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Eigenfunction distribution for the Rosenzweig-Porter model
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The statistical distribution of eigenfunctions for the Rosenzweig-Porter model is derived for the region where
eigenfunctions have fractal behavior. The result is based on simple physical ideas and leads to transparent
explicit formulas which agree very well with numerical calculations. It constitutes a rare case where a nontrivial
eigenfunction distribution is obtained in a closed form.
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I. INTRODUCTION

Random matrix theory has been successfully applied to
a vast number of different problems ranging from nuclear
physics to number theory (see, e.g., Refs. [1,2] and references
therein). Recently [3] it was demonstrated that it is also
applicable for describing models with fractal eigenfunctions.
The difference of the model considered in Ref. [3] from other
models with fractal eigenfunctions, such as the power-law
random banded matrices [4] and the ultrametric matrices [5],
is that in the latter models fractality (or even multifractality)
exits only at special critical values of the parameters, but in
the former model fractality has been observed in part of the
whole delocalized phase.

The model in question belongs to the Rosenzweig-Porter
(RP) matrix ensembles Hij [6] where all matrix elements
are independent (up to the Hermitian symmetry) Gaussian
variables with zero mean, and whose variances of diagonal
and off-diagonal elements depend on different powers of the
matrix dimension N :

〈Hij 〉 = 0,
〈
H 2

ii

〉 = 1,
〈
H 2

ij

〉
i �=j

= ε2

Nγ
, (1)

where i, j = 1, . . . , N and ε is a constant.
For clarity we consider real symmetric matrices (of GOE

type). Generalization to other symmetry classes is straightfor-
ward.

It has been established (with physical rigor in Refs. [7–9]
and proved mathematically in Ref. [10]) that when γ > 2 all
states in the model are localized and the spectral statistics is
Poissonian. When γ < 1 after rescaling one gets the usual
random matrix ensembles, therefore all states are delocalized,
and the spectral statistics coincides with GOE (mathemati-
cally it follows from the results of Ref. [11]).

In Ref. [3] the remaining interval 1 < γ < 2 has been
thoroughly investigated, and it was demonstrated that the
eigenfunctions are delocalized but have unusual fractal prop-
erties. In particular, eigenfunction moments

Iq =
〈∑

j

|�j |2q

〉
(2)

for q > 1
2 scale with a nontrivial power of N :

Iq −→
N→∞

N−(q−1)Dq Cq, Dq = 2 − γ. (3)

The existence of fractal states in this model has recently at-
tracted wide attention (see, e. g., Refs. [12–14] and references
therein) and has been rigorously proved in Ref. [15].

The purpose of this note is to obtain an exact distribution
of eigenfunctions, �i (Eα ), in the RP model (1)

N∑
j=1

Hij�j (Eα ) = Eα�i (Eα ) (4)

for large but finite matrix dimensions.

II. FERMI GOLDEN RULE

Our derivation is based on two statements. The first is
related to the form of the mean value of the modulus square
of eigenfunction components for large N :

�2
j (E) ≡ 〈|�j (E)|2〉 ≈ C2 �(E)

πρ(E)N [(E − ej )2 + �2(E)]
. (5)

Here the average is taken over off-diagonal matrix elements
taking the diagonal elements ej ≡ Hjj fixed. The width �(E)
is called the spreading width, and for large N it is given by the
Fermi golden rule

�(E) = πε2

Nγ−1
ρ(E), (6)

where ρ(E) is the normalized level density of the matrices (1).
For large N and γ > 1 it is equal to the density of the diagonal
elements

ρ(E) = 1√
2π

exp

(
−E2

2

)
. (7)

The value of constant C depends on the chosen normalization
of the eigenfunctions. Usually eigenfunctions are normalized
as

∑
j |�j (Eα )|2 = 1 or∑

α

|�j (Eα )|2 = 1 −→
∫

ρ(E)〈|�j (E)|2〉 dE = 1

N
. (8)
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In this case C = 1. But we shall see that it is convenient to
consider the statistical distribution not of �i itself but of the
variable y = C�i where the constant C is a certain power of
N . This is equivalent to choosing a different normalization of
eigenfunctions.

