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Equation of state for all regimes of a fluid: From gas to liquid
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The study of Mayer’s cluster expansion (CE) for the partition function demonstrates a possible way to resolve
the problem of the CE nonphysical behavior at condensed states of fluids. In particular, a general equation of
state is derived for finite closed systems of interacting particles, where the pressure is expressed directly in terms
of the density (or system volume) and temperature-volume-dependent reducible cluster integrals. Although its
accuracy is now greatly affected by the limited character of the existing data on the reducible cluster integrals
and, especially, the absence of any information on their density dependence, a number of simple approximations
indicate the qualitative adequacy of this equation in various regimes of a fluid: from gaseous to liquid states
(including the transition region).

DOI: 10.1103/PhysRevE.98.032135

I. INTRODUCTION

Despite considerable advances in statistical description
of critical phenomena [1] (second-order phase transitions),
the analytical theory of the condensation phenomena (first-
order phase transitions) still remains unsuccessful. There are
only two specific analytical examples of the condensation
phenomenon: the Lee-Yang solution for the two-dimensional
lattice gas with the square-well interaction potential [2] and
van der Waals–Maxwell equation of state [3,4] (the mean-
field approximation of intermolecular interactions). Unfor-
tunately, more general statistical approaches, based on the
local particle-distribution functions [5] as well as various
approximations for the system partition function [6] have not
yielded a general theory that could directly relate the conden-
sation parameters to microscopic features of matter (without
additional thermodynamic relations typical for conventional
two-phase approaches).

However, recent studies of Mayer’s cluster expansion [6–9]
(CE) have significantly advanced this cluster-based approach
as to the statistical (single-phase) description of the first-
order phase transitions. New equations of state in terms of
irreducible cluster integrals [10–13] (virial coefficients) have
clarified the actual limitations of the well-known virial expan-
sion for pressure in powers of density (virial equation of state
[6–8], VEoS) and indicated the beginning of the condensation
process at the density, ρG, where the VEoS isothermal bulk
modulus vanishes [10,11]. Studies of the virial expansions for
pressure and density in terms of reducible cluster integrals
[14–16] (virial series in powers of activity [7,8], AVEoS)
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have established the fact of their divergence at the activ-
ity, zG, which corresponds exactly to the same density, ρG

[7,9,11,16]. Moreover, the observed character of this diver-
gence directly indicates the beginning of the condensation:
Beyond the ρG, AVEoS yields a jump of density (while the
pressure remains constant) at the mentioned value of activity
zG (i.e., at the constant chemical potential) [14–16].

Thus, the modern statistical theory provides a way to locate
the fluid saturation point, ρG, analytically on the basis of
information about the interaction potential (in principle, the
reducible and irreducible integrals can be defined on the basis
of this information [7–9]); however, the location of the cor-
responding boiling point, ρL, remains much more difficult to
define. As it has been shown in a number of papers [9,10,15],
the CE with constant (density-independent) cluster integrals
cannot reproduce the true finite jump of density (from ρG to ρL

or vice versa) through the phase transition. All the equations
mentioned above (in terms of the constant reducible as well
as irreducible integrals) yield an essential discontinuity of
density (the divergence to infinity) instead of the proper jump
discontinuity. Although the main reason for such nonphysical
behavior is known in principle (it has been clearly stated in
some research [9,14,15]) the problem still remains absolutely
unexplored in statistical theory.

For a wide range of lattice-gas models, this problem can
simply be avoided due to the “hole-particle” symmetry of the
binodal [14,17,18] (i.e., the symmetry between ρG and ρL).
Moreover, such symmetrical statistical models have finally
provided a strict analytical confirmation for the physical na-
ture of the ρG(zG) point [19]: It has been proved rigorously
that the values of pressure must be absolutely equal at both
those points, ρG(zG) and ρL(zG).
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FIG. 1. Mayer’s function for a typical realistic interaction poten-
tial (ε is the depth of the potential well). Any limitations of the in-
tegration limits would first affect the attractive (positive) component
of the function.

