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Influence of time delay on information exchanges between coupled linear stochastic systems
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Time lags are ubiquitous in biophysiological processes and more generally in real-world complex networks.
It has been recently proposed to use information-theoretic tools such as transfer entropy to detect and estimate
a possible delay in the couplings. In this work we focus on stationary linear stochastic processes in continuous
time and compute the transfer entropy in the presence of delay and correlated noises, using an approximate
but numerically effective solution to the relevant Wiener-Hopf factorization problem. Our results rectify and
complete the recent study of Barnett and Seth [L. Barnett and A. K. Seth, J. Neurosci. Methods 275, 93 (2017)].
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I. INTRODUCTION

There is no need to overstate the prevalence of time lags in
biological processes and more generally in complex networks,
from neural and gene regulatory circuits to climate, traffic,
communication, or computer systems, to name just a few
(see, e.g., [1–3] and references therein). Delays, arising from
finite propagation or processing times, also play a crucial role
in sensor-actuator feedback applications [4,5]. Particularly
significant is the interplay of delays and noise which is at
the origin of the complex dynamical behavior observed in a
host of experimental systems [6]. Although these issues are
increasingly the focus of theoretical and experimental investi-
gations, there are many examples in which very little is known
about the magnitude of the time lags, or even their existence,
and how they are distributed in the network. As a result, this
may lead to a wrong identification of the causal relationships
between the various physical or chemical processes occurring
in the network.

A common method in biology or climate science for
estimating delays and the direction of information trans-
fer between coupled systems is to consider temporal
cross-correlation functions extracted from time-series data
(see, e.g., [7–10]). A peak in these functions is then inter-
preted as the time it takes for an upstream signal (e.g., a
protein concentration) to influence the downstream one (e.g.,
a target gene). The reliability of this method is questionable,
however, and the true physical meaning of the maxima in the
cross correlations is often unclear [11]. As another option,
it has been recently proposed to use information-theoretic
measures built on the concept of Shannon entropy and mu-
tual information, such as transfer entropy (TE). The idea is
to identify a possible interaction delay by searching for a
maximum in the TE (or some variant of it) as a function of an
additional parameter, typically the prediction horizon [12–16].
Transfer entropy [17,18], which is essentially a generalization
of Wiener-Granger causality principle [19,20], characterizes
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the directional information flow between two interacting ran-
dom processes and has become a popular tool for analyzing
networks of interacting agents or processes, in particular in
neuroscience [21–23]. Whether or not this method is effective
is still debated [24], and before applying it to real data it is
worth checking the results on systems where the dynamical
equations are known and that can be fully analyzed numeri-
cally or even analytically.

With this perspective in mind, the present work is moti-
vated by a recent study [25] that focuses on the determination
of Granger causality (GC) from empirically sampled data
produced by an underlying continuous-time process. As a
working example, the case of a bivariate linear stochastic
process with delayed interaction is investigated in detail. Our
objective here is not to discuss the important issue of subsam-
pling, which is meticulously treated in [25] (see also [26]),
but merely to revisit the calculation of the continuous-time
GC, which is equivalent to the TE in the case of multivariate
Gaussian processes [27]. Indeed, it turns out that the analytical
solution proposed in [25] for the process with delay is incor-
rect when the noises acting on each subsystem are correlated.
This is not an academic issue because such correlations are
often required when modeling real systems, for instance,
cell metabolic networks [7,8,28–30]. It is thus important to
have the correct expression of the continuous-time TE before
investigating the issue of delay identification (and, in a second
stage, the effects of subsampling). We also take this opportu-
nity to rephrase the problem into a language that is perhaps
more familiar to physicists, in particular those concerned with
the use of information-theoretic concepts and tools in the field
of stochastic and information thermodynamics [31–35].

The paper is organized as follows. In Sec. II we recall the
definition of TE and its relationship with GC in the context
of time-continuous stochastic processes. We also present the
class of linear stochastic systems that will be considered. In
Sec. III we then focus on a bivariate system with a time lag
in one of the couplings and we describe the calculation of
the TEs in both directions. As usual with delay systems, the
complication arises from the fact that the state space is infinite
dimensional. We then introduce an approximation scheme in
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the frequency domain which allows us to solve the relevant
Wiener-Hopf factorization problem. We also emphasize some
points which in our opinion are not clearly stated in [25], in
particular the condition for the spectral expression of the TE
rate to be valid. The numerical calculations presented in Sec.
IV show that our method leads to a rapidly convergent solu-
tion, and we then investigate the issue of delay identification.
A summary of the results is provided in Sec. V. In addition,
the analytical expression of an alternative, simplified version
of TE is derived in the Appendixes.

II. SETUP

A. Transfer entropy in continuous time

Consider two subsystems X1 and X2 of a stochastic system
X. The corresponding random variables or states at time t

are denoted by X1(t ) and X2(t ), respectively. As originally
defined in [17] in the discrete-time framework, the transfer
entropy from Xi (the source) to Xj (the target) quantifies the
reduction of uncertainty in the value of Xj (t ) when learning
the past of Xi (t ), if the past of Xj (t ) is already known. In
continuous time, one must introduce infinitesimal increments,
just as in the case of GC [36], which leads us to define TE as
the rate

Ti→j = lim
h→0+

1

h
I [Xj (t + h) : X−

i (t )|X−
j (t )], (1)

where X−
i (t ) ≡ {Xi (s) : s � t} and I is the conditional mu-

tual information [37]. In terms of probability distributions,
this is rewritten as

Ti→j = lim
h→0+

1

h

〈
ln

p[Xj (t + h)|X−(t )]

p[Xj (t + h)|X−
j (t )]