The (probably) simplest way to get the result (5) is to use
a recursive relation for the Green function G = (E − H )−1.
Fixing the diagonal element ei = Hii and expanding the de-
terminant over column and row i one gets the identity (called
in the mathematical literature the Schur complement formula)
with z = E − iη and η → 0+:

Gii (z) =
⎡
⎣z − ei −

∑
j,k �=i

HijG
(i)
jk (z)Hki

⎤
⎦

−1

, (9)

where G(i)(E) is the Green function of the matrix obtained
from H by removing the row and column i.

The next approximations seem natural and can be rigor-
ously proved in certain cases. First, one takes into account
only diagonal terms in the double sum and substitutes random
matrix elements by their expectation values:

∑
j,k �=i

HijG
(i)
jkHki ≈ ε2

Nγ−1
G̃(i), G̃(i) = 1

N − 1
Tr G(i). (10)

Second, for large N one can ignore small contributions of
off-diagonal elements to G(i) and use instead the free diagonal
Green function. Using the self-averaging property of this
quantity one gets the usual result:

G̃(i) −→
N→∞

∫
ρ(e) de

E − iη − e
−→
η→0+

P

∫
ρ(e) de

E − e
+ iπρ(E),

(11)
where ρ(e) is density (7) of diagonal entries of the matrices
(1) and P denotes the principal value of the integral.

The first term in (11) after multiplication by N1−γ gives
only a small energy shift in Eq. (5) (when γ > 1) and will
be ignored in what follows. Taking only the imaginary part
gives Eq. (5). Notice that in the chosen approximation the
normalization (8) is fulfilled.

The appearance of the characteristic Breit-Wigner shape
(5) in the case when the interaction between unperturbed
levels is small is well known and was observed in many
different settings. It was Wigner [16] who proved (for a
different model) that in such a case the mean square modulus
of eigenfunction components has the form (5). Later this
approach was widely used in nuclear physics and quantum
chaos (see, e.g., Refs. [17–22] among others). The notion of
spreading width � by itself is very useful in applications. The
point is that the ratio between it and the mean level spacing
determines between how many levels the initially localized
state spreads after the interaction is switched on. Therefore
without further calculations it is physically obvious that for
an interaction as in (6) and level spacings of the order of
1/N (for γ > 1) an exact eigenfunction is spread between
N2−γ levels when 1 < γ < 2 and will be fully localized when
γ > 2. Notice that the exact result [23] for the case of usual
random matrix models perturbed by rank-one perturbations
leads to similar formulas.

III. LOCAL PORTER-THOMAS LAW

The second important ingredient of our derivation is the
assertion that the distribution of eigenfunctions with fixed
diagonal elements can be well approximated by a Gaussian
function with zero mean and the variance given by Eq. (5):

P [�j (E)] = 1√
2π�2

j (E)
exp

[
−|�j (E)|2

2�2
j (E)

]
. (12)

Such a simple assumption (a local Porter-Thomas law)
has been used for many different problems (see, e.g.,
Refs. [18,19,22]), and it has been seen as a necessary condi-
tion to get (with physical rigor) the thermalization from quan-
tum mechanics [20]. Recently this property together with the
Breit-Wigner form of the variance (5) have been rigorously
proved for the RP model in Ref. [21].

IV. FULL EIGENFUNCTION DISTRIBUTION

Equations (5) and (12) correspond to a transition due to the
interaction between an initial state with energy ej and a final
state with energy E (or more precisely from a small window
around ej to a small window around E). As usual we consider
statistical properties of eigenvectors with fixed final energy
and because the full transition probability is the sum over
all transitions with arbitrary (unobserved) initial energies, the
final answer consists in averaging Eq. (12) over energy ej . It
gives [x = �j (E)]

P (x) =
∫

ρ(e)√
2π�2

j (E)
exp

[
− x2

2�2
j (E)

]
de. (13)

Substituting the above values results in

P (x) = 1

2π
√

a

∫ ∞

−∞

√
(E − e)2 + �2(E)

× exp

{
− x2

2a
[(E − e)2 + �2(E)] − e2

2

}
de, (14)

where we introduced the notation

a = C2�(E)

πρ(E)N
= C2ε2

Nγ
. (15)

This formula gives the distribution of eigenfunctions with
energies in a small window around E. The simplest case cor-
responds to the center of the spectrum, E = 0. The remaining
integral can easily be calculated and for E = 0 one gets

P (x)E=0 = δ2

4π
√

a
[K0(ζ ) + K1(ζ )]e−ζ+ δ2

2 , (16)

where

δ ≡ �(0) =
√

π ε2

√
2 Nγ−1

, ζ = δ2

4a
(x2 + a) (17)

and K0(z) and K1(z) are the K-Bessel functions [see, e.g.,
Ref. [24], 7.12 (21)]:

Kν (z) =
∫ ∞

0
cosh(νt )e−z cosh t dt. (18)
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Formula (16) is the main result of this note. It represents
the distribution of eigenfunctions for the RP model for large
matrix dimensions in the region γ > 1 at a small interval
around E = 0. It is straightforward to get a more general
expression valid in a finite energy interval, but the result is
cumbersome without producing any new insights.