However, for continuous statistical models of matter, the
corresponding symmetry is unfortunately not so obvious, and
the relation between ρG and ρL would have a much more
complex character.

In this paper, the important steps are made in a possible
way to resolve the problem of the CE inadequacy at very dense
regimes of model systems (i.e., regimes that correspond to the
condensed states of matter). The key points of the proposed
solution are discussed in Sec. II. Section III presents the
derivation of a general equation of state (in terms of volume-
dependent reducible integrals), which can potentially describe
the behavior of a fluid in all regimes: from gaseous to liquid
states continuously. Section IV is devoted to some attempts to
roughly approximate the volume dependence for high-order
reducible integrals. This section also presents the results of
the corresponding computations and their discussion. The last
section emphasizes the key results of the study and highlights
the main directions of possible further developments in the
area.

II. THEORETICAL BACKGROUNDS OF THE PROBLEM

A. Limitations on the volume independence of cluster integrals

The first question that naturally arises, when one has to
consider the volume dependence of the cluster integrals, is
how these integrals may be affected by changing the inte-
gration limits on the macroscopic level (in thermodynamic
systems, the number of particles, N → ∞, and the volume,
V → ∞ from “a microscopic point of view”) if their in-
tegrand (various products of Mayer’s functions, see Fig. 1)
vanishes at the microscopic distance between particles.

Indeed, the simplification of the integration limits (their
transformation to infinite ones and, hence, the independence
of the integrals on the system volume) should be adequate for
microscopic (i.e., the low-order, n � N ) clusters even at very
dense states while the system volume remains macroscopic.
However, this simplification becomes invalid for macroscopic
clusters (n → N ) at dense states of the system.

This issue is obvious on the example of the well-known
expansions for pressure and density in powers of activity

(AVEoS):

P

kBT
=

∞∑
n=1

bnz
n

ρ =
∞∑

n=1

nbnz
n, (1)

which include the so-called reducible cluster integrals [7,8]
{bn}. Each bn is the integral over the configuration phase space
of n particles (cluster), which are “connected” to each other
by all possible combinations of Mayer’s functions (see Fig. 1)
but not “connected” with the other particles of the system
(its integrand is the sum of all possible products of Mayer’s
functions, where the index of each particle of the cluster is
present at least once).

In fact, the reducible integral for n particles can formally be
“reduced” to the sum of various products of irreducible inte-
grals, {βk}, which, in turn, correspond to the “biconnected”
diagrams (the strict definition for both kinds of integrals
as well as the detailed description of complex relationship
between them can be found in a number of sources [6–9]):

bn = n−2
∑
{jk}

n−1∏
k=1

(nβk )jk

jk!
, (2)

where all possible integer sets {jk} must satisfy the condition

n−1∑
k=1

kjk = n − 1.

Figure 2 demonstrates the weight (or contribution) of var-
ious terms, bnz

n, to the logarithm of the grand partition func-
tion [the series for pressure in Eq. (1)] and how their weight
changes when both the activity and density, ρ(z), increase (the
ranges of the order, n, and activity, z, are limited in order to
visualize the nature of the series divergence at the vicinity
of a certain activity, zG). There the reducible integrals, {bn},
are calculated on the basis of the irreducible ones, {βk}, for
the widely known Lennard-Jones model (the high-order βks
are approximated in accordance with the recently proposed
technique [20]) by using the recursive algorithm [15] which is
formally identical to Eq. (2).

At dilute states up to the saturation point [while the activity
does not exceed the convergence radius, z � zG, and the
particle number density is correspondingly low, ρ � ρG(zG)],
the weight of different terms is a decreasing function of
the order, n, i.e., the principal contribution to the partition
function belongs to the relatively low-order reducible cluster
integrals (n � N ). In these regimes, the neglecting of the
volume dependence for high-order cluster integrals (and even
the neglect of those integrals themselves) does not lead to
any losses of accuracy at the thermodynamic limit (N → ∞;
V → ∞). This fact has recently obtained a strict confirmation
[19] for various lattice-gas models and, in particular, the Lee-
Yang [2] model.

