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Kinetic model for fluorescence microscopy experiments in disordered media
with binding sites and obstacles
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A model is proposed that describes the diffusion of molecules in a disordered medium with binding sites (traps)
and obstacles (barriers). The equations of the model are obtained using the subordination method. As the parent
process, random walks on a disordered lattice are taken, described by the random barrier model. As the leading
process, the renewal process that corresponds to the multiple-trapping model is used. Theoretical expressions
are derived for the curves obtained in the experiments using fluorescence microscopy (fluorescence recovery
after photobleaching, fluorescence correlation spectroscopy, and single-particle tracking). Generalizations of the
model are proposed to consider the correlations in the mutual arrangement of the traps and obstacles. This model
can be used to determine parameters characterizing the diffusion and binding properties of molecules in crowded
environments.
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I. INTRODUCTION

Fluorescence recovery after photobleaching (FRAP), fluo-
rescence correlation spectroscopy (FCS), and single-particle
tracking (SPT) are experimental methods based on the use
of fluorescence microscopy. They are widely used in the
study of the diffusion and binding properties of biomolecules
in crowded environments. An FRAP experiment involves
photobleaching of fluorescing molecules in a small volume
and the observation of the rate of fluorescence penetration
into this volume. An FCS experiment consists of observing
fluctuations in the intensity of the fluorescence in a small
volume arising from the random movement of fluorescing
molecules. An SPT experiment directly traces the trajectory
of an individual molecule.

For a theoretical description of fluorescence microscopy
experiments, the multiple-trapping model is often used [1–4].
The equations in this model have the following form:

∂f (r, t )

∂t
= D�2f (r, t ) −

N∑
i=1

ωif (r, t ) +
N∑

i=1

νici (r, t ),

(1)

∂ci (r, t )

∂t
= −νici (r, t ) + ωif (r, t ), i = 1, . . . , N, (2)

where D is the diffusion constant. The symbol �2 is the
Laplacian operator. The parameters ωi and νi are the as-
sociation and dissociation rates, respectively. The variables
f (r, t ) and ci (r, t ) have different meanings in different ex-
periments. In FRAP experiments, f (r, t ) is the concentration
of the unbound freely diffusing molecules and ci (r, t ) is the
concentration of the bound molecules at the binding sites of
the ith type. In FCS experiments, f (r, t ) and ci (r, t ) are
the fluctuations of the concentrations of the unbound and
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bound molecules, respectively. In SPT experiments, f (r, t )
and ci (r, t ) are the probabilities of finding the particle in the
unbound and bound states, respectively. The first equation
expresses the balance of the particles in the free state. The
first term on the right-hand side describes diffusion, and the
second and third terms describe the transition of the particles
from the free state to the immobile binding sites and from
the binding sites to the free state, respectively. The second
equation expresses the balance of the particles in the binding
sites of the ith type. The first term on the right describes the
transition of the particles from the binding sites of the ith type
to the free state, and the second term describes the reverse
transition. Different binding sites contain different transition
rates ωi and νi .

The multiple-trapping model is a generalization of the clas-
sical diffusion equation for the case when diffusing molecules
can be delayed by stationary binding sites. However, in disor-
dered media, particularly in living cells, diffusion is hindered
by obstacles acting as potential barriers or as geometric con-
straints [1,5,6]. To describe the experimental data accurately,
both of these factors should be considered. For example, if
a FRAP experiment is described using the multiple-trapping
model, unambiguous model parameters cannot be obtained
from the experimental data. For different values of the radius
of the bleached spot, different values of the model parameters
are obtained [4].

In this study, a generalization of the multiple-trapping
model that considers obstacles was proposed, and arguments
were provided that indicated the proposed model extended the
descriptive capabilities of the multiple-trapping model.

II. GENERALIZATION OF THE
MULTIPLE-TRAPPING MODEL

In this section, the process described by the multiple-
trapping model is presented as a subordinated stochastic
process, with usual diffusion as the parent process and the
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renewal process as the leading process. By replacing the usual
diffusion in this subordinated process into a process described
by a random barrier model, we can obtain a generalization
of the multiple-trapping model. Then, the same result could
be obtained within the framework of the lattice model. Some
further generalizations and modifications are also considered.

In the Laplace space, the system of Eqs. (1) and (2) can be
reduced to a single equation with respect to the total concen-
tration ρ = f + ∑N

i=1 ci [in this study, the original functions
g(t ) and their transforms g(s) = ∫ ∞

0 dt exp(−st )g(t ) are dis-
tinguished by their arguments]:

sρ(r, s) − ρ0(r) = D�(s)�2

[
ρ(r, s) − 1 − �(s)

s
ρ0(r)

]
,

(3)

where

�(s) =
[

1 +
N∑

i=1

ωi

s + νi

]−1

, (4)

�(s) = 1 − s

N∑
i=1

θ0
i

s + νi

, (5)

θ0
i = c0

i (r)

ρ0
i (r)

, (6)

and c0
i (r) and ρ0

i (r) are the initial conditions. The solution of
this equation corresponding to the initial condition ρ(r, s) =
δd (r) (propagator) has the form

ρ(r, s) = �(s)

s

βd

(2π )d/2
(rβ )1−d/2K1−d/2(rβ )

+ 1 − �(s)

s
δd (r), (7)

where r = |r|, K1−d/2(r ) is a modified Bessel function of the
second kind. The parameter δd (r) is the d-dimensional delta

function, and β =
√

s
D�(s) .

