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Overdamped dynamics of particles with repulsive power-law interactions
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We investigate the dynamics of overdamped D-dimensional systems of particles repulsively interacting
through short-ranged power-law potentials, V (r ) ∼ r−λ (λ/D > 1). We show that such systems obey a nonlinear
diffusion equation, and that their stationary state extremizes a q-generalized nonadditive entropy. Here we focus
on the dynamical evolution of these systems. Our first-principle D = 1, 2 many-body numerical simulations
(based on Newton’s law) confirm the predictions obtained from the time-dependent solution of the nonlinear
diffusion equation and show that the one-particle space distribution P (x, t ) appears to follow a compact-support
q-Gaussian form, with q = 1 − λ/D. We also calculate the velocity distributions P (vx, t ), and, interestingly
enough, they follow the same q-Gaussian form (apparently precisely for D = 1, and nearly so for D = 2). The
satisfactory match between the continuum description and the molecular dynamics simulations in a more general,
time-dependent framework neatly confirms the idea that the present dissipative systems indeed represent suitable
applications of the q-generalized thermostatistical theory.
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Dissipative systems of repulsive particles are representa-
tive of many physical phenomena in nature, including, for in-
stance, type-II superconductors [1–7], complex plasmas [8,9],
and colloidal systems [10–12]. In the overdamped limit, the
equations of motion for such systems take the form of a
first-order differential equation, where the velocity of the
particles is proportional to the force over them, vi = Fi/γ .
A recent work [13] has shown that, for a wide variety of
possible repulsive potentials, the local density ρ(r, t ) of these
overdamped repulsive particles should follow a nonlinear
diffusion equation in the form

γ
∂ρ

∂t
= ∇ · {ρ[∇Uext + a(ρ)∇ρ]}, (1)

where Uext (r) is an applied external potential. The develop-
ment of a continuum approach allows us to derive the behavior
of a system with a large number of particles without having to
integrate microscopically the equations of motion of each of
these particles.

The function a(ρ) can be obtained from the potential
energy U1 of a particle in the homogeneous state of density
ρ [13]:

a(ρ) = 2
dU1

dρ
+ ρ

d2U1

dρ2
. (2)

Determining U1 depends on the knowledge of the interac-
tion potential and on the microscopic structure in which the
particles rest in the homogeneous state [13]. As mentioned,
the applicability of this approach is restricted to systems
of overdamped particles interacting through a short-ranged
repulsive potential. More precisely, for large distances r , the

interaction potential V (r ) should decay faster than r−D , where
D is the dimensionality of the system. The form of a(ρ)
is also influenced by the way the potential diverges at the
origin. If the potential diverges at the origin slower than r−D ,
a(ρ) should converge to a finite value for densities ρ that are
sufficiently large. Conversely, for potentials that diverge faster
than r−D at the origin, the energy per particle U1 grows faster
than linearly with the density ρ, and a(ρ) never converges to a
fixed value, regardless of the density ρ [13]. In the case where
the interaction potential is a power law, Vij = ε(rij /σ )−λ,
with λ > D, σ > 0 and ε > 0, Eq. (1) can be written as

γ
∂ρ

∂t
= ∇ · [ρ(∇Uext + Cλρ

λ
D

−1∇ρ)], (3)

where the constant Cλ can be computed from the structure of
the homogeneous state [13]. More recently, for this family of
repulsive potentials, a consistent thermodynamic framework
was developed, and thermodynamic potentials, Maxwell rela-
tions, and response functions could be obtained [14].

Here we analytically obtain time-dependent solutions of
Eq. (3), ρ(x, t ), for the case of a parabolic confining potential,
Uext = −kx2/2(k > 0), showing that they possess the form
of q-Gaussian distributions [15–18]. We have also performed
numerical simulations, where the equations of motion for the
overdamped dynamics of particles interacting through short-
ranged power-law potentials are solved. These two solutions
are then compared, and we observe that they are in good
agreement. Moreover, our results show that, for the class of
solutions we obtain, the velocities of the particles should
be proportional to their position, that is, vi ∼ xi . Similar
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FIG. 1. Snapshots of the configuration of the system in three
different moments of the dynamics: (a) t = 1.0, (b) t = 5.88, and
(c) t = 550. Due to the symmetry we show only the x > 0 half of the
system. The particles start in a very narrow region and invade the sys-
tem as time goes, eventually reaching an equilibrium position. This
system comprises N = 500 particles, interacting through a potential
Vij = ε(rij /σ )−λ, with λ = 4, in a cell of lateral length Ly = 20σ ,
and confined by an external force −kx with k = 1 × 10−6ε/σ 2.

investigations have been performed for models describing the
dynamics of type II superconducting vortices [19,20].