However, the situation turns contraverse at more dense
states beyond the saturation point (ρ > ρG), when the weight
of cluster integrals becomes a nondecreasing function in the
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FIG. 2. Contribution of various terms, bnz
∗n, to the logarithm

of the grand partition function [the series for pressure in Eq. (1)]
at various activities (in a dimensionless form, z∗ = zσ 3) for the
Lennard-Jones fluid (T = 0.9ε/kB ). Cluster integrals are calculated
by using the existing techniques [15,20]. The bold line corresponds
to the divergence activity, zG.

high-order region (see Fig. 2). The contribution of the high-
order integrals becomes essential there (for infinite series,
the contribution tends to infinity for n → ∞ and causes the
mathematical divergence) and, at the same time, their volume
dependence cannot be neglected in such dense regimes.

The positivity of reducible cluster integrals at subcritical
temperatures means that the intermolecular attraction (the
positive part of Mayer’s function in Fig. 1) prevails over repul-
sion (the negative part of Mayer’s function in Fig. 1). There-
fore, it is not surprising that the system compression yields the
physical phenomenon of condensation at some high-enough
density (and mathematical divergence of the AVEoS at the
vicinity of a certain high-enough activity). On the other hand,
the volume independence of cluster integrals means that they
remain positive at any state (even very dense ones)—attraction
always dominates over repulsion, and, hence, the physical
phenomenon of condensation cannot stop (the mathematical
divergence is to infinity—it yields an essential discontinuity
of density instead of a jump).

Thus, the observed nonphysical behavior of the AVEoS
(and other related equations in terms of reducible as well as
irreducible cluster integrals) is a direct result of neglecting
the actual volume dependence of cluster integrals (at least
high-order ones).

In real substances, an additional effect can influence the
balance between intermolecular attraction and repulsion: The
interaction parameters may substantially change in condensed
regimes due to the nonadditive character of real intermolec-
ular forces. However, this effect is beyond the scope of the
present research which is initially focused on statistical mod-
els of matter with pairwise interactions (such as the Lennard-
Jones fluid, etc.).

B. Choice of integrals to regard for the volume dependence

Another important issue that has to be considered is what
kind of cluster integrals, reducible or irreducible, can prop-
erly exhibit the real dependence of the partition function on
volume in principle.

A great amount of evidence has been accumulated for
calculating irreducible integrals (i.e., virial coefficients)
[21–23] for various interaction models [24–28], and their
volume dependence would technically be much simpler to
explore and apply. Nevertheless, the right choice should be
reducible cluster integrals that are rarely used by researchers
in comparison with irreducible ones, and the other option
would be incorrect, unfortunately, because, on the basis of all
the existing approaches (diagram based [7] or others [6,8]),
the irreducible integrals can be well defined only for truly
infinite systems (or for microscopic reducible clusters of
macroscopic systems).

As mentioned above [see Eq. (2)], each reducible integral,
bn, of a certain order, n, is a complex combination (sum of
various products) containing the irreducible integrals {βk} of
all possible orders less than n (k � n − 1). The actual vol-
ume dependence of a high-order reducible integral (n → N )
automatically means that all its components are also volume
dependent even the irreducible integrals of the lowest orders
(for example, β1, β2, etc.), must depend on the volume as
they are parts of the volume-dependent reducible integral of a
very high order. On the other hand, each low-order reducible
integral (n � N ) is volume independent in practice, and all
its components (i.e., the same β1, β2, etc.) must not depend on
volume, either.

To make this issue clear, one may consider the different
parts (summands) of some bn [see Eq. (2)]: βn−1, β1βn−2,
β2

1βn−3, β2βn−3, . . . , βn−1
1 . For a macroscopic cluster (n →

N ) in dense regimes, the first-order irreducible integrals (β1)
of various summands (even belonging to the same bn) would
actually be different integrals. As to the irreducible integrals
belonging to different clusters (large and small ones), they
must differ even more essentially, so that there is no certain
β1 for the system as whole.