〉
, (2)

where X−(t ) ≡ (X−
1 (t ), X−

2 (t )). Since we only focus on sta-
tionary processes, Ti→j is here independent of t . Note that the
whole past history of both the source and the target up to time
t are taken into account in Eqs. (1) and (2). Conditioning the
mutual information on X−

j (t ) is natural because the marginal
(or coarse-grained) processes X1 and X2 are generally non-
Markovian even when the joint process X is Markovian.
However, it is also sensible to take into account the whole
vector X−

i (t ) and not only the latest state Xi (t ), as is done in
another context [35,38]. This seems particularly justified for
the class of non-Markovian processes that are studied in the
following [cf. Eqs. (8)–(10)]. [In the original definition of TE
in discrete time [17,18], the lengths of the two state vectors
X−

1 (t ) and X−
2 (t ), i.e., the number of time bins in the past, are

generally finite and possibly different. This definition can also
be extended to continuous time [39].]

Although the rate Ti→j is an interesting quantity per se, for
instance, in the context of stochastic thermodynamics [35], it
cannot be used to infer a possible time lag in the couplings.
Just as in the discrete-time framework [16], this role is devoted
to the finite-horizon TE

Ti→j (h) = I [Xj (t + h) : X−
i (t )|X−

j (t )]

=
〈

ln
p[Xj (t + h)|X−(t )]

p[Xj (t + h)|X−
j (t )]

〉
, (3)

which in the terminology of forecasting [40] quantifies how
much the prediction of Xj (t + h) is improved by using both
X−

i (t ) and X−
j (t ) rather than X−

j (t ) alone. This is clearly
quite similar to the definition of the continuous-time finite-
horizon GC in [25], which itself extends the classic discrete-
time definition [40,41]. [Note in passing that Ti→j (h), as a
relative entropy, is a non-negative quantity and vanishes at
h = 0 by construction.] The main difference is that TE is
model independent whereas GC is commonly defined in the
context of vector autoregressive (VAR) processes. However,
TE and GC become fully equivalent when the variables are
Gaussian distributed, with a simple factor of 1

2 relating the
two quantities [27]. Indeed, since the entropy of Gaussian
distributions is directly expressed in terms of their covariance
matrix [37], Eq. (3) then yields

Ti→j (h) = 1

2
ln

σ ′
jj (h)

σjj (h)
, (4)

where

σjj (h) = 〈[Xj (t + h) − 〈Xj (t + h)|X−(t )〉]2〉 (5)

and

σ ′
jj (h) = 〈[Xj (t + h) − 〈Xj (t + h)|X−

j (t )〉]2〉 (6)

are the variances of p[Xj (t + h)|X−(t )] and p[Xj (t +
h)|X−

j (t )], respectively. Note that we have assumed that the
two variables X1(t ) and X2(t ) are univariate, which will be the
situation considered hereafter (see [27] for the generalization
to multivariate variables). In the language of forecasting,
〈Xj (t + h)|X−(t )〉 and 〈Xj (t + h)|X−

j (t )〉 are interpreted as
the minimum mean-square error (MMSE) estimates of Xj (t +
h), and σjj (h) and σ ′

jj (h) are the corresponding mean-square
prediction errors. The present work is mainly concerned with
the calculation of these quantities in the presence of delayed
interactions.

Notwithstanding the valuable arguments for conditioning
Xj (t + h) on the infinite past histories of X1(t ) and X2(t ), it is
also useful from a practical viewpoint to consider a simplified
version of Ti→j (h) that only involves the states at time t ,

T i→j (h) = I [Xj (t + h) : Xi (t )|Xj (t )]

=
〈
ln

p[Xj (t + h)|X(t )]

p[Xj (t + h)|Xj (t )]

〉
. (7)

In the case of Gaussian distributed variables, T i→j (h) is given
by an expression similar to Eq. (4) whose explicit calculation
is presented in Appendix A. It it worth noticing that T i→j (h)
is an upper bound on Ti→j (h) if the joint process X is
Markovian1 (and in turn T i→j , the slope at the origin, is an
upper bound on Ti→j [33,35]). However, this is no longer true
in the general case.

1If X is a Markov process, one has p[Xj (t + h)|X−(t )] =
p[Xj (t + h)|X(t )] and thus T i→j (h) − Ti→j (h) =
H [Xj (t )|Xj (t )] − H [Xj (t )|X−

j (t )], where H [·|·] is the conditional
Shannon entropy. This difference is always non-negative.
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B. Class of models

In [25], the class of linear stochastic integro-differential
equations

Ẋ(t ) = −
∫ ∞

0
ds A(s)X(t − s) + ξ (t ) (8)

was introduced, where X is an n-dimensional vector process,
A(s) is an n × n matrix of functions or generalized func-
tions (distributions), and ξ (t ) is an n-dimensional vector of
(generally correlated) Gaussian white noises. Equation (8) is
viewed as the continuous-time analog of a VAR representation
(see [36] for mathematical details), and this type of equation,
which can be obtained through the linearization of nonlinear
problems, appears in various research fields where the history
of the state variables must be taken into account, e.g., in
econometry, biology, or control theory. Depending on the
context, the time lags may then be either discrete or distributed
according to some density function. This latter case often
occurs in the modeling of biological processes [42–44]. In the
following, we will instead focus on the case of discrete delays,
so Eq. (8) takes the form of a linear stochastic differential
delay equation

Ẋ(t ) = −
N∑

α=1

AαX(t − τα ) + ξ (t ), (9)

with possibly N distinct delays τα [45]. In recent years, such
multivariate, multidelayed equations have been used to study
synchronization problems in complex networks (see, e.g.,
[46]). However, for simplicity, and given the purpose of this
work, we will only introduce a single delay τ in one of the
couplings and consider a bivariate system, as already stated.