In the present work, the systems that we model consist of
N particles interacting through the above mentioned poten-
tial Vij = ε(rij /σ )−λ and confined in the x direction by the
external potential Uext. For the case of two dimensions, in
the y direction the simulation cell has a finite length Ly , and
periodic boundary conditions are imposed. See Fig. 1 for a
view of a two-dimensional system in different moments of the
dynamics. In this case, it is reasonable to expect the density to
be independent on y, so that Eq. (3) can be written as

γ
∂ρ

∂t
= ∂

∂x

[
ρ

(
kx + Cλρ

λ
D

−1 ∂ρ

∂x

)]
. (4)

One may find solutions of Eq. (4) by making use of the
similarity hypothesis [21],

ρ(x, t ) = g(z)

f (t )
, (5)

with z = x/f (t ). Using this in Eq. (4), we obtain

f 1+ λ
D

Cλ

(
df

dt
+ kf

)
= −

d
dz

(
g

λ
D

dg

dz

)
d
dz

(gz)
. (6)

The left side of Eq. (6) depends on t , while the right side
depends on z. The only possible solution is that both sides are
equal to some constant, ν. From that, the left side becomes

df

dt
= νCλ

f
λ
D

+1
− kf (7)

while the right side can be written as

d

dz

(
g

λ
D

dg

dz
+ νgz

)
= 0. (8)

In order to solve Eq. (8), we need to consider a proper
boundary condition. Since this solution will model a system
of particles penetrating a medium, it is reasonable to consider
that the density profile ρ(x, t ) vanishes at some point, the edge
of the profile. Without loss of generality, one may consider
that f (t ) indicates this edge at all times, ρ(f (t ), t ) = 0 for
any t , leading to g(1) = 0. With this boundary condition, the
solution of Eq. (8) is

g =
[

λν

2D
(1 − z2)

]D
λ

, (9)

that is, the shape of the density profile is a q-Gaussian with
q = 1 − λ/D at any instant of time. The normalization con-
dition,

∫
ρ(x, t ) dx = n, leads to

∫
g dz = n, where n = N

for D = 1 and n = N/Ly for D = 2, remembering that Ly

gives the thickness of the simulation cell and N the number of
particles. This allows us to determine the value of ν:

ν = 2D

λ

[
n

�
(

3
2 + D

λ

)
�

(
1 + D

λ

)√
π

] λ
D

. (10)

It is also visible from this solution that f (t ) is the point where
ρ(f (t ), t ) = 0, that is, f (t ) is the edge of the distribution.
Solving Eq. (7) we obtain

f (t ) =
{

νCλ

k
[1 − e−k( λ

D
+2)(t−t0 )]

} D
λ+2D

, (11)

where t0 is a free parameter that depends on the initial
condition. In fact this solution is not unique. One may note
that, for t = t0, it becomes ρ(x, t0) = nδ(x); therefore this
solution is suitable for this particular initial condition as well
as any initial condition that has the form of a q-Gaussian.
Moreover, our numerical experiments have shown that, even
starting from other initial conditions, the dynamics tend to
drive the system towards this behavior after a transient time.
In the numerical simulations we present here all particles start
confined to a narrow stripe. For this initial condition setting
t0 = 0 yields a good fit for our numerical results. In Fig. 2 we
show the curves of f (t ) and ḟ (t ) ≡ df/dt for each instant
of time t considering λ = 2 and λ = 3 in one dimension,
and λ = 4 and λ = 6 in two dimensions. These curves were
obtained from Eq. (11). As we show in what follows, these
predictions closely agree with the results from the numerical
simulations.