Subordination is a mathematical method that broadens
the applicability of classical transport models [7–11]. In this
method, the clock time of a stochastic process X(t ) is ran-
domized by introducing a new time σ = S(t ). The resulting
process Y (t ) = X[S(t )] is subordinated to the parent process
X(σ ), and σ is commonly referred to as the leading process or
the operational time. If the processes X(σ ) and S(t ) are inde-
pendent, then the propagator (one-point distribution function)
of the resulting process is [12,11]

P Y (r, t ) =
∫ ∞

0
dσP X(r, σ )P S (σ, t ). (8)

Here, P X(r, σ ) is a one-point distribution function of the pro-
cess X(σ ), and P S (t, σ ) is a one-point distribution function of
the process S(t ). If the renewal process is taken as the leading
process, the propagator of the resulting process in the Laplace

space (t → s) will be equal to [11]

P Y (r, s) = φ(s, t0)[1 − ψ (s)]

sψ2
P X

(
r, u = 1 − ψ (s)

ψ (s)

)

+ ψ (s) − φ(s, t0)

sψ (s)
δ(r). (9)

Here, P X(r, u) is the Laplace image (σ → u) of the propa-
gator of the parent process, and ψ (s) is the Laplace image of
the waiting time distribution function. The parameter φ(s, t0)
is the recurrence time, and t0 is the delay time. In the Laplace
space (t0 → λ), the function φ(s, t0) is written as

φ(s, λ) = ψ (λ) − ψ (s)

[1 − ψ (λ)][s − λ]
. (10)

The delay time is the time elapsed between the start of the
renewal process and the beginning of the process monitoring.

To obtain the propagator (7) by the subordination method,
the usual diffusion process (the Wiener process) should be
used as the parent process. The propagator of this process in
the Laplace space (σ → u) is given by the formula

P X(r, u) = βd

u(2π )d/2
(rβ )1−d/2K1−d/2(rβ ), (11)

where β = √
u
D

. The distribution function ψ (s) should be
given in the form

ψ (s) = W

W + s + ∑N
i=1

sωi

s+νi

(12)

with the parameter W equal to 1 and the recurrence time in the
form φ(s, λ) = �(s)ψ (s). The last relation will be consistent
with Eqs. (10) and (12) if the initial values θ0

i , which appear
in expression (5), are given in the form

θ0
i (λ) = �(λ)

λ

ωi

λ + νi

. (13)

From this formula, with the delay time equal to zero, all θ0
i

[θ0
i (t0 = 0) = limλ→∞ λθ0

i (λ)] are equal to zero. Therefore,
the renewal process starts when the particle is in the transport
state. With a delay time equal to infinity, all θ0

i [θ0
i (t0 = ∞) =

limλ→0 λθ0
i (λ)] are equal to the equilibrium values:

θ0
i (t0 = ∞) = ωi

νi

[
1 +

N∑
k=1

ωk

νk

]−1

. (14)

[Integrating Eqs. (1) and (2) over the whole space and solving
them in the Laplace space t → λ under the initial conditions
f 0 = 1, θ0

i = 0, the dependence of the probabilities θi on the
delay time is described by Eq. (13) in the multiple-trapping
model.]

Thus, the multiple-trapping model describes a subordi-
nated stochastic process, in which the role of the parent
process is represented by ordinary diffusion and the role of the
leading process is represented by the renewal process with the
waiting time distribution function (12). This interpretation of
the model allows us to generalize it for the case in which there
are obstacles other than traps in a disordered medium. Thus,
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ordinary diffusion was not used as the parent process; instead,
random walks in the random barrier model were used [13].
This model describes the motion along a random potential
relief, in which all local minima are on the same level. For
the properties, this model is similar to the Lorentz model [14].
(In review [14], the random barrier model was referred to as
the random-resistor network.) The propagator of this model
averaged over the ensemble of configurations satisfies the
non-Markovian equation

∂f (r, t )

∂t
=

∫ t

0
D(t − τ )�2f (r, τ )dτ. (15)

In the Laplace space it differs from the usual diffusion propa-
gator (11) in that the diffusion coefficient is a function of the
Laplace variable: D = D(u) [15]. Therefore, the propagator
of the resulting process has the same form as propagator (7):

ρ(r, s) = �(s)

s

βd

(2π )d/2
(rβ )1−d/2K1−d/2(rβ )

+ 1 − �(s)

s
δd (r), (16)

with parameter β equal to
√

s
�(s)�(s) , where �(s) = D( s

�(s) ).