III. BIVARIATE LINEAR PROCESS WITH
A TIME-DELAYED COUPLING

For definiteness, let us assume that the delay takes place in
the feedback from X2 to X1. Equation (9) then becomes

Ẋ(t ) = −
(

a11 0
a21 a22

)
X(t ) −

(
0 a12

0 0

)
X(t − τ ) + ξ (t ),

(10)

where ξ1(t ) and ξ2(t ) are zero-mean Gaussian white noises
with covariances 〈ξi (t )ξj (t ′)〉 = 2Dij δ(t − t ′). We stress that
we do not assume independent noises as is usually done
in the context of stochastic thermodynamics (the so-called
bipartite assumption [31–35]). It is clear that the case of a
time lag in the coupling from X1 to X2 follows by exchanging
the labels 1 and 2. On the other hand, the two directions
are not equivalent for a given model, and for the process
described by Eq. (10) we will see that the computation of
the TE in the direction 2 → 1 is significantly more difficult
than in the direction 1 → 2. One should also keep in mind
that time-delayed interactions typically lead to bifurcations
and complicated dynamics [1,3]. This is an interesting issue in
itself, but to simplify the forthcoming discussion we assume
that the delay and the coupling parameters aij are such that a
stable stationary solution exists (in other words, the spectral
density matrix is bounded for all values of the frequency ω).

Moreover, in Sec. III B, to further simplify the model, we will
completely suppress the possible occurrence of instabilities
by setting a21 = 0, which corresponds to the model studied in
Sec. 4 of [25].

Since we only focus on the stationary regime, we can
assume that the process started at t0 = −∞ and forget about
the initial condition. The solution of Eq. (10) then reads

X(t ) =
∫ t

−∞
ds H(t − s)ξ (s), (11)

where H(t ) is the response (or Green’s or transfer) func-
tions matrix. Equivalently, in Fourier space or the frequency
domain,

X(ω) = H(ω)ξ (ω), (12)

where

H(ω) ≡
∫ +∞

−∞
dt eiωtH(t )

= 1

(a11 − iω)(a22 − iω) − a12a21eiωτ

×
(

a22 − iω −a12e
iωτ

−a21 a11 − iω

)
. (13)

The power-spectrum matrix whose elements are the Fourier
transform of the stationary time-dependent correlation func-
tions φij (t ) = 〈Xi (t ′)Xj (t ′ + t )〉 is then given by

S(ω) = H(ω)(2D)H∗(ω), (14)

where 2D is the diffusion matrix with elements 2Dij and the
superscript ∗ denotes complex conjugate and matrix trans-
pose.

A. Transfer entropy in the direction 1 → 2

1. Finite-horizon TE

We begin with the calculation of the TE in the direction
1 → 2, which is fairly straightforward. Although part of the
material in this section may be viewed as a mere application
to the bivariate case of the formalism presented in [25] (with
Granger causality replaced by transfer entropy), it is included
to keep the paper self-contained. This is also a useful prepara-
tion for the calculations of Sec. III B.

The starting point is Eq. (4) with i = 1 and j = 2, which
requires one to compute σ22(h) and σ ′

22(h) and thus the asso-
ciated MMSEs. The essential ingredient for computing these
quantities is to have a one-to-one correspondence between
the stationary process or subprocess under consideration and
the corresponding forcing white noise(s). In other words, the
process or subprocess must be invertible (or minimum phase
in the language of control theory [4,5]): Fixing the trajectory
of the process or subprocess up to time t must be equivalent
to fixing the trajectory of the noise(s) and vice versa.

When the conditioning involves the past of the joint pro-
cess X [represented by either Eq. (10) or (11), which are
the continuous-time analogs of the vector autoregressive and
moving average representations [40]], the calculation of the
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MMSE is immediate. Starting from

X2(t + h) =
∫ t+h

−∞
ds[H21(t + h − s)ξ1(s)

+H22(t + h − s)ξ2(s)], (15)

we readily obtain

〈X2(t + h)|X−(t )〉 =
∫ t

−∞
ds[H21(t + h − s)ξ1(s)

+H22(t + h − s)ξ2(s)], (16)

since the noises are fixed for s � t by Eq. (10) and average to
zero in the time interval [t, t + h]. Equation (5) then yields

σ22(h) = 2
∫ h

0
dt

[
D11H

2
21(t ) + D22H

2
22(t )

+ 2D12H22(t )H21(t )
]
. (17)

The calculation of 〈X2(t + h)|X−
2 (t )〉 is less straightfor-

ward because fixing the marginal process X2 alone does not
fix the noises ξ1 and ξ2. Instead, one must find a coarse-
grained representation of X2 similar to Eq. (10),

Ẋ2(t ) = −
∫ ∞

0
ds A′

22(s)X2(t − s) + ξ ′
2(t ), (18)

where A′
22(s) is a kernel to be determined and ξ ′

2(t ) is a
Gaussian white noise, for instance, with the same variance
2D22 as ξ2(t ). Then, starting from the equation

X2(t ) =
∫ t

−∞
ds H ′

22(t − s)ξ ′
2(s), (19)

where H ′
22(t ) is the inverse of A′

22(t ) [see below Eq. (27)], and
using the same reasoning as above, we obtain

〈X2(t + h)|X−
2 (t )〉 =

∫ t

−∞
ds H ′

22(t + h − s)ξ ′
2(s) (20)

and in turn

σ ′
22(h) = 2D22

∫ h

0
dt H

′2
22(t ). (21)

