gaussian. Critically, for stationary Gaussian
processes the entropy rate may be written [16]

ḣx = lim
dt→0

1

2dt
ln(2πe) + 1

4π

∫ π/dt

−π/dt

ln �(ω)dω, (C4)

such that, under certain circumstances, the transfer entropy is
given by

Ty→x = ḣx − ḣx|{y} = − 1

4π

∫ ∞

−∞
ln

�x|{y}(ω)

�x (ω)
dω, (C5)

where �x (ω) is the Fourier transform of the auto correlation
function, Rxx (τ ) = Ex[x(t )x∗(t + τ )], and �x|{y}(ω) is the
Fourier transform of the correlation function under the mea-
sure with knowledge of Y , i.e., p[xt

t0
|xt0 , {yt

t0
}], Rxx|{y}(τ ) =

Ex|{y}[x(t )x∗(t + τ )]. Importantly, �x|{y}(ω) can only be com-
puted for the ρ = 0 case, differing from the general ρ 	= 0 case
that we are considering.

These quantities, �x|{y}(ω) and �x (ω) (with ρ = 0 in the
former) can be derived by Fourier transforming the SDEs.
We write ẋ = dx/dt and ηx = VxdWx/dt , such that we
reformulate as Langevin equations, so that

iωx̂ = Ax̂ + Bŷ + η̂x,
(C6)

iωŷ = Cx̂ + Dŷ + η̂y .

Since we can only identify �x|{y}(ω) for ρ = 0, we separate the
computation of the transfer entropy rate into two components:

Ṫy→x = ḣx − ḣx|{y} = ḣx − ḣ
ρ=0
x|{y}︸ ︷︷ ︸

1

+ ḣ
ρ=0
x|{y} − ḣx|{y}︸ ︷︷ ︸

2

. (C7)

First, we consider calculation one and so calculate �x (ω) in the
general case, ρ 	= 0, and �x|{y}(ω) = �

ρ=0
x|{y}(ω) in the ρ = 0

case.
To consider �

ρ=0
x|{y}(ω) we wish to consider the auto-

correlation 〈x ′(t )x ′(t + τ )〉, where x ′ = x − 〈x|y〉. To do so
we follow Ref. [16] and consider not only the evolution of ẋ

and thus x̂ but also 〈ẋ|y〉, which follows

d〈x|y〉 = A〈x|y〉dt + Bydt,
(C8)

iω ˆ〈x|y〉 = A ˆ〈x|y〉 + Bŷ.

Now, by the Wiener-Khinchin theorem,

�xy (ω) = F{Rxy (τ )} = F{E[x(t )y∗(t + τ )]} = E[x̂ŷ∗],
(C9)

where F is the Fourier transform.
Consequently,

�
ρ=0
x|{y}(ω) = F[〈x ′(t )x ′(t + τ )〉] = 〈|x̂ − ˆ〈x|y〉|2〉

= E[η̂x η̂
∗
x]

(iω − A)(−iω − A)
= V 2

x

ω2 + A2
. (C10)
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Solving for x̂, independently of y, allows computation of �x (ω), where

x̂ = (iω − A)(iω − D)

(iω − A)(iω − D) − BC
[Bη̂y + (iω − D)η̂x], (C11)

such that

�x = E[x̂x̂∗] =
∣∣∣∣ (iω − A)(iω − D)

(iω − A)(iω − D) − BC

∣∣∣∣2 1

(A2 + ω2)(D2 + ω2)

× [(D2 + ω2)E[η̂x η̂
∗
x] + B2E[η̂y η̂

∗
y] − 2BD(E[η̂x η̂

∗
y] + E[η̂∗

x η̂y]) + iBω(E[η̂x η̂
∗
y] − E[η̂∗

x η̂y])]. (C12)

Now, similarly,

E[η̂x η̂
∗
y] = F{c(ηx (t ), η∗

y (t + τ ))} = VxVydWx (t )dWy (t )

dt

∫ ∞

−∞
δ(τ )e−iωτ dτ = VxVydWx (t )dWy (t )

dt
. (C13)

That is, V 2
x for auto-correlation terms and ρVxVy for cross correlation terms. Consequently, we have

E[η̂x η̂
∗
x] = V 2

x , E[η̂y η̂
∗
y] = V 2

y , E[η̂x η̂
∗
y] = E[η̂∗

x η̂y] = ρVxVy, (C14)

and so

�x =
∣∣∣∣ (iω − A)(iω − D)