It is clear that the bulk contribution corresponds to values
of x of the order of

√
a. To clearly see this region it is

convenient to use the variable

y = Nγ/2 �j (E), 〈y2〉 = Nγ−1, |y| � Nγ/2. (19)

This choice corresponds to C = Nγ/2 and a = ε2. Because δ

is always small in the large N limit, one can expand Eq. (16)
with x = O(1) for δ → 0. As K1(z) → 1/z when z → 0 one
gets

P (y)bulk = ε

π (y2 + ε2)
. (20)

The leading correction to this limit is of the order of δ2 ln δ2,
and it comes from the expansion of K0(ζ ).

To investigate the behavior of the eigenfunction distribu-
tion for large x [finite values of ζ in (16)] it is useful to rescale
eigenfunctions as

z = N1−γ /2 �j (E), 〈z2〉 = 1

Nγ−1
, |z| � N1−γ /2. (21)

This normalization corresponds to C = N (2−γ )/2 and a =
ε2N2−2γ . Consequently,

P (z)tail = 2
√

2 b3

π
√

π Nγ−1
[K0(b2z2) + K1(b2z2)]e−b2z2

(22)

with b = √
π ε/(2

√
2). When we apply these expansions to

eigenfunctions it is necessary to take into account that they
lose their validity near the maximum values indicated in (19)
and (21). The derivation of large deviation formulas appli-
cable close to these limits (inherent from the obvious bound
|�j | � 1) is beyond the scope of this paper. Furthermore, the
large x expansion (21) and (22) does not exist for γ > 2.

Using Eq. (16) [or directly from (14)] it is straightforward
to calculate moments of eigenfunctions (2) in the center of the
spectrum

Iq = 2q−1/2aqN�(q + 1/2)√
πδ2q−1

�

(
1

2
,

3

2
− q;

δ2

2

)
, (23)

where �(α, β; z) is the Tricomi confluent hypergeometric
function [see, e.g., Ref. [24], 6.5 (2)]

�(α, β; z) = 1

�(α)

∫ ∞

0
e−zt tα−1 (1 + t )β−α−1 dt. (24)

If β is not an integer, this function is a sum of two hypergeo-
metric functions [[24], 6.5 (7)]

�(α, β; z) = �(1 − β )

�(α − β − 1)
1F1(α; β; z)

+ �(β − 1)

�(α)
z1 − β

1F1(α − β + 1; 2 − β; z). (25)

Going to the limit δ → 0 one gets (in agreement with Ref. [3])

Iq = N−τ (q ) Cq, τ (q ) =
{

γ q − 1, q < 1
2

(q − 1)(2 − γ ), q > 1
2

(26)

where prefactors Cq have the following values:

C
q<

1
2

= ε2q

π
�(q + 1/2)�(1/2 − q ) , (27)

C
q>

1
2

= �(q − 1/2)�(q + 1/2)

π b2q−2 2q−2 �(q )
. (28)

It is clear that these asymptotic values correspond to the
moments of distributions (20) and (22), respectively. It is
also possible to find corrections to the above results (cf.
Ref. [24], 6.8). In particular for − 1

2 < q < 1
2 Eq. (27) should

be multiplied by the corrective factor

ccor (q ) = 1 + π1−q ε2−4q �(q − 1/2)

21−2q �(q ) �(1/2 − q )
N−(γ−1)(1−2q ). (29)

The moment with q = 1
2 is unusual and contains an additional

logarithm of N

I 1
2

= N1−γ /2 C 1
2
,

C 1
2

= ε

π

[
2(γ − 1) ln N − ln

(
πε4

16

)
− γ

]
, (30)

where γ ≈ 0.5772 is the Euler constant.
For the simpler case of GUE-type matrices, coefficient

Cq with q > 1
2 has been calculated in Ref. [13] using the

supersymmetry technique.