The response function H ′
22(t ) must be causal and is easily

found by going to Fourier space. Indeed, Eq. (19) implies that
the power spectral density (PSD) S22(ω) = 〈X2(ω)X2(−ω)〉
is given by

S22(ω) = 2D22|H ′
22(ω)|2. (22)

On the other hand, Eq. (14) tells us that

S22(ω) = 2D22|H22(ω)|2 + 2D11|H21(ω)|2
+ 2D12[H22(ω)H21(−ω) + H22(−ω)H21(ω)], (23)

which is conveniently rewritten as

S22(ω) = 2D22|H22(ω)|2 ω2 + r2
2

ω2 + a2
11

, (24)

where

r2 =
√

a2
11 + D11

D22
a2

21 − 2
D12

D22
a11a21. (25)

Since H22(ω) is the Fourier transform of a causal function, the
Wiener-Hopf factorization of S22(ω) is simple and gives

H ′
22(ω) = H22(ω)

r2 − iω

a11 − iω

= r2 − iω

(a11 − iω)(a22 − iω) − a12a21eiωτ
. (26)

(In turn, one can readily check that the noise defined by
Eq. (19) and given in Fourier space by ξ ′(ω) = [−a21ξ1(ω) +
(a11 − iω)ξ2(ω)]/(r2 − iω) is indeed white.) By construction,
H ′

22(ω) has no poles in the upper half of the complex plane and
since we have chosen r2 > 0 in Eq. (25), it is also zero-free in
this region. The minimum-phase condition, a prerequisite for
Eq. (20), is thus satisfied.

For a given choice of the model parameters, the response
functions Hij (t ) and H ′

22(t ) can be computed numerically
by taking the corresponding inverse Fourier transforms, and
σ22(h) and σ ′

22(h) are then obtained from Eqs. (17) and (21).
For brevity, we do not present a numerical study here. On
the other hand, it is instructive to look at the explicit repre-
sentation of the marginal process X2 provided by Eq. (18).
By construction, the Fourier transform of the kernel A′

22(t ) is
obtained as

A′
22(ω) ≡ 1

H ′
22(ω)

+ iω, (27)

which yields

A′
22(ω) = (a11 − iω)(a22 − iω)

r2 − iω
− a12a21

eiωτ

r2 − iω

= a11 + a22 − r2 + (r2 − a11)(r2 − a22)

r2 − iω

− a12a21
eiωτ

r2 − iω
. (28)

As a result,

A′
22(t ) = (a11 + a22 − r2)δ(t ) + (r2 − a11)(r2 − a22)

× e−r2t�(t ) − a12a21e
−r2(t−τ )�(t − τ ) (29)

and Eq. (18) reads

Ẋ2(t ) = −(a11 + a22 − r2)X2(t ) − (r2 − a11)(r2 − a22)

×
∫ t

−∞
ds e−r2(t−s)X2(s)

+ a12a21

∫ t

−∞
ds e−r2(t−s)X2(s − τ ) + ξ ′

2(t ). (30)

Finally, by splitting the integrals into two parts
∫ t

−∞ ds =∫ t−τ

−∞ ds + ∫ t

t−τ
ds and performing some simple manipula-

tions, we can transform the equation into

Ẋ2(t ) = −(a11 + a22 − r2)X2(t ) − [(r2 − a11)(r2 − a22)

− a12a21e
r2τ ]

∫ t−τ

−∞
ds e−r2(t−s)X2(s)

− (r2 − a11)(r2 − a22)
∫ t

t−τ

ds e−r2(t−s)X2(s) + ξ ′
2(t ).

(31)
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This is an interesting representation of the coarse-grained
dynamics of X2 because it shows that a significant simplifi-
cation occurs if the delay τ satisfies the condition

a12a21e
r2τ = (r2 − a11)(r2 − a22). (32)

The second term on the right-hand side of Eq. (31) then
vanishes, and although the dynamics is still non-Markovian,

the dependence on the past is now limited to a finite-time
interval of duration τ .

2. TE rate

By definition, the TE rate T1→2 is the slope of T1→2(h) at
h = 0+. After expanding σ22(h) and σ ′

22(h) in powers of h and
using H21(0+) = 0 and H22(0+) = H ′

22(0+) = 1, we obtain

T1→2(h) = 1

2
ln

2D22[h + Ḣ ′
22(0+)h2 + O(h3)]

2D22h + 2[D22Ḣ22(0+) + D12Ḣ21(0+)]h2 + O(h3)
(33)

and then

T1→2 = 1

2

[
Ḣ ′

22(0+) − Ḣ22(0+) − D12

D22
Ḣ21(0+)

]
, (34)

which is the two-dimensional version of Eq. (61) in [25] (with
the usual multiplicative factor 1

2 coming from the replacement
of GC by the corresponding TE). In order to obtain the explicit
expressions of Ḣ21(0+) and Ḣ22(0+), we then use the equation

Ḣ(t ) = −
∫ t

0
ds A(s)H(t − s), t � 0, (35)

which is obtained by differentiating Eq. (11) with respect to
t and identifying with Eq. (8) (see, e.g., Appendix F in [25]).
Specifically,

Ḣ(t ) = −
(

a11 0
a21 a22

)
H(t ) −

(
0 a12

0 0

)
H(t − τ )�(t − τ ).