(iω − A)(iω − D) − BC

∣∣∣∣2 1

(A2 + ω2)(D2 + ω2)
[(D2 + ω2)V 2

x + B2V 2
y − 2ρBDVxVy]. (C15)

Looking to the integral in Eq. (C4) we have

− 1

4π

∫ ∞

−∞
ln

�
ρ=0
x|{y}(ω)

�x (ω)
dω = 1

4π

∫ ∞

−∞
ln

∣∣∣∣ (iω − A)(iω − D)

(iω − A)(iω − D) − BC

∣∣∣∣2 − 1

4π

∫ ∞

−∞
ln

V 2
x (D2 + ω2)

(D2 + ω2)V 2
x + B2V 2

y − 2ρBDVxVy

.

(C16)

The first of these is a known vanishing integral [16]. For the second we exploit the integral∫ ∞

0
ln

x2 + a2

x2 + b2
dx = π (a − b) (C17)

to arrive at

ḣx − ḣ
ρ=0
x|{y} = |D|

2

[√
1 + BVy

DVx

(
BVy

DVx

− 2ρ

)
− 1

]
, (C18)

but this is only half of the solution. Next we need to consider ḣ
ρ=0
x|{y} − ḣx|{y}. To do this we consider a different approach.

Since the system is linear/Gaussian, the entropy rate is entirely encoded by the variance in the (dt ) regime. That is, we have

ḣdt = 1
2 ln(2πeσ 2dt ) + O(dt2). (C19)

To calculate this we explicitly describe an expression for the solution to the original Langevin equations (which, incidentally, is
of closed form when C = 0). We do this individually for both X and Y by writing

d

dt
[e−Atx(t )] = [By(t ) + ηx (t )]e−At ,

d

dt
[e−Dty(t )] = [Cx(t ) + ηy (t )]e−Dt , (C20)

such that

x(t ) = x(0)eAt +
∫ t

0
eA(t−t ′ )By(t ′)dt ′ +

∫ t

0
eA(t−t ′ )ηx (t ′)dt ′,

(C21)

y(t ) = y(0)eDt +
∫ t

0
eD(t−t ′ )Cx(t ′)dt ′ +

∫ t

0
eD(t−t ′ )ηy (t ′)dt ′.

We then substitute y(t ) in for y(t ′) such that

x(t ) = x(0)eAt +
∫ t

0
eA(t−t ′ )B

[
y(0)eDt ′ +

∫ t ′

0
eD(t ′−t ′′ )Cx(t ′′)dt ′′ +

∫ t ′

0
eD(t ′−t ′′ )ηy (t ′′)dt ′′

]
dt ′ +

∫ t

0
eA(t−t ′ )ηx (t ′)dt ′. (C22)

When C 	= 0 it is not of closed form, but adequate for our purposes. From this we want to find 〈(x(t ) − 〈x(t )〉)2〉, where the
average 〈x〉 is shorthand for 〈x(t )|x(0), y(0)〉. We achieve this by noting〈∫ t

0
f (t ′)η(t ′)dt ′

〉
=

∫ t

0
f (t ′)

〈
η(t ′)

〉
dt ′ = 0, (C23)
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since we have 〈η(t ′)〉 = 0. As such we have

x(t ) − 〈x(t )〉 = B

∫ t

0
eA(t−t ′ )dt ′

∫ t ′

0
dt ′′eD(t ′−t ′′ )ηy (t ′′) +

∫ t

0
dt ′eA(t−t ′ )ηx (t ′), (C24)

safely independent of C. Consequently, the variance is then given by

〈(x(t ) − 〈x(t )〉)2〉 =
〈∫ t

0
dt ′

∫ t

0
dt ′′eA(2t−t ′−t ′′ )ηx (t ′)ηx (t ′′)

〉
+ 2B

〈∫ t

0
dt ′

∫ t ′

0
dt ′′

∫ t

0
dt ′′′eA(2t−t ′−t ′′′ )+D(t ′−t ′′ )ηx (t ′′′)ηy (t ′′)

〉

+ B2

〈∫ t

0
dt ′

∫ t ′

0
dt ′′

∫ t

0
dt ′′′

∫ t ′′′

0
dt ′′′′eA(2t−t ′−t ′′′ )+D(t ′+t ′′′−t ′′−t ′′′′ )ηy (t ′′)ηy (t ′′′′)