This propagator satisfies the equation

sρ(r, s) − ρ0(r) = �(s)�(s)�2ρ(r, s) − 1 − �(s)

s
�2ρ0(r)

(17)

with the initial condition ρ0(r) = δd (r). The analog of the
system of Eqs. (1) and (2) in this case is the system

∂f (r, t )

∂t
=

∫ t

0
�(t − τ )�2f (r, τ )dτ

−
N∑

i=1

ωif (r, t ) +
N∑

i=1

νici (r, t ), (18)

∂ci (r, t )

∂t
= −νici (r, t ) + ωif (r, t ), i = 1, . . . , N. (19)

The equations of this system have the same meaning as
Eqs. (1) and (2). The difference between them is in the
transport term, which in this case is non-Markovian because of
the random barriers. System (18) and (19) cannot be obtained
from the equation for the propagator of the model of the
random barrier (15) by adding in this equation of the source
terms and writing the equations for the traps. This could
be accomplished if Eq. (15) were Markovian. In the non-
Markovian case, the memory function D(t ) does not remain
unchanged; however, it can be modified, i.e., replaced by a
function �(t ).

In the subordination method, it is assumed that the parent
and leading processes are independent. For the application of
this model, the traps and barriers are chaotically distributed.
Near a barrier of any height, there can be a trap of any depth
with equal probability. This is a limitation of this approach,
as in real environments the distributions of traps and barriers
can be correlated. To obtain more general models, the Markov
representation of the random barrier model can be used in-
stead of the non-Markovian equation for the propagator (15).

In this approach, it is assumed that at each position in space,
the particle can be in M different transport states, and that
the probabilities of being in these states satisfy the equations
[16,17]

∂fi (r, t )

∂t
= −κifi (r, t ) + κiαiF (r, t ), i = 1, . . . , M,

(20)

where fi is the probability of a particle in the state of the
ith type. The parameter κi is the escape rate from the state
of the ith type, and αi is the fraction of states of the ith
type. The function F (r, t ) is equal to f (r, t ) + a2�2f (r, t )],
f = ∑M

i=1 fi is the total probability, and a2 is a constant.
Different states are treated as particle locations surrounded
by barriers of different heights. From these equations, with
an equiprobable initial state distribution f 0

i = αif
0, the total

probability satisfies Eq. (15) with the memory function, which
in the Laplace space has the form

D(u) = a2 uχ (u)

1 − χ (u)
, (21)

where χ (u) = ∑M
i=1

αiκi

u+κi
. The equiprobable distribution

f 0
i = αif

0 is also an equilibrium distribution for Eqs. (20).
Hence, Eq. (15) is also valid for an equilibrium initial distri-
bution [Eqs. (20) preserve the characteristic properties of the
random barrier model].

Because Eqs. (20) are Markovian, source terms can be
added without additional modifications. Correlations can be
taken into account, i.e., in different equations, different source
terms can be added, and different equations can be written
for the traps corresponding to these equations. To obtain
the model considered above (17), (18), and (19), the same
source terms should be added to Eqs. (20) and the same set
of equations for the traps corresponding to these equations
should be used:

∂fi (r, t )

∂t
= −κifi (r, t ) + κiαiF (r, t ) −

N∑
j=1

ωjfi (r, t )

+
N∑

j=1

νj cij (r, t ), i = 1, . . . ,M, (22)

∂cij (r, t )

∂t
= −νj cij (r, t ) + ωjfi (r, t ), i = 1, . . . , M,

j = 1, . . . , N. (23)

The concentrations of the particles in the traps have two
indexes. One of them (j ) corresponds to the trap type, and the
other (i) corresponds to the type of transport state associated
with the trap. A particle is assumed to fall into a trap only
from a transport state of one type and move from a trap to a
transport state of the same type, i.e., a certain type of transport
state corresponds to each trap. If this condition is abandoned,
and the transitions are assumed to occur in different states
with the same probability, the model considered in [18] is
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obtained:

∂fi (r, t )

∂t
= −κifi (r, t ) + κiαiF (r, t ) −

N∑
j=1

ωjfi (r, t )

+ αi

N∑
j=1

νj cj (r, t ), i = 1, . . . , M, (24)

∂cj (r, t )

∂t
= −νj cj (r, t ) + ωjf (r, t ), j = 1, . . . , N.

(25)

Both of these systems of equations are brought to the same
equation for the total concentration (17) (see Appendix A). In
the first case, the memory function has the same form as that
in the method of subordination:

�(s) = D

(
s

�(s)

)
, (26)

and in the second,

�(s) = D

(
s +

N∑
i=1

ωi

)
. (27)

Here, the memory function D(u) is given by Eq. (21). Both
of these memory functions behave qualitatively, as does the
function D(u). They are positive monotonically increasing
functions with a negative second derivative [in the lattice
model, which is the random barrier model, D(u) satisfies
these properties [19,15]].