One should expect the stationary state to be in the form of a
q-Gaussian. In the context of the continuous model, the over-
damped dynamics is minimizing the overall potential energy
of the system, U = ∫

ρ[kx2/2 + (DCλ/λ)ρλ/D] dDx [13],
which can be associated with the q-statistics free energy of a
confined ideal gas. In this association, the contribution of the
particle-particle interaction, absent in the ideal gas descrip-
tion, is accounted for by the generalized entropy. Therefore
the overdamped dynamics should necessarily drive the system
towards the state of minimum energy, hence the shape of a
q-Gaussian. This distribution has been shown to maximize
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FIG. 2. Curves of f (t ) for D = 1 (λ = 2 and 3) and D = 2
(λ = 4 and 6) obtained from Eq. (11) and its derivative ḟ (t ). In
our numerical simulations, we start with all particles confined in a
narrow stripe, leading us to use t0 = 0 in Eq. (11). The case D = 1
corresponds to N = 3600 particles with confining potential strength
k = 3.2 × 10−3ε/σ 2. The case D = 2 corresponds to N = 4000
particles, with confining potential strength k = 1 × 10−3ε/σ 2, in a
cell with transverse size Ly = 20σ .

the generalized nonextensive entropy Sq , under given con-
strains [22], and yield well-known particular distributions,
such as Student’s t (q > 1) or r distributions (q < 1). Interest-
ingly, this shape is obtained not only at the stationary state, but
during most of the dynamics. This is a feature of the confining
potential that allows us to find a solution consistent with the
similarity hypothesis Eq. (5).

Figure 3 shows the density profile at different moments of
the dynamics for one-dimensional systems. To obtain these
curves, we performed the Kernel Density Estimation [23] for

FIG. 3. Distributions of scaled positions and velocities at differ-
ent moments of the dynamics for the one-dimensional case (D = 1).
These results concern N = 3600 particles interacting through the
power-law potential, V = ε(r/σ )−λ, for λ = 2 (q = −1) and λ =
3 (q = −2). The black curves are q-Gaussians. Here we used the
strength of the confining potential k = 3.2 × 10−3ε/σ 2.

the position of the particles scaled by the length f (t ) obtained
from Eq. (11). The results from simulation are in perfect
agreement with the predicted form given by Eq. (9), showing
that, in fact, Eq. (11) yields the correct position f (t ) at the
edge of the density profile.

Next we proceed to investigate the velocity of particles
during the dynamics. To obtain a solution for our nonlinear
diffusion, Eq. (4), and considering the similarity hypothesis,
Eq. (5), from Eq. (9) it is visible that g(1) = 0, that is, f (t )
is the position where the density profile vanishes. In fact,
Eq. (4) is an instance of the continuity equation in the form,
∂ρ/∂t = −∂ (ρv̄)/∂x, where v̄(x, t ) gives the instantaneous
average local velocities of the particles. To be consistent with
the similarity hypothesis (5) a similar constraint has to be
made to v̄:

v̄(x, t ) = ḟ (t )b(z), with ḟ (t ) = df/dt. (12)

The average velocity of the particles at the edge of the
density profile is given by v̄(f (t ), t ) = ḟ (t ). By inserting the
similarity hypothesis into the continuity equation, we obtain

− ḟ

f 2

d

dz
(gz) = − ḟ

f 2

d

dz
(gb), (13)

leading to the condition that v̄(x, t ) = (ḟ /f )x, that is, the
average velocity is linear with position.

In one dimension there is not more than one particle at
each given position x, therefore if v̄(x, t ) is linear with x, the
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FIG. 4. Distributions of scaled positions and velocities at differ-
ent moments of the dynamics for the case of two dimensions (D =
2). These results concern particles interacting through the power-
law potential, V = ε(r/σ )−λ, for λ = 4 (q = −1) and λ = 6 (q =
−2). One can compare the density profiles with q-Gaussians (black
curves). In the case of the velocity distributions the black curves
show convolutions between q-Gaussians and Laplacian distributions,
as given by Eq. (15), with the parameter h given by 0.045 and
0.051 for λ = 4 and 6, respectively. In these simulations we used
N = 4000 particles in a cell of transverse size Ly = 20σ with
periodic boundary conditions. In the longitudinal direction (x axis)
we imposed a confining force −kx with k = 1 × 10−3ε/σ 2.
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FIG. 5. Distributions of the displacement of the average velocity,
ξi = (vx )i/ḟ − xi/f for some values of times t considering λ = 4
and λ = 6 for D = 2. The black curves represent Laplacian distri-
butions, P (ξ ) ∼ exp(−|ξ |/h), where h is an adjustment parameter,
given by 0.045 and 0.051 for λ = 4 and 6, respectively.