(36)

Together with the condition H(0+) = I, where I is the unity
matrix, this readily yields Ḣ21(0) = −a21 and Ḣ22(0) = −a22.
Likewise, Ḣ ′

22(0+) is obtained from the equation

Ḣ ′
22(t ) = −

∫ t

0
ds A′

22(s)H ′
22(t − s), (37)

with A′
22(t ) given by Eq. (29). Explicitly,

Ḣ ′
22(t ) = −(a11 + a22 − r2)H ′

22(t ) − (r2 − a11)(r2 − a22)

×
∫ t

0
ds e−r2(t−s)H ′

22(s)

+ a12a21e
r2τ�(t − τ )

∫ t−τ

0
ds e−r2(t−s)H ′

22(s), (38)

from which we find that Ḣ ′
22(0+) = r2 − a11 − a22. Inserting

these expressions of Ḣ21(0+), Ḣ22(0+), and Ḣ ′
22(0+) into

Eq. (34), we finally obtain

T1→2 = 1

2

[
r2 − a11 + D12

D22
a21

]
. (39)

Therefore, the TE rate in the direction 1 → 2 does not depend
on τ , a result that was not obvious from the outset because
of the bidirectional character of the coupling between the two
subprocesses. As a matter of fact, T 1→2, the simplified version
of the TE rate that only takes into account the information
provided by the states at time t and whose expression is given
by Eq. (A14) in Appendix A, does depend on τ .

3. Spectral expression of the TE rate

As originally introduced in the context of VAR pro-
cesses [47], there is a spectral version of GC that is used, espe-
cially in neuroscience [48], to analyze causal relationships in
the frequency domain. The continuous-time version is briefly
presented in [25], but the conditions for the validity of this
spectral representation are not discussed. This will play an
important role in Sec. III B, and for completeness we revisit
the derivation, focusing again on TE instead of GC.

It is instructive to first consider the case D12 = 0 (i.e., the
joint process X is bipartite). The PSD S22(ω) then reduces to
two terms

S22(ω) = 2D22|H22(ω)|2 + 2D11|H21(ω)|2. (40)

The first one can be viewed as the intrinsic contribution of the
subprocess X2 to its (auto)spectrum, whereas the second one
can be viewed as the causal part due to X1. Following [47],
this suggests that we adopt the quantity

t1→2(ω) ≡ 1

2
ln

S22(ω)

2D22|H22(ω)|2 (41)

as a measure of the transfer entropy from X1 to X2 in the
frequency domain [49]. However, two requirements must be
fulfilled: (i) t1→2(ω) must be a non-negative quantity and (ii)
the TE rate in the time domain must be the average of the
spectral TE over all frequencies, i.e.,

T1→2 = 1

2

∫ ∞

−∞

dω

2π
ln

S22(ω)

2D22|H22(ω)|2 . (42)

The first condition is obviously fulfilled, and to check the
second one we replace H22(ω) and S22(ω) by their expressions
(13) and (24), respectively, and integrate over ω. This gives∫ ∞

−∞

dω

2π
t1→2(ω) = 1

2

∫ ∞

−∞

dω

2π
ln

r2
2 + ω2

a2
11 + ω2

= 1

2
(r2 − |a11|),

(43)

which indeed coincides with Eq. (39) when D12 = 0, but
under the condition that a11 > 0.2

2An expression similar to Eq. (42) is derived in [34] in the simpler
case of a linear feedback system with no time delay. The spectral
expression is obtained by discretizing the time evolution and inte-
grating Eq. (2) over time so as to express the TE rate as a log-ratio of
Gaussian path probabilities. This leads to the correct result for the TE
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Following again [47] and the literature on GC [50,51],
Eq. (42) can be generalized to the case of correlated noises
(D12 	= 0). This is done by performing a linear transformation
ξ̃ (t ) = Uξ (t ) that makes the covariance matrix of the trans-
formed noises diagonal. Specifically, by choosing

U =
(

1 −D12
D22

0 1

)
, (44)

we get

2D̃ = 2UDUT = 2

(
D11 − D2

12
D22

0
0 D22

)
, (45)

and the dynamics of the transformed vector X̃(t ) = Ux(t ) is
now governed by the equation ˙̃X(t) = − ∫ ∞

0 Ã(s)X̃(t − s) +
ξ̃ (t) with Ã = UAU−1. Likewise,

H̃(ω) = UH(ω)U−1 =
(

H11 − D12
D22

H21 H12 + D12
D22

(H11 − H22) − ( D12
D22

)2H21

H21 H22 + D12
D22

H21

)
(46)

and

S̃(ω) = US(ω)UT =
(

S11 − 2 D12
D22

S12 + ( D12
D22

)2S22 S12 − D12
D22

S22

S12 − D12
D22

S22 S22

)
, (47)

where the dependence of the functions Hij and Sij on ω is
dropped for brevity. The crucial feature is that the TE rate
T1→2 is invariant under the linear transformation defined by
the matrix U. Indeed, since D̃12 = 0, we have from Eq. (34)

T̃1→2 = 1

2
[ ˙̃H ′

2(0+) − ˙̃H22(0+)]

= 1

2

[
Ḣ ′

22(0+) − Ḣ22(0+) − D12

D22
Ḣ21(0+)

]

= T1→2, (48)

where we have used the fact that S̃22(ω) = S22(ω) implies
H̃ ′

2(ω) = H ′
22(ω). Accordingly, by applying the spectral de-

composition (42) to the transformed variables X̃1 and X̃2 and
going back to the original variables, we obtain

T1→2 = 1

2

∫ ∞

−∞

dω

2π
ln

S̃22(ω)

2D̃22|H̃22(ω)|2

= 1

2

∫ ∞

−∞

dω

2π
ln

S22(ω)

2D22|H22(ω) + (D12/D22)H21(ω)|2 .