The simplest model with correlations has the form

∂fi (r, t )

∂t
= −κifi (r, t ) + κiαiF (r, t ) − ωifi (r, t )

+ νici (r, t ), i = 1, . . . , M, (28)

∂ci (r, t )

∂t
= −νici (r, t ) + ωifi (r, t ), i = 1, . . . ,M. (29)

Here, each transport state is connected with its own type of
traps, and different states have different types of traps. In this
model, the propagator has the same form as that in the models
without correlations (17). However, there are other factors in
front of the Bessel function and the δ function, as well as
another expression for the parameter β (see Appendix B).

In the following sections, the expression for the propagator
(16) and Eq. (17) are used to determine theoretical expressions
corresponding to the curves obtained in the experiments using
fluorescence spectroscopy.

III. FLUORESCENCE RECOVERY AFTER
PHOTOBLEACHING

In the FRAP experiment, the recovery of fluorescence after
photobleaching in a small volume is measured. The fluores-
cence recovery originates from fluorescently tagged particles
that move randomly in the volume and cause replacement of
the bleached particles. Before photobleaching, the system is
in equilibrium.

Together with the authors of a previous study [2], a model
that accounts for a finite nucleus and an arbitrary initial

bleach profile is considered. A circular nucleus of radius RN

that is photobleached at its center with an arbitrary, radially
symmetric bleach profile I (r ) was assumed. The intensity was
measured within a centered circle of radius RM .

The authors of [2] used a standard multiple-trapping model
(1) and (2) with one type of trap (N = 1). In this study, a more
general model was considered, with the presence of barriers
with an arbitrary number of types of traps (18) and (19). The
problem was solved in the Laplace space.

Equation (17) should be solved in the two-dimensional
region r � RN with the initial condition ρ0(r ) = I (r ) and the
boundary condition ∂ρ

∂r
|RN

= 0. The solution should be finite
at r = 0. Because the initial state of the system (before the
flash) was in equilibrium, the values of θ0

i were expressed
by formula (14). Thus, the function �(s) equals �(0)

�(s) [from
relations (13) and (14)]. To obtain a curve corresponding to
the experiment, the obtained solution ρ(r, s) was integrated
over the circle r � RM .

The solution of Eq. (17) is represented in the form

ρ(r, s) = Q(r, s) + 1 − �(s)

s
ρ0(r), (30)

where the function Q(r, s) is a solution of the equation

sQ(r, s) − �(s)ρ0(r) = �(s)�(s)�2Q(r, s). (31)

The solution of this equation was expressed in terms of the
Green’s function. The Green’s function can be defined as a
bounded solution of the one-dimensional equation

sG(r, r0, s) − δ(r − r0)

= �(s)�(s)

(
∂2

∂r2
+ 1

r

∂

∂r

)
G(r, r0, s) (32)

satisfying the boundary condition ∂G(r,r0,s)
∂r

|RN
= 0. The func-

tion Q(r, s) was expressed as follows:

Q(r, s) = 2π�(s)
∫ RN

0
dr0r0I (r0)G(r, r0, s). (33)

Integrating ρ(r, s) (30) over the circle r � RM , the follow-
ing relation was obtained:

frap(s) = 2π�(s)
∫ RN

0
dr rI (r )P (r, s)

+ 1 − �(s)

s
2π

∫ RM

0
dr rI (r ), (34)

where

P (r0, s) = 2π

∫ RM

0
dr rG(r, r0, s) (35)

is the probability that the particle starting from the point r0

is in circle r � RM . This probability satisfies the equation
analogous to (32), with a different initial condition [20]:

sP (r, s) − �M (r ) = �(s)�(s)

(
∂2

∂r2
+ 1

r

∂

∂r

)
P (r, s).

(36)
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The parameter �M (r ) is the characteristic function of the
interval 0 � r � RM . The boundary condition remains the
same: ∂P (r,s)

∂r
|RN

= 0.
The bounded solution of Eq. (36) has the form

P (r, s) =
{

1
s

+ AI0(βr ), 0 < r < RM,

BK0(βr ) + CI0(βr ), RM < r < RN.
(37)

Here, I0 and K0 are the modified Bessel functions of the first
and second kind, respectively, β =

√
s

�(s)�(s) . The coefficients

A, B, and C were determined from the boundary condition
and the requirement of continuity of the function P (r, s) and
its first derivative at the point r = RM . The final expression
for the function P (r, s) can be written as

P (r, s) =
⎧⎨
⎩

1
s

− βRM

s
I0(βr )

[
K1(βRM ) − I1(βRM )K1(βRN )

I1(βRN )

]
, 0 < r < RM,

βRM

s
I1(βRM )

[
K0(βr ) + I0(βr )K1(βRN )

I1(βRN )

]
, RM < r < RN.