Unfortunately, the irreducible integrals belonging to differ-
ent reducible ones become absolutely indistinguishable when
they are used in all the known equations in terms of virial
coefficients (the conventional VEoS [6–8] or relatively new
equations based on the exact generating function [9–11]).

In these circumstances, the irreducible integrals cannot
be used at all, and the corresponding equations mentioned
above will always remain inapplicable to condensed states
of matter (with rare exceptions like the equations based on
the “hole-particle” symmetry for some specific models of
matter [17,18]). The only possibility to make the CE behavior
adequate in high-density regimes is to use the equations in
terms of reducible cluster integrals as certain functions of
volume (or density), {bn(V )}.

Although the AVEoS formally meets this criterion, the
volume dependence of reducible integrals makes its practical
usage almost impossible because the density in Eq. (1) is a
series with the power coefficients which depend on density in
turn. Therefore, the problem solution needs another equation
of state in terms of reducible cluster integrals where the
activity is excluded as a parameter.
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III. EQUATION IN TERMS OF VOLUME-DEPENDENT
REDUCIBLE INTEGRALS

A. Generating function in terms of reducible integrals

The initial form of Mayer’s CE exactly represents the
configuration part of the partition function (the so-called
configuration integral, QN ) as a complex sum of products of
reducible integrals mentioned above, {bn}:

QN =
∑
{mn}

N∏
n=1

(bnV )mn

mn!
, (3)

where all possible integer sets {mn} must satisfy the condition

N∑
n=1

nmn = N.

For the canonical ensemble (a closed system with the
constant number of particles), the differentiation of the con-
figuration integral directly yields the equation of state:

P

kBT
=

[
∂ (ln QN )

∂V

]
T

= 1

QN

(
∂QN

∂V

)
T

, (4)

and the main problem is to obtain an analytical expression for
that configuration integral.

For a known set of reducible integrals, {bn}, Eq. (3) for-
mally provides such an expression, but its direct usage is too
complex in practice (especially for large systems where the N

reaches hundreds or thousands). A more convenient way is to
use the generating function for the QN in Eq. (3),

F (y) = exp

(
V

∞∑
n=1

bny
n

)
=

∞∑
i=0

Qiy
i. (5)

Although this function is not new (it was introduced by
the Mayers themselves [7]), and its form is much simpler than
that of the generating function in terms of irreducible integrals
[9–11], it has not been used explicitly to derive the equation
of state in terms of reducible integrals.

In particular, Eq. (5) allows defining the QN of an arbitrar-
ily high order, N , in the corresponding recursive differentia-
tion:

Qi = F (i)(y)

i!

∣∣∣∣
y=0

= V

i

i∑
n=1

nbnQi−n, (6)

where Q0 = 1.
Mathematically, both the definitions of the QN in Eqs. (3)

and (6) are absolutely identical; however, the last equation is
much more convenient for computations.

B. Recursive equation of state

In order to find the derivative of the QN with respect to
volume in Eq. (4), one can first define the corresponding

derivative of the generating function in Eq. (5):

∂F

∂V
=

∞∑
i=0

∂Qi

∂V
yi = F

∞∑
n=1

[
bn + V

(
∂bn

∂V

)]
yn

=
{ ∞∑

n=1

[
bn + V

(
∂bn

∂V

)]
yn

}( ∞∑
k=0

Qky
k

)
.

In this expansion, the power coefficient at yN is

∂QN

∂V
=

N∑
n=1

[
bn + V

(
∂bn

∂V

)]
QN−n =

N∑
n=1

b∗
n(V )QN−n,

where the following designation is used:

b∗
n(V ) = bn + V

(
∂bn

∂V

)
. (7)

As a result, Eq. (4) is transformed to the searched equation
of state in terms of volume-dependent reducible integrals,

P

kBT
=

N∑
n=1

b∗
n(V )QN−n

QN

. (8)

In comparison with the VEoS and other equations in terms
of irreducible integrals (or virial coefficients), the practical
usage of Eq. (8) is additionally complicated by a laborious
stage of determining the set {bn} on the basis of a certain
already known irreducible integrals, {βk} [besides the recur-
sive determining the set of {Qi} in Eq. (6)] even in cases
when the reducible integrals are considered as constant. On
the other hand, Eq. (8) meets all the criteria stated in Sec. II:
It contains the reducible integrals, which can potentially be
volume dependent, and expresses the pressure as a function of
density (actually, it explicitly involves the number of particles,
N and the system volume, V ).