(49)

This expression (with the labels 1 and 2 exchanged) will
play an important role in Sec. III B as it will give a closed-
form expression of the TE rate T2→1. However, there is a
serious caveat. Replacing H22(ω), H21(ω), and S22(ω) by their
expressions and integrating over ω, we find that Eq. (39) is
recovered only if the condition ã11 = a11 − (D12/D22)a21 > 0
is satisfied. This of course generalizes the condition a11 > 0
that was found in the case D12 = 0. Otherwise, Eq. (49)
underestimates the actual value of the TE rate in the time
domain, as was already pointed out in [47] for the discrete-
time GC (see also footnote 6 in [25]).

rate because the condition a11 > 0 is naturally satisfied in the model.
The spectral expression also includes an additional term coming
from the so-called sensitivity function of the feedback system, but
this term does not contribute to the TE rate after integration over
frequency due to Bode’s integral formula [4].

What is the rationale for the condition ã11 > 0? Since
H̃22(ω) = (ã11 − iω)/[(ã11 − iω)(ã22 − iω) − ã12ã21e

iωτ ]
[cf. Eq. (13) with aij replaced by ãij ], this condition
guarantees that H̃22(ω) has no zeros in the upper half of
the complex ω plane [it has no poles in this region since
H̃22(t ) is causal]. To summarize, the condition for the
spectral expression to be valid is that the stationary process
X̃2(ω) = H̃22(ω)ξ2(ω) is minimum phase. There is no reason
for this condition to be always satisfied for a time-delayed
process governed by Eq. (10), not to mention the more general
Eq. (8), and it must be carefully checked on a case-by-case
basis.

B. Transfer entropy in the direction 2 → 1

We now turn to the calculation of the TE in the direction
2 → 1 and to simplify the forthcoming analysis we set the
parameter a21 to zero from the outset. This makes the cou-
pling unidirectional, and X2(t ) becomes a simple Ornstein-
Uhlenbeck process that drives X1(t ) at a fixed delay τ . This is
the model introduced in Sec. 4 of Ref. [25], which is regarded
as the minimal continuous-time version of a VAR process.
Interestingly, this also corresponds to the model of a cellular
signaling pathway considered in [52], in which X1(t ) and
X2(t ) represent the deviations from the mean of active kinase
populations (these quantities can be treated as continuous
variables by assuming a chemical Langevin description).3 Of
course, the fact that X2 is now an autonomous process implies
that T1→2(h) and thus T1→2 vanish identically. Moreover, the
stationary state is stable for all values of τ .

Following [25], we set a11 = a > 0, a22 = b > 0, and
a12 = −c and we assume that the two noises ξ1 and ξ2 have
the same variance 2D11 = 2D22 = 1 to further restrict the
parameter space. The parameter ρ = 2D12 (with −1� ρ � 1)

3The continuous population approximation is generally valid in sig-
naling cascades where molecular populations are large. On the other
hand, the linearization of the Langevin equations is an approximation
whose validity depends on the details of the underlying biochemical
reaction network and which must be checked on a case-by-case basis.
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quantifies the correlation between the noises. The response
functions for t � 0 now have very simple expressions in the
time domain,

H11(t ) = e−at ,

H12(t ) = c
e−a(t−τ ) − e−b(t−τ )

b − a
�(t − τ ),

H21(t ) = 0,

H22(t ) = e−bt , (50)

and T2→1(h) is obtained from Eq. (4) with i = 2 and j =
1, where σ11(h) and σ ′

11(h) are the variances of p[X1(t +
h)|X−(t )] and p[X1(t + h)|X−

1 (t )], respectively. Likewise,
Eq. (34) is replaced by

T2→1 = lim
h→0+

1

h
T2→1(h)

= 1

2

[
Ḣ ′

11(0+) − Ḣ11(0+) − D12

D11
Ḣ12(0+)

]

= 1

2
[Ḣ ′

11(0+) + a], (51)

as Ḣ11(0+) = −a and Ḣ12(0+) = 0 from Eq. (36).

1. Wiener-Hopf factorization

It should be clear from the preceding section that the main
task is to compute the response function H ′

11(t ). This requires
the factorization of the PSD S11(ω) = 〈X1(ω)X1(−ω)〉,
which reads

S11(ω) = ω2 + b2 + c2 + 2ρcv(ω, b, τ )

(a2 + ω2)(b2 + ω2)
, (52)

where v(ω, b, τ ) ≡ b cos ωτ − ω sin ωτ (for comparison we
use the same notation as in [25]). This turns out to be a
nontrivial operation. In [25] it is claimed that the causal factor
H ′

11(ω) satisfying S11(ω) = |H ′
11(ω)|2 is given by

H ′
11(ω)

=
√

(1 − ρ2)c2 + (b + ρc cos ωτ )2 − i(ω − ρc sin ωτ )

(a − iω)(b − iω)
.

(53)

However, this statement is wrong when ρ 	= 0 because the
inverse Fourier transform of this function is not causal. This
can be readily seen by setting ω = x + iy and considering the
limit y → +∞, which yields

H ′
11(ω) ∼ ρc

2y2
(
√

e−2iτx − e−iτx )eτy + O(1/y). (54)

Hence, H ′
11(ω) diverges like −ρcy−2e−iτxeτy if cos τx < 0

and the condition for applying Jordan’s lemma is not sat-
isfied. Accordingly, the inverse Fourier transform does not
vanish for t < 0, as can be checked numerically. More-
over, H ′

1(t = 0+) is not equal to 1, contrary to what it
should be (see Fig. 3 below), which implies that σ ′

1(h) =
2D11

∫ h

0 dt H ′
1(t )2 	= 2D11h[1 + O(h)] so that the formula

T2→1 = limh→0+ (2h)−1 ln[σ ′
11(h)/σ11(h)] gives an infinite re-

sult. This is of course a serious shortcoming.