(38)

[In the course of calculation, the following relations between the modified Bessel functions were used: dI0(x)
dx

= I1(x), dK0(x)
dx

=
−K1(x), I1(x)K0(x) + I0(x)K1(x) = x−1.] Substituting this expression into Eq. (34), the final expression was obtained for
frap(s):

frap(s) = 2π

∫ RN

0
dr rI (r )S(r, s), (39)

where the function S(r, s) has the form

S(r, s) =
⎧⎨
⎩

1
s

− �(s) βRM

s
I0(βr )

[
K1(βRM ) − I1(βRM )K1(βRN )

I1(βRN )

]
, 0 < r < RM,

�(s) βRM

s
I1(βRM )

[
K0(βr ) + I0(βr )K1(βRN )

I1(βRN )

]
, RM < r < RN.

(40)

For an infinite nucleus and special profile I (r ) = 0 for
0 < r < RM and I (r ) = 1

πR2
M

for r > RM , the following was
obtained from (39):

frap(s) = 2�(s)

s
I1(βRM )K1(βRM ). (41)

[For the calculations, the following properties of the mod-
ified Bessel functions were used: the quotient K1(βRN )

I1(βRN ) was

equal to zero for an infinite RN ; the integral
∫ ∞
RM

dr rK0(βr )

was equal to RM

β
K1(βRM ).] This formula was obtained in

previous studies [3,4] for N = 1. In these studies, �(s) was

equal to [1 + k∗
on

s+koff
]
−1

, and the function �(s) was equal to

[1 + k∗
on

s+koff
][1 + k∗

on
koff

]
−1

. The function �(s) in study [3] was
equal to Dγ (s + k∗

on)1−γ , and in study [4] it was equal to the
constant Df .

The transition to real time in Eq. (39) should be carried
out numerically. In some cases, an analytical expression can
be obtained in the form of an infinite series. To accomplish
this, function (40) is expanded in a Fourier series with respect
to the Bessel functions J0(αir ) on the interval (0, RN ), and
term-by-term integration in (39) is performed. The result is an
expression

frap(s) = 2πRM

∞∑
0

(
�(s)

s + α2
i �(s)�(s)

+ 1 − �(s)

s

)

× fi

αi

J1(αiRM ). (42)

Here, αi = κi

RN
, κi are the zeros of the function J1(r ),

fi = 2

R2
NJ 2

0 (κi )

∫ RN

0
dr rI (r )J0(αir ). (43)

(This result can also be obtained by solving the initial problem
using the method of separation of variables.) For the simple
functions �(s) and �(s), each term of this series can be in-

verted analytically. In particular, when �(s) = [1 + k∗
on

s+koff
]
−1

and �(s) = Df , the result from a previous study is obtained
[2].

IV. FLUORESCENCE CORRELATION SPECTROSCOPY

In the FCS experiment, the time correlation function of
the fluorescence fluctuations is measured. The fluorescence
stems from fluorescently tagged particles that move randomly
in the volume. The random movement creates spontaneous
local concentration changes, which cause fluorescence fluc-
tuations. The measurements are carried out in an equilibrium
system.

The FCS curve is represented as an integral from the prod-
uct of the propagator to the apparatus function that determines
the laser intensity distribution [21]:

G(t ) =
∫

dr ρ(r, t )F (r). (44)

If the laser intensity distribution is Gaussian, then the appara-
tus function can be written as

F (r) = exp

(
−x2 + y2

a
− z2

b

)
, (45)

where a and b are positive parameters. For normal diffusion,
the integral (44) is calculated explicitly:

Gnorm(t ) =
(

1 + 4Dt

a

)−1(
1 + 4Dt

b

)−0.5

. (46)
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Using this result, the Laplace image of the FCS curve for the
model under consideration was determined. In the Laplace
space, formula (44) can be written in the form

G(s) =
∫

dr ρ(r, s)F (r). (47)

In the model under consideration, the propagator ρ(r, s) is
given by Eq. (16). The dependence on r of the first term
on the right-hand side of this formula does not differ from
the dependence on r of the diffusion propagator (11). Con-
sequently, the integral of this term has the same functional
form as the integral of the diffusion propagator. The difference
is the appearance of a factor �(s) and the replacement of
the diffusion constant D with the product �(s)�(s). The
second term is integrated. Taking into account that for normal
diffusion the Laplace image of the FCS curve has the form

Gnorm(s) =
∫ ∞

0
dt exp(−st )

(
1 +4Dt

a

)−1(
1 +4Dt

b

)−0.5

,

(48)

the Laplace image of the FCS curve can be obtained for the
model under consideration:

G(s) = �(s)
∫ ∞

0
dz exp(−sz)

(
1 + 4�(s)�(s)z

a

)−1

×
(

1 + 4�(s)�(s)z

b

)−0.5

+ 1 − �(s)

s
. (49)

Because the FCS experiment was performed under equilib-
rium conditions, the function �(s) in this formula is equal to
�(0)
�(s) . For clarity, the integration variable t is renamed (t → z)
because it does not refer to time.