In 1980s, a similar equation was derived in somewhat
different (and more complex) manner [29,30]: Generating
function (5) was not directly used in the derivation, and the
volume dependence of the reducible integrals was not studied.
Unfortunately, the complexity of the equation in combination
with technical limitations of the computational equipment at
that period imposed substantial restrictions on the size of the
studied systems (N � 1024), and the obtained results even
caused some doubts for a long time. Although the recent stud-
ies of Mayer’s CE with constant cluster integrals [10,11,15]
have completely confirmed those results, the actual behavior
of Eq. (8) with regard for the volume dependence of {bn} has
never been explored.

IV. APPROXIMATION OF THE VOLUME DEPENDENCE

A. Phenomenological ansatz for the volume dependence

Provided that the set of volume-dependent reducible inte-
grals, {bn(V )}, is completely and exactly known for a certain
model of matter, Eq. (8) should theoretically be accurate in
all possible states of this model from dilute to condensed
regimes. Indeed, this equation does not have any theoretical
restrictions on density or temperature at least for models
where Mayer’s CE remains valid.
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At the moment, there is no realistic statistical model (which
includes intermolecular attraction as well as repulsion) with
the completely known set of cluster integrals. Some trun-
cated sets of irreducible integrals (virial coefficients) have
been calculated for widely used interaction models (such as
the Lennard-Jones model [24,28], its modifications [25,26],
Morse [27] and square-well [31] potentials, etc.). There
are also a number of approximations for infinite virial sets
[20,27,32]. For the reducible cluster integrals, the achieve-
ments are even more modest: The techniques of calculating
the reducible integrals on the basis of irreducible ones still
continue to improve [14–16,29].

As to the volume dependence of those integrals, it has
already been mentioned in the previous sections that the
problem remains absolutely unexplored in modern physics.
There are a number of possible reasons for such ignoring
the problem over the years. The calculations of the cluster
integrals still involve considerable technical difficulties, and
consideration of the volume dependence can only additionally
complicate the calculations. Until recently, Mayer’s CE did
not reach such dense states of systems, where the volume
dependence becomes really essential: There was no need
to consider the volume dependence for low-order cluster
integrals, and only recent studies have raised the issue of
calculating the relatively high-order integrals.

On the other hand, a simple qualitative analysis of Mayer’s
function may help to predict the main features of the searched
volume dependence on the corresponding qualitative level. Of
course, such considerations do not have a firm basis and can-
not be accurate in practical calculations; however, they may
indicate some important directions of further developments
and invigorate future research.

Formally, there would be no loss of generality and accuracy
to express the searched dependence in the following form:

bn(V ) = b0
ng(n, T , x), (9)

where b0
n is the nth-order reducible integral defined over infi-

nite limits (i.e., the conventionally defined reducible integral);
g(n, T , x) is a certain function of the order, temperature and
special variable, x, that is related to the real integration limits.

Some key simplifications and inaccuracies may appear in
Eq. (9) due to possible approximations being used in function
g or its variable x on the basis of certain analytical or
empirical considerations.

B. Approximation on the qualitative level

The decreasing of integration limits (under compression
of the system) must first affect the positive part of Mayer’s
function (i.e., the long-distance attractive component of in-
termolecular forces, see Fig. 1). Therefore, the reducible
integrals, which are initially positive (when defined in infinite
limits at subcritical temperatures), should decrease or even
change the sign when the integration volume decreases.