Before presenting our solution to the factorization prob-
lem, let us explain why this operation is nontrivial, even
from the numerical point of view. First, one could try to
apply the standard Wiener-Hopf method [53] and trans-
form the multiplicative factorization problem into an additive
one by taking the logarithm of S11(ω). In order to have
a function that goes to 1 as |ω| → ∞, one may consider
the ratio K (ω) = S11(ω)/S11(ω, ρ = 0) = [ω2 + b2 + c2 +
2ρcv(ω, b, τ )]/[ω2 + b2 + c2], and H ′

11(ω) is then obtained
as

H ′
11(ω) =

√
b2 + c2 − iω

(a − iω)(b − iω)
K+(ω), (55)

where K+(ω) is the causal factor of K (ω) given by

K+(ω) = exp

[
1

2iπ

∫ iδ+∞

iδ−∞
dζ

ln K (ζ )

ζ − ω

]
. (56)

In this formula, ω must lie above δ and the integration path
must belong to a finite-width strip D around the real axis
where K (ω) is analytic and free of zeros. The problem with
this procedure is that the numerator of K (ω) [i.e., the function
ω2 + b2 + c2 + 2ρcv(ω, b, τ )] has infinitely many zeros in
the complex ω plane when ρ 	= 0. Since there does not seem
to be any simple and systematic way of computing these
zeros for arbitrary values of the parameters, determining the
zero-free strip D is a daunting task.

Alternatively, one could try to solve the problem directly
in the time domain. Recall that in order to compute T2→1(h),
we need to calculate the MMSE estimate 〈X1(t + h)|X−

1 (t )〉,
which is the orthogonal projection of X1(t + h) onto the
trajectory X−

1 (t ). It thus satisfies the equation

〈[X1(t + h) − 〈X1(t + h)|X−
1 (t )〉]|X1(s)〉 = 0 ∀ s � t (57)

and is a linear functional of X−
1 (t ),

〈X1(t + h)|X−
1 (t )〉 =

∫ t

−∞
ds fh(t − s)X1(s), (58)

where fh(t ) is an unknown function to be determined from
Eq. (57). [To be precise, the kernel fh(t ) must also include a
term proportional to the Dirac distribution δ(t ) which singles
out the dependence on X1(t ).] Inserting Eq. (58) into Eq. (57)
and changing variables yields the Wiener-Hopf integral equa-
tion

φ11(t + h) =
∫ ∞

0
ds φ11(t − s)fh(s) ∀ t � 0, (59)

where φ11(t ) ≡ 〈X1(0)X1(t )〉 is the inverse Fourier transform
of S11(ω). Since φ11(t ) is a combination of exponentials
[see Eqs. (78) and (79) in [25], where φ11(t ) is denoted by
�xx (t )], one could hope to find some systematic procedure
to solve Eq. (59) and determine fh(t ), at least numerically.
However, this goal cannot be achieved because φ11(t ) has
different expressions for t < τ and t > τ : fh(t ) is then an
infinite sum of functions defined in the successive intervals
[0, τ ], [τ, 2τ ], [2τ, 3τ ], . . ., with the function in the interval
nτ � t � (n + 1)τ depending on the function in the next
interval. Therefore, a step-by-step solution of Eq. (59) is
impossible.

Our solution to the factorization problem consists in re-
placing the delay term eiωτ in the frequency domain by an
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all-pass (i.e., with unit amplitude) rational function of the
form Qn(−ω)/Qn(ω), where Qn(ω) is a polynomial with no
zeros in the upper half of the complex ω plane. This is a classic
procedure in the field of control systems [1], and several
choices of Qn are possible, in particular Padé approximants
(which are also often used to approximate Wiener-Hopf ker-
nels [54]). After various trials, we have found that the simplest
and yet effective approximation for the problem at hand is the
so-called Laguerre shift formula

eiωτ ≈
(
1 + iωτ

2n

)n(
1 − iωτ

2n

)n , (60)

which introduces a single pole of multiplicity n at ω =
−i2n/τ . The convergence rate of this approximation for n →
∞ has been studied in detail in the literature [55,56] and the
formula is successfully used in robust control as it is easy
to implement with analog filters. Accordingly, the expression
(52) of S11(ω) is now replaced by

S11,n(ω) = Pn(ω)

(a2 + ω2)(b2 + ω2)
(
1 + ω2τ 2

4n2

)n , (61)

where

Pn(ω) = (ω2 + b2 + c2)

(
1 + ω2τ 2

4n2

)n

+ ρc

[(
1 + i

ωτ

2n

)2n

(b + iω)

+
(

1 − i
ωτ

2n

)2n

(b − iω)

]
(62)

is an even polynomial of order 2n + 2. The factorization prob-
lem now boils down to finding all the roots of a polynomial,
a standard numerical task. Since Pn(ω) has no real roots,4

Eq. (61) can be rewritten as

S11,n(ω) =
∏n+1

k=1 (ω − ωk )(ω − ω∗
k )

(a2 + ω2)(b2 + ω2)(4n2/τ 2 + ω2)n
, (63)

where ωk denotes a root with a negative imaginary part. The
causal factor H ′

11,n(ω) is then readily obtained as

H ′
11,n(ω) = i

∏n+1
k=1 (ω − ωk )

(ω + ia)(ω + ib)(ω + 2in/τ )n
, (64)

where the factor i is included in order that H ′
1(t = 0+) =

limω→∞ −iωH ′
11(ω) = 1, as it must be. From this we can

compute numerically the inverse Fourier transform H ′
11,n(t )

and then

T
(n)

2→1(h) ≡ 1

2
ln

σ ′
11,n(h)

σ11,n(h)
, (65)