V. SINGLE-PARTICLE TRACKING

The SPT experiment included tracing the trajectory of an
individual particle. A labeled particle is introduced into the
test sample and monitored with a video microscope. The
trajectory of the particle r (t ) is recorded for a time sufficient
to have a complete statistics of spatial displacements. The
information thus obtained allows, in principle, to find all the
correlation functions. In particular, the propagator (16) and
all the quantities calculated with it can be found. The expres-
sion for the mean-square displacement is given as [〈r2〉(s) =∫

dr r2ρ(r, s)]:

〈r2〉(s) = 2d�(s)�(s)
�(s, λ)

s2
. (50)

Here, the dependence of the initial probabilities (13) on λ

is considered, which allows for the calculation of a widely
used quantity, the mean-square displacement averaged over
the ensemble and in time (delay time). For a fully equilibrated
system [when �(s) = �(0)

�(s) ], expression (50) reduces to

〈r2〉(s) = 2d�(s)
1

τ̄ s2
, (51)

where τ̄ = 1
W

[1 + ∑N
k=1

ωk

νk
]. The characteristic feature of this

expression is that it does not depend on the function �(s);
therefore, if there are no barriers, i.e., if �(s) does not depend

on s, the mean-square displacement is a linear function of
time.

The expression (50) can be rewritten as

〈r2〉(s, λ) = 2d
�(s)

s(λ − s)

(
�(s)

s
− �(λ)

λ

)
. (52)

Performing inverse Laplace transforms with respect to s and
λ, the expression for the mean-square displacement of the
particles as a function of time t and delay time t0 is obtained:

〈r2〉(t, t0) =
∫ t

0
dτ f1(t − τ )f2(t0 + τ ). (53)

The parameter f1(t ) is the original of the function 2d�(s)
s

, and
f2(t0) is the original of the function �(λ)

λ
. After averaging

this expression with respect to t0, the expression for the
mean-square displacement of the particles averaged over both
time and ensemble is obtained [the notation for the variable t

(t → �) is changed]:

¯〈r2〉(�, T ) = 1

T − �

∫ T −�

0
dt0

×
∫ �

0
dτ f1(� − τ )f2(t0 + τ ). (54)

Here, T − � is the period of time over which the averaging
is carried out. If the condition � � T is fulfilled, then by
substituting T − � → T and t0 + τ → t0, the last expression
can be reduced to the form

¯〈r2〉(�, T ) = 1

T

∫ T

0
dt0f2(t0)

∫ �

0
dτ f1(τ ). (55)

VI. DISCUSSION AND CONCLUSION

The subordination method has been used in numerous
studies to model diffusion processes in disordered media. The
approach proposed in this study differs from the others in two
aspects. First, using this approach, it is possible to obtain an
analytic propagator expression (as well as the corresponding
equation) for a disordered medium that contains traps and ob-
stacles. Second, this propagator (and corresponding equation)
can be applied to nonequilibrium and equilibrium systems.
In previous studies, the subordination method was applied
only to nonequilibrium systems. In addition, if a medium
with traps and obstacles was considered, the expression for
the propagator remained unknown. For example, in previous
studies [5,22], the continuous-time random walk (CTRW) on
fractals was considered. This model described diffusion in a
medium with traps and obstacles; however, there was no ana-
lytic expression for the propagator in this model. An equation
describing the diffusion process was also absent. In previous
studies [23,24], the CTRW model was used to describe FRAP
and FCS experiments. The equation describing the diffusion
process in the Laplace space was as follows:

sρ(r, s) − ρ0(r) = �(s)�2ρ(r, s) (56)

with �(s) = Kαs1−α . Comparing this equation with Eq. (17),
the function �(s) and inhomogeneous term 1−�(s)

s
�2ρ0(r)

are absent. The absence of the function �(s) shows that this
approach neglected the presence of obstacles in disordered
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media, and the absence of the inhomogeneous term showed
that the experiment was carried out in a nonequilibrium
system. However, obstacles can be present in a disordered
medium, and the experiment is usually carried out in an
equilibrium system.

The multiple-trapping model is a form of the CTRW
model [13]. In this form, the waiting time distribution, ψ (s),
is definite: ψ (s) = W

W+s+∑N
i=1

sωi
s+νi

. This form of the CTRW

model was used because its parameters have a certain physical
meaning, and it is used in practice to describe the experimental
data. However, all the expressions obtained here are also valid
for the general CTRW model. In this case, the functions �(s)
and �(s, λ) have the forms �(s) = sψ (s)

1−ψ (s) and �(s, λ) =
φ(s.λ)
ψ (s) = ψ (λ)−ψ (s)

ψ (s)[1−ψ (λ)][s−λ] .
The model considered in this study has two functions

as parameters: �(s) and �(s). The form of the function
�(s) is given by Eq. (4). For an unambiguous determina-
tion, the parameters N and 2N of the parameters νi and
ωi should be specified. The function �(s) is expressed in
terms of the indeterminate function D(s); therefore, its form
can be set arbitrarily. It should be a positive monotonically
increasing function with a negative second derivative. For
the simplest functions satisfying these conditions, a power
function �(s) = A(s + k)n, where A > 0, k > 0, 1 > n > 0,
or a fractional rational function �(s) = A 1+as