As a result, the positive (in dilute regimes) set of re-
ducible integrals may become the complex alternating one
in very dense regimes—the primarily attractive contribution
to the partition function (that leads to condensation under
compression at subcritical temperatures) may become the pri-
marily repulsive one (that is similar to the supercritical virial

series which cannot yield the condensation). Mathematically,
it should stop the density divergence of the AVEoS at very
dense states and means the end of the pressure constancy.
Physically, it should stop the condensation and indicates the
presence of a certain balance between attraction and repulsion
in condensed regimes of matter.

Due to the absence of any reliable and accurate information
on such complex behavior of reducible integrals, one can
suppose that, on average, the reducible integral vanishes (or
its positive value significantly decreases) when its integration
volume becomes small enough (V → V0), i.e., the specific
volume per particle, V

n
(it is important to distinguish this

cluster quantity from the system specific volume, V
N

= ρ−1),
reaches a certain small quantity, v0 (or the cluster density,
n
V

, reaches a certain large quantity ρ0). Furthermore, as the
volume dependence would be essential for the high-order
integrals only, and the behavior of various high-order integrals
should not differ fundamentally, the v0 may be the same for
those integrals and therefore can be used as a key parameter
in the x variable mentioned above [see Eq. (9)]:

x = V0

V
= nv0

V
= n

N

ρ

ρ0
. (10)

For microscopic clusters (n � N ), x is always very small
(x → 0 even in very dense regimes, when ρ > ρ0). For
macroscopic clusters (n → N ), this variable vanishes (x →
0) only at dilute (gaseous) states, but x � 1 in dense (con-
densed) regimes.

Correspondingly, the expected dependence of function g

on variable x [see Eq. (9)] should satisfy the following crite-
ria:

(i) g(x = 0) = 1—assures that bn → b0
n at dilute states;

(ii) ( ∂g

∂x
)
x=0

= 0—smoothes the transition from the bn

constancy to the volume dependence;
(iii) ( ∂g

∂x
)
x>0

< 0—corresponds to the decreasing of the
function.

A specific form of function g would influence the results
rather quantitatively rather than qualitatively. Thus, two prin-
cipally different functions are proposed to approximate the
bn(V ) dependence (9) in order to study the behavior of Eq. (8)
on the qualitative level:

g(x) = [1 − xi (2 − x)i]; (11)

g(x) = 1

1 + xi exp (x − 1)
. (12)

The behavior of both functions for various values of the
power factor, i, is illustrated in Fig. 3. In general, both
functions satisfy the listed above criteria; however, the points
of their vanishing essentially differ.

C. Results of computations and discussion

A great number of computations have been performed
on the basis of Eq. (8) for various interaction models [for
the Morse [33], Lennard-Jones [34,35], modified Lennard-
Jones [36,37] models, the truncated sets of known irreducible
integrals [24–28] as well as the sets approximated to infinite
orders [20,27,32] have been used to calculate the correspond-
ing constant values of reducible integrals {b0

n}, see Eq. (9)]
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FIG. 3. Approximating functions (11) (top) and (12) (bottom) for
different power factors, i (the numbers in the figure).

by using both approximations of the g function [see Eqs. (11)
and (12)] in a wide range of their parameters [i and v0, see
Eq. (10)].

The results of such computations are qualitatively similar:
On all the isotherms of Eq. (8), the pressure constancy turns
into its increasing at some density (which should have the
meaning of the boiling-point density) higher than the ρ0 (see
Fig. 4) that well agrees with the all suppositions made above.
In fact, the varying of the interaction models and the param-
eters of approximations affects this behavior quantitatively:
Only the boiling-point location and the slope of the isotherms
beyond this density actually differ in various computations.