〉

=
∫ t

0
dt ′

∫ t

0
dt ′′eA(2t−t ′−t ′′ )〈ηx (t ′)ηx (t ′′)〉 + 2B

∫ t

0
dt ′

∫ t ′

0
dt ′′

∫ t

0
dt ′′′eA(2t−t ′−t ′′′ )+D(t ′−t ′′ )

× 〈ηx (t ′′′)ηy (t ′′)〉 + B2
∫ t

0
dt ′

∫ t ′

0
dt ′′

∫ t

0
dt ′′′

∫ t ′′′

0
dt ′′′′eA(2t−t ′−t ′′′ )+D(t ′+t ′′′−t ′′−t ′′′′ )〈ηy (t ′′)ηy (t ′′′′)〉. (C25)

Now we identify

〈ηx (t ′)ηx (t ′′)〉 = V 2
x

2
δ(t ′′ − t ′), 〈ηy (t ′)ηy (t ′′)〉 = V 2

y

2
δ(t ′′ − t ′), 〈ηx (t ′)ηy (t ′′)〉 = ρVxVy

2
δ(t ′′ − t ′), (C26)

and also the usual sifting property∫ t

0

[∫ t ′

0
f (t ′′′, t ′′)δ(t ′′′ − t ′′)dt ′′′

]
dt ′′ =

∫ t

0
1[0,t ′](t

′′)f (t ′′, t ′′)dt ′′ =
∫ min(t,t ′ )

0
f (t ′′, t ′′)dt ′′ =

∫ t ′

0
f (t ′′, t ′′)dt ′′ (t > t ′).

(C27)

Consequently,

〈(x(t ) − 〈x(t )〉)2〉 = V 2
x

2

∫ t

0
dt ′e2A(t−t ′ ) + ρBVxVy

∫ t

0
dt ′

∫ t ′

0
dt ′′′eA(2t−t ′t ′′′ )+D(t ′−t ′′′ )

+ B2
V 2

y

2

∫ t

0
dt ′

∫ t

0
dt ′′′

∫ min(t ′,t ′′′ )

0
dt ′′eA(2t−t ′−t ′′′ )+D(t ′+t ′′′−2t ′′ )

= V 2
x

2

e2At − 1

2A
+ ρBVxVy

A − D + (A + D)e2At − 2Ae(A+D)t

2(A3 − AD2)

+ B2
V 2

y

2

[∫ t

0
dt ′

∫ t

t ′
dt ′′′

∫ t ′

0
dt ′′ +

∫ t

0
dt ′′′

∫ t

t ′′′
dt ′

∫ t ′′′

0
dt ′′

]
eA(2t−t ′−t ′′′ )+D(t ′+t ′′′−2t ′′ )

= V 2
x

2

e2At − 1

2A
+ ρBVxVy

A − D + (A + D)e2At − 2Ae(A+D)t

2(A3 − AD2)

+ B2
V 2

y

2

D2(e2At − 1) + A2(e2Dt − 1) + AD(2 + e2At + e2Dt − 4e(A+D)t )

2AD(A + D)(A − D)2
. (C28)

The first term is O(t ), the second O(t2) and the third O(t3). Examining the form of Eq. (C19) we need second order contributions
in σ 2 to capture first-order terms in ḣdt and so we identify, expanding the exponentials,

〈(x(t ) − 〈x(t )〉)2〉 =V 2
x t

2

(
1 + At + ρB

Vy

Vx

t

)
+ O(t3), (C29)

such that

ḣx|{y}dt = 1

2
ln

[
πeV 2

x dt
] + A

2
dt + ρBVy

2Vx

dt, (C30)

and therefore

ḣ
ρ=0
x|{y} − ḣx|{y} = −ρBVy

2Vx

. (C31)
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Putting this together with Eqs. (C7) and (C18) we finally get the result

Ṫy→x = |D|
2

[√
1 + BVy

DVx

(
BVy

DVx

− 2ρ

)
−

(
1 + ρ

BVy

|D|Vx

)]
, (C32)

with the appropriate Ṫx→y result found by simply exchanging variables Vx ↔ Vy , A ↔ D, B ↔ C, due to symmetry. We note
the lack of dependence on A and C.
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