V. COMPARISON WITH NUMERICS

To illustrate the precision of the obtained formulas we
calculate numerically the eigenfunction distribution for the RP
model (1) with γ = 1.5 and ε = 1/

√
2 and matrix dimensions

N = 1024, 2048, and 4096. We take into account eigenfunc-
tions with eigenvalues in one eighth of the spectrum around
the center. For the first two values of N 10 000 different

-4 -2 0 2 4
y

0

0.2

0.4

P(
y)

FIG. 1. Red circles: distribution of y = Nγ/2 �j (E) for the
RP model with parameters γ = 1.5, ε = 1√

2
in the bulk computed

numerically for N = 4096. Data for N = 1024 and N = 2048 are
indistinguishable from the ones with N = 4046. The solid black line
is the theoretical prediction for this quantity (20).
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0
ln
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FIG. 2. The same as in Fig. 1 but in the logarithmic scale.
Black (lower) points: N = 1024, blue (middle) points: N = 2048,
red (upper) points: N = 4096. The solid lines of the same color are
theoretical predictions given by Eq. (16) with C = Nγ/2. The dashed
black line is the logarithm of the bulk Cauchy distribution (20).

realizations of random matrices were performed, and for N =
4096 the number of realizations was 1000. The results are
presented in Figs. 1 and 2. We checked that the distribution
does not depend on the component j and averaged over a few
components. The agreement of the numerical results with the
theoretical predictions is excellent.

In Fig. 3 the data of Fig. 2 were rescaled to investigate the
region of large eigenfunction values. The data for different
N are completely superimposed and agree very well with
Eq. (22).

In Fig. 4 numerically calculated moments are compared
with Eqs. (27), (28), and (30). In all considered cases numeri-
cal data agree very well with theoretical predictions. As higher
moments are determined by the tail of the distribution (i.e., by
rare events), their accurate numerical determination requires a
large number of realizations.

In the localized phase when γ > 2 the same formulas
remain valid. The main difference with the case 1 < γ < 2
is that the large x expansion (22) does not exist due to the
restriction |�j | � 1 as has been mentioned above. Conse-
quently, the eigenfunction distribution is given by the Cauchy

-2 0 2
y/Nγ−1

-4

0

4

ln
(P

(y
)N

2γ
−2

)

FIG. 3. The same as in Fig. 2 but rescaled as indicated. The black
line is the logarithm of the tail distribution (22) without the factor
Nγ−1.

1000 2000 3000 4000
N

1

1.5

2

2.5

C
q( N

 )

FIG. 4. Eigenfunction moments with q = 1
2 (black circles), q =

2 (blue squares), and q = 1
8 (red diamonds) calculated numerically

for the RP model with the same parameters as in Fig. 1 for N =
512, 1024, 2048, 4096 divided by the corresponding powers of
N . Black solid (upper) line is Eq. (30) including the logarithmic
term. Dashed blue (upper) and red (lower) lines indicate the constant
asymptotic values calculated from Eqs. (28), and (27): C2 = 1.91
and C 1

8
= 1.19. Solid red (lower) line shows the correction term (29)

which for the chosen parameters is ccor ≈ 1.19(1 − 0.44/N1/4).

expression (20), which is sharply cut at the maximal pos-
sible value (19) (which corresponds to strong localization).
It means that eigenfunction moments are given by Eq. (27)
provided that γ q < 1. All higher moments are determined by
values |�j | ∼ 1, which implies that higher fractal dimensions
are zero in agreement with Ref. [3].

VI. CONCLUSION

In conclusion, we have derived the statistical distribution
for eigenfunctions of the Rosenzweig-Porter model in the
regime 1 < γ < 2. Our calculations are based on two well-
accepted physical assumptions. The first states that the mean
square modulus of eigenfunctions is given by the Breit-
Wigner formula with the spreading width, �, calculated by the
Fermi golden rule. The second stipulates that the eigenfunc-
tions are distributed according to a local Porter-Thomas law
with the variance given by the above formula. The final result
is obtained by the averaging over diagonal matrix elements.
This approach is very simple, based on robust ideas, and
leads to transparent explicit formulas which agree extremely
well with numerical calculations. Our results fully support the
qualitative findings of Ref. [3] but have the advantage that
all calculations are exact and practically all quantities can be
obtained in closed form for large but finite matrix dimensions.
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