It is important to note that the behavior of functions (11)
and (12) may seem very similar though it fundamentally
differs in an important aspect (see Fig. 3) when their param-
eter, i, is somehow related to the cluster order, n: function
(11) vanishes exactly at x = 1 for all orders (i.e., all the
cluster integrals vanish when their specific volume reaches
the same value, v0), but function (12) vanishes at different
x for different orders (i.e., different cluster integrals vanish
at different specific volumes). Potentially, such discrepancies

FIG. 4. Isotherms of Eq. (8) for the finite (N = 4000) Lennard-
Jones system (T = 1.0ε/kB ), where the reducible cluster integrals,
{bn}, are volume dependent according to Eq. (9) with approximating
functions (11) (solid line) and (12) (dotted line). The approximation
parameter in Eq. (10), ρ0 = 0.25σ−3 (vertical dotted line). Con-
stant reducible cluster integrals, {b0

n}, are calculated accordingly to
Ref. [15] on the basis of two different approximations for high-order
irreducible integrals: [20] (a) and [32] (b).

could affect the behavior of isotherms in essence. However,
the actual difference of that behavior remains quantitative
rather than qualitative (see the difference between the solid
and dashed lines in Fig. 4).

On the other hand, it should additionally be emphasized
that the v0 parameter itself [and, hence, its usage in the
x variable, see Eq. (10)] is just a rough simplification. At
present, there is no strictly grounded equation to evaluate
this “phenomenological” parameter explicitly: For instance,
the choice of ρ0 = 1/v0 in Fig. 4 mentioned above is rather
intended to improve the visibility of the results (which should
be considered as only qualitative in any case) and is not
grounded on accurate numerical data. Actually, the v0 (and
the corresponding density ρ0) must be temperature dependent,
and this dependence can principally differ for various clusters.
Moreover, the actual dependence of the x variable on the sys-
tem volume may fundamentally differ from that in Eq. (10).

For example, the real form of the binodal (the liquid branch
of all the known binodals, ρL(T ), is an essentially nonlinear
decreasing function of temperature) can be reproduced only if
the v0 is a correspondingly increasing function of temperature.
Again, this dependence can even be explained qualitatively.
As mentioned before, each reducible integral is a very com-
plex combination of various “connected” irreducible ones (see
detailed description of reducible diagrams in Mayer’s book
[7]). They may be connected as some “stars,” “chains,” or their
combinations. Figure 5 demonstrates the weights of various
irreducible integrals in a certain reducible one at different
temperatures [each weight, wb(k), is evaluated by comparison
of the bn values calculated with the actual βk and vanishing
βk]. Diagrams of different types cannot be distinguished ex-
plicitly there, but some important conclusions may be drawn
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FIG. 5. Relative weight, wb(k) = |bn − b−
n (k)|/bn, of the irre-

ducible integral, βk , in the reducible one, b300 [b−
n (k) is the bn

calculated under assumption that βk = 0], for various orders and
temperatures. Cluster integrals are calculated by using the existing
techniques [15,20] for the Lennard-Jones fluid.

from this figure. The high-order irreducible integrals cannot
form relatively long “chains”: At low temperatures, the con-
tribution of the high-order irreducible integrals is dominant,
and the resulting reducible integral rather depends on volume
as it is supposed in Eq. (10). On the contrary, the low-order
irreducible integrals can form “chains” large enough that
are much more “sensitive” to any changes of the integration
volume: At higher temperatures, the prevailing contribution
of the low-order irreducible components makes the reducible
integral more sensitive to the system compression that means
the corresponding increasing of v0 or even makes Eq. (10)
inadequate in principle.

It should additionally be noted that all the presented con-
siderations about the volume and temperature dependencies
of cluster integrals are rather phenomenological suppositions
and have no strict quantitative ground at the moment. Any
more or less accurate values of high-order cluster integrals
remain unknown even for the most used models of matter
and even in cases when these integrals are treated as constant
(i.e., integrated over infinite limits). For example, the high-
order virial coefficients (irreducible cluster integrals) of the
Lennard-Jones fluid can now be approximated on the basis
of two different approaches [20,32] that yields quantitatively
different results: The saturation parameters based on one
approximation [32] essentially diverge from those based on
the other [20] (see the corresponding isotherms, a and b, in
Fig. 4), and both approximations yields some discrepancies
with the existing data of numerical simulations (which, in
turn, are also not absolutely converging). Unfortunately, we
are still far away from an accurate quantitative theoretical
description of the first-order phase transitions in certain re-
alistic models of matter. On the other hand, the statistical

derivation of Eq. (8) is absolutely rigorous and contains
neither simplification nor approximation. Any possible inac-
curacy of the mentioned equation of state may appear only
due to inaccurate practical evaluation of {bn(V )} functions.
Despite some quantitative discrepancies, the behavior of this
equation stays qualitatively adequate (see the finite jump of
density at constant pressure in Fig. 4) and unchanged for
various interaction models when different approximations are
used in order to define the constant cluster integrals, {b0

n}, and
reproduce their volume dependence, {bn(V )}.