1+bs
, where A > 0,

b > 0, a > b, can be used. If one type of binding site is
assumed, N = 1, then the model would contain five param-
eters: ν1, ω1, A, k, and n in the first case and ν1, ω1, A,
a, and b in the second case. The numerical values of these
parameters can be determined by the method of least squares.
The input data can be the FRAP curve, FCS curve, propagator,
or mean-square displacement. The corresponding theoretical
expressions are (39) and (40) for the FRAP curve, (49) for the
FCS curve, (16) for the propagator, and (53) and (54) for the
mean-square displacement. For the functions �(s) and �(s),
the parameters νi and ωi are known, which characterize the
binding properties of the molecules. To establish the diffusion
properties, one of the functionals Eq. (26) or (27) with respect
to the function D(s) should be solved. The equations to be
solved are dependent on which of the two systems of Eqs. (22)
and (23) or Eqs. (24) and (25) is more adequate for the case
under consideration. However, the structure of the disordered
medium under consideration should be known.

The number of parameters in the model under consid-
eration is large; therefore, determining them from a single
FRAP curve or a single FCS curve is not possible. The results
of study [3] show that for two FRAP curves measured at
different bleached spot radius values, the parameters cannot
be determined reliably. In [6], the data from FRAP, FCS, and
SPT experiments were simultaneously used to determine the
parameters. Because the SPT experiment provides detailed
information on diffusion and binding processes, the model
parameters can be reliably determined based on data from this
experiment. However, it is necessary to have an appropriate
method for processing the experimental data. As a possible
method, the model parameters can be determined when the
mean-square displacement is known for delay times, t0, of
zero and infinity. A delay time of zero represents the start of
the monitoring of the system at the time of its creation, i.e.,

FIG. 1. MSD for equilibrium and nonequilibrium systems in
different models. Curve 1, MSD for a nonequilibrium system in all
models and for an equilibrium system in the random barrier model.
Curve 2, MSD for an equilibrium system in the multiple-trapping
model. Curve 3, MSD for an equilibrium system in a mixed model.
Dots: the asymptote of curve 1.

at the moment when the particle that is being monitored is
placed in the medium. In this case, all θ0

i values are equal to
zero; hence, �(s) = 1. The expression for the MSD is in the
form

〈r2〉(s) = 2d
�(s)�(s)

s2
. (57)

A delay time equal to infinity means that the system reaches
an equilibrium state. In this case, the MSD has the form of
Eq. (51). Because the function �(s) is not in Eq. (51), the pa-
rameters A

τ̄
, k, and n (or A

τ̄
, a, and b) can be determined from

the MSD measured in the equilibrium state. Subsequently, the
two parameters ω1 and ν1 from the MSD measured in the
nonequilibrium system, (57), should be determined. Figure 1
shows the qualitative behavior of the MSD for a nonequi-
librium system, (57), and MSD for an equilibrium system,
(51), in different models. The MSD for the nonequilibrium
system behaves qualitatively the same in all models (curve
1); however, the MSD for the equilibrium system behaves
differently in different models. In the random barrier model
[i.e., when �(s) = 1 and τ̄ = 1], MSD (57) and MSD (51)
coincided (curve 1). In the multiple-trapping model (i.e., when
�(s) = const), MSD (51) is a straight line (curve 2), and MSD
(57) is a curve with an asymptote parallel to this straight line
(curve 1). In the mixed model, MSD (51) (curve 3) is located
between MSD (57) (curve 1) and the straight line, leaving the
origin parallel to the asymptote of MSD (57) (curve 2).

These two examples confirm the accuracy of the proposed
model. For the first example, the authors of study [3] used a
special case of the model to describe the experimental data
obtained in study [4]. A model with a function �(s) different
from a constant is more adequate than the traditional model.
The authors of [4] found that with the standard multiple-
trapping model, it is impossible to determine unambiguous
values of the model parameters. For different values of the
radius of the bleached spot, different values of the model
parameters are obtained. Concurrently, the authors of [3]
established that with a generalized multiple-trapping model,
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the data corresponding to different bleached spot radii by one
set of parameters could be determined. Note that the authors
of [3] interpreted their equations differently from those in
this study. They believed that the appearance of the function
�(s) was a result of the anomalous diffusion described by the
continuous-time random-walk model. They have neglected
the fact that in the framework of this model, Eq. (15) is valid
only in the nonequilibrium case.

For the second example, the model under consideration
provides the same result as the CTRW on fractals [22]. If the
function D(s) has the form

D(s) ∼ s1−β (58)

(i.e., it describes the anomalous subdiffusion resulting from
the barriers), and the function �(s) has the form

�(s) ∼ s1−α (59)

(i.e., it describes the anomalous subdiffusion resulting from
the traps), then the function �(s) [Eq. (26)] can be written as

�(s) ∼ sα−αβ, (60)

and the time-averaged mean-square displacement (55) can be
written in the form

¯〈r2〉(�, T ) ∼ T α−1�1+αβ−α. (61)

The same dependence was obtained experimentally in study
[5] with α = 0.9 and β = 0.77. The standard multiple-
trapping model corresponds to the value β = 1; therefore, it
is not capable of reproducing this behavior.