velocity of each particle should be linear with x, leading to the
conclusion that they are distributed in the same form, namely,
a q-Gaussian. This prediction is consistent with Ref. [24], and
confirmed by the results of Fig. 3. In larger dimensionalities
there are several particles in the stripe around a given distance
x. In this case v̄(x, t ) may still be linear with x, but the
velocities of each particle may fluctuate around this average.

To test this hypothesis we performed simulations in two
dimensions. Figure 4 presents the density profiles and velocity
distributions obtained from simulations. As before, positions
were scaled by f (t ), while velocities were scaled by ḟ (t ). As
exhibited, the density profiles follow closely the q-Gaussian
form. The velocity distributions also display an invariant
shape for all instants. However, this shape deviates slightly
from the expected q-Gaussian form at the largest velocities.
Note that to reduce fluctuations in our results we performed
averages over 800 sample simulations. To investigate this
small difference, we analyze the distribution of the quan-
tity ξi ≡ (vx )i/ḟ − xi/f among the particles of all samples,
which measures how far (vx )i is from the expected average
v̄(xi, t ) = (ḟ /f )xi for a particle at position xi at time t .
Figure 5 shows the distributions P (ξ ) for different values of
t . One can see that P (ξ ) can be described approximately by a
Laplacian distribution,

P (ξ ) ∼ exp(−|ξ |/h), (14)

where the parameter h depends on the particular value of λ.
Most likely, these small deviations in the expected value of
the velocity are due to the rearrangement of the local spatial

structure as the density changes. As we know from the results
of Fig. 5, the distribution of positions can be well described as
a q-Gaussian, P (x/f ) = Gq (x/[(q − 1)f ]). Since f (t ) and
ḟ (t ) depend only on time, and (vx )i/ḟ = xi/f + ξi , then the
vx distribution can be found by the convolution [25] between
a q-Gaussian and a Laplacian distribution:

P

(
vx

ḟ

)
= 1

2h

∫ ∞

−∞
dξ Gq

(
vx/ḟ − ξ

q − 1

)
e− |ξ |

h . (15)

The black curves shown in the Fig. 4 have been obtained from
Eq. (15), where the values of h were obtained from the best fits
to the molecular simulation data of the Laplace distribution,
Eq. (14), as shown in Fig. 5.

We have studied a system of particles interacting through
power-law repulsive potentials, and under overdamped
motion. In a previous work, through a coarse-graining ap-
proximation, this model was related to a nonlinear diffusion
equation, whose stationary-state solutions have been shown to
be compatible with results obtained from molecular-dynamics
simulation [13]. Here we investigate the whole time evolution.
Using a similarity hypothesis, we showed that our nonlinear
diffusion equation predicts that, for all times, the probability
distribution for the positions, P (x, t ), is a q-Gaussian with the
value of q depending on both the repulsive potential as well
as on dimensionality of the system, q = 1 − λ/D. We present
quite satisfactory results from molecular dynamics simula-
tions to give support to the analytic predictions. Moreover,
we have also presented results for the x-component velocity
probability distribution, P (vx, t ), showing that it is given by
a q-Gaussian distribution that, in larger dimensionalities, will
be perturbed by a small extra noise well approximated by a
Laplacian distribution. We conjecture that these perturbations
are due to the rearrangement of the local spatial structure as
the density changes. To summarize, we have presented broad
evidence that a system of overdamped repulsive particles
interacting through a short-range power-law potential consti-
tutes an important physical application for nonextensive sta-
tistical mechanics. Both stationary states and time-dependent
properties of the systems are fully compatible with the theory.

The authors thank the Brazilian agencies CNPq, CAPES,
FAPERJ, FUNCAP and the National Institute of Science and
Technology for Complex Systems (INCT-SC) in Brazil for
financial support.
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