V. CONCLUSIONS

Despite the recent considerable achievements of classical
statistics in description of the gas-liquid phase transition on
the basis of the cluster-based (Mayer’s) approach, the appli-
cability of this approach has still remained extremely limited
at condensed states of fluids. The origins of these restrictions
are in the volume independence of the corresponding cluster
integrals due to the well-known simplification of their inte-
gration limits, when the actual configuration phase space of
a studied system is substituted by the infinite space at the
thermodynamic limit.

The key results of the present study may be grouped into
the following items:

(i) the simplification of the infinite integration limits is
sufficient only for microscopic clusters of thermodynamic
systems and can be used in dilute regimes where the principal
contribution to the partition function indeed belongs to the
low-order cluster integrals (see Fig. 2); however, this simpli-
fication is incorrect for macroscopic (very large) clusters and
therefore should not be used in dense (condensed) regimes of
fluids when the contribution of the corresponding high-order
cluster integrals to the partition function becomes essential;

(ii) as the irreducible cluster integrals can properly be
defined only in absolutely infinite volumes (they are similar
parts of different reducible cluster integrals over absolutely
unlimited configuration phase-space), Mayer’s cluster expan-
sion of the partition function can adequately describe the
balance between attraction and repulsion (during the phase
transition) exclusively in terms of the volume-dependent (or
density-dependent) reducible cluster integrals;

(iii) on the basis of such cluster expansion, the recursive
equation of state has been derived for finite closed systems,
and this equation include the reducible cluster integrals as
explicit functions of the system volume [see Eqs. (7) and (8)].

It is also important to note that all the mentioned issues
have remained unexplored in physics until now. Although the
derived equation of state should theoretically be correct in all
possible regimes of fluids (in contrast to the previously used
equations), its accurate practical usage unfortunately remains
hardly possible due to the absence of the reliable and complete
information on the high-order cluster integrals and, especially,
their actual volume dependence even for the simplest realistic
interaction models.

In order to study the adequacy of Eq. (8) at least quali-
tatively, a number of rough approximations are proposed for
the volume dependence of reducible integrals on the basis of a
supposition that the positive value of the subcritical high-order
integrals should reduce under the system compression and
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vanish at some small specific volume per particle for the
corresponding cluster.

The computations based on these approximations have
reproduced the isotherms that are qualitatively similar to the
subcritical isotherms of real substances: The jump of density
at constant pressure ends at some dense state, which can
be interpreted as a boiling point, and further compression
leads to the increasing of pressure that may correspond to the
condensed (liquid) regimes of fluids.

Of course, the computations mentioned above do not pre-
tend to accuracy as to the actual behavior of the studied
model systems (such as the Morse or Lennard-Jones fluids) at
condensed states. At the current stage of our knowledge about
the cluster integrals, the proposed approximations are too
rough to be used in quantitative theoretical description of the
condensation phenomenon. In fact, these approximations (and
all their parameters as well) do not even have a strict theoret-
ical ground—they are based only on the logical suppositions
about the real behavior of the high-order cluster integrals.

The performed computations demonstrate the possibilities
of Eq. (8) on the qualitative level—its ability to describe
the behavior of fluids continuously from dilute to condensed
regimes including the phase transition region.

In essence, the actual reasons for the nonphysical behavior
of Mayer’s cluster expansion at dense states can already
be considered as completely known, and the present study
clearly establishes the directions to resolve this problem.
There is much laborious research ahead, and the main efforts
should be focused on the evaluation of reducible cluster inte-
grals and especially their dependence on the real integration
limits.
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