In conclusion, in this study, a mathematical model was pro-
posed to describe experiments using fluorescent microscopy
in disordered media containing binding sites and obstacles.
In the Laplace space, the expressions for the propagator, the
mean-square displacement as a function of the observation
and delay times, the FRAP curve, and the FCS curve were
derived. The model can be used to determine the param-
eters characterizing the diffusion and binding properties of
molecules in crowded environments.

APPENDIX A

In the Laplace space, Eqs. (22) and (23) have the form

sfi (r, s) − αif
0(r) = −κifi (r, s) + κiαiF (r, s) −

N∑
j=1

ωjfi (r, s) +
N∑

j=1

νj cij (r, s), i = 1, . . . , M, (A1)

scij (r, s) − αic
0
j (r) = −νj cij (r, s) + ωjfi (r, s), i = 1, . . . , M, j = 1, . . . , N. (A2)

The second equation cij is expressed as

cij = αic
0
j + ωjfi

s + νj

, i = 1, . . . , M, j = 1, . . . , N. (A3)

This expression is substituted into the first equation:⎛
⎝s + κi +

N∑
j=1

sωj

s + νj

⎞
⎠fi = αi

⎛
⎝f 0 +

N∑
j=1

c0
j νj

s + νj

⎞
⎠ + αiκiF (r, s). (A4)

We express from here fi and the sum over i:

f = �(s)

⎛
⎝f 0 +

N∑
j=1

c0
j νj

s + νj

⎞
⎠ + φ(s)F (r, s). (A5)

Here,

φ(s) =
M∑
i=1

αiκi

s + κi + ∑N
j=1

sωj

s+νj

, (A6)

�(s) = 1 − φ(s)

s + ∑N
j=1

sωj

s+νj

. (A7)

By dividing Eq. (A5) by �(s) and transforming, the following is obtained:

sf (r, s) − f 0(r) = sφ(s)

1 − φ(s)
a2�2f (r, s) − f (r, s)

N∑
j=1

sωj

s + νj

+
N∑

j=1

c0
j νj

s + νj

. (A8)

Further, summing Eqs. (A2) with respect to i and j , and adding (A8), the following is obtained:

sρ(r, s) − ρ0(r) = sφ(s)

1 − φ(s)
a2�2f (r, s), (A9)
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where ρ = f + ∑M,N
i,j cij = f (1 + ∑N

j=1
ωj

s+νj
) + ∑N

j=1
c0
j

s+νj
. Expressing f in this equation in terms of ρ, Eq. (17) is obtained

with function �(s) equal to (26).
In the Laplace space, Eqs. (24) and (25) have the form

sfi (r, s) − αif
0(r) = −κifi (r, s) + κiαiF (r, s) −

N∑
j=1

ωjfi (r, s) + αi

N∑
j=1

νj cj (r, s), i = 1, . . . ,M, (A10)

scj (r, s) − c0
j (r) = −νj cj (r, s) + ωjf (r, s), j = 1, . . . , N. (A11)

From these equations, as a result of similar calculations, Eq. (17) is obtained with the function �(s) equal to (27).

APPENDIX B

In the Fourier-Laplace space, Eqs. (28) and (29) have the form

sfi (k, s) − αif
0(k) = −κifi (k, s) + κiαi (1 − a2k2)f (k, s) − ωifi (k, s) + νici (k, s), i = 1, . . . , M, (B1)

sci (k, s) − c0
i (k) = −νici (k, s) + ωifi (k, s), i = 1, . . . , M. (B2)

At the initial instant of time, the whole probability is assumed to be concentrated at one point, r = 0; therefore, the initial values
f 0 and c0

i do not depend on k. The second equation ci is expressed as

ci = c0
i + ωifi

s + νi

, i = 1, . . . ,M. (B3)

This expression is substituted into the first equation and solved with respect to fi :

fi =
αi[f 0 + κi (1 − a2k2)f ] + νic

0
i

s+νi

s + κi + sωi

s+νi

, i = 1, . . . , M. (B4)

This relation is summarized with respect to i, and f is expressed as

f = �(s)

1 − φ(s)(1 − a2k2)
. (B5)

Here,

�(s) =
M∑
i=1

αif
0 + νic

0
i

s+νi

s + κi + sωi

s+νi

, (B6)

φ(s) =
M∑
i=1

αiκi

s + κi + sωi

s+νi

. (B7)

The expression (1 − a2k2)f can be transformed to the form f −�(s)
φ(s) . Using the expressions obtained, propagator ρ = ∑M

i=1(fi +
ci ) is determined in the Fourier-Laplace space. Performing the inverse Fourier transform, an expression similar to (17) is obtained
with other factors in front of the Bessel function and the delta function, as well as with another expression for the parameter β.
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