4The polynomial (1 + ω2τ 2/4n2)nPn(ω) can be rewritten as
(AB )nPn(ω) = [ω(AB )n + i(ρc/2)(A2n − B2n)]2 + [b(AB )n +
(ρc/2)(A2n + B2n)]2 + (1 − ρ2)c2(AB )2n, where A = 1 + iωτ/2n

and B = A∗ = 1 − iωτ/2n. If ω is real, A2n + B2n and A2 − B2n

are real and imaginary quantities, respectively, and (AA∗)nPn(ω)
is then a sum of three positive terms. Therefore, Pn(ω) has no real
roots.

where

σ ′
11,n(h) =

∫ h

0
dt H

′2
11,n(t ), (66)

σ11,n(h) =
∫ h

0

[
H 2

11(t ) + H 2
12,n(t ) + 2ρH11(t )H12,n(t )

]
,

(67)

with H12,n(t ) the inverse Fourier transform of H12,n(ω) =
(1 + iωτ

2n
)n/[(1 − iωτ

2n
)n(a − iω)(b − iω)].

Remarkably, this procedure leads to an explicit and concise
expression of the TE rate T (n)

2→1 in terms of the roots ωk .
Similarly to Eq. (51), one has

T (n)
2→1 = lim

h→0+

1

h
T

(n)
2→1(h)

= 1

2

[
Ḣ ′

11,n(0+) − Ḣ11(0+) − D12

D11
Ḣ12,n(0+)

]
, (68)

where H ′
11,n(t ) for t � 0 is obtained by using Cauchy’s

residue theorem as

H ′
11,n(t ) = Ane

−at + Bne
−bt + Qn(t )e−2nt/τ , (69)

with An = ∏n+1
k=1 (a − iωk )/(a − b)(a − 2n/τ )n, Bn =∏n+1

k=1 (b − iωk )/(b − a)(b − 2n/τ )n, and Qn(t ) =
q (0)

n + q (1)
n t + · · · + q (n−1)

n tn−1. Moreover, it can be shown
that Ḣ ′

12,n(0+) = (−1)nc. As a result,

T (n)
2→1 = 1

2

[
− aAn − bBn +

(
q (1)

n − 2n

τ
q (0)

n

)

+ a + (−1)n+1ρc

]
. (70)

Using q (0)
n = 1 − An − Bn [as H ′

11,n(0+) = 1] and q (1)
n =

− limω→∞ ω2[H ′
11,n(ω) − An/(a − iω) − Bn/(b − iω)−

q (0)
n /(2n/τ − iω)], we find that the coefficients of An and Bn

cancel, and after some algebra we finally obtain

T (n)
2→1 = 1

2

[
a + (−1)n+1ρc − 2n

τ

− lim
ω→∞ ω2

(
H ′

11,n(ω) − 1

2n/τ − iω

)]

= 1

2

[
− b + (−1)n+1ρc + i

n+1∑
k=1

ωk − 2n2

τ

]
, (71)

which is the explicit expression announced above. Note
that T (n)

2→1 and thus T2→1 = limn→∞ T (n)
2→1 are invariant

in the change (ρ, c) → (−ρ,−c) and do not depend on
a−1, the intrinsic relaxation time of the process X1. This is not
the case for T 2→1, whose expression is given by Eq. (A16) in
Appendix A.

Of course, this is still formal and a problem of practi-
cality remains: How large must n be to provide an accu-
rate estimation of T2→1 and, more generally, of T2→1(h)?
Although we have no rigorous mathematical answer to this
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2 4 6 8 10 12 14 16 18 20 22 24n
1.2

1.4

1.6

1.8

2

T 2
->
1

FIG. 1. Evolution of T (n)
2→1 computed from Eq. (71) as a function

of n for ρ = 0.2, c = 4, and three values of the delay: τ = 0.5 (red
circles), τ = 5 (blue squares), τ = 30 (black stars) (b−1 is taken as
the time unit). The exact asymptotic results given by Eq. (73) are
1.501 for τ = 0.5 and 1.541 for τ = 5 and 30.

question,5 numerical calculations show that the convergence
to the asymptotic limit is quite fast (see Figs. 1 and 3 below).
As shown in Appendix B, this is not the case when the delay
kernel δ(t − τ ) is approximated in the time domain by a
sequence of gamma distributions [42–44]. In addition, we
have another way to assess the accuracy of Eq. (71), which
is to compare with the predictions of the spectral formula

5The evolution of the roots of the polynomial Pn(ω) with n is in-
deed quite complicated. In particular, some of the roots are spurious
in the sense that they are not zeros of the function ω2 + b2 + c2 +
2ρcv(ω, b, τ ) [i.e., the actual zeros of S11(ω)] in the limit n → ∞.
However, they must be included in the calculation to ensure that
i
∑n+1

k=1 ωk − 2n2/τ goes asymptotically to a finite value.

-10 -5 0 5 10
ω

0

1

2

3

4

5

6

S 1
1(

ω
)

FIG. 2. Comparison between the exact PSD S11(ω) given by
Eq. (52) (solid line) and the approximate PSD S

(n)
11 (ω) = |H ′

1,n|2 with
n = 4 (red circles) for ρ = 0.5 and τ = 1. The model parameters are
a = 2, b = 1, and c = 4.

0 1 2 3 4
t

0

0.2

0.4

0.6

0.8

1

1.2

H
' 1
1,
n(
t)

FIG. 3. Function H ′
11,n(t ) for n = 20 (red circles), n = 30

(blue stars), and n = 40 (solid black line), as obtained from the
numerical inverse Fourier transform of Eq. (64) for ρ = 0.5, a = 2,
c = 4, and τ = 1. The dotted red line represents H ′

1(t ) computed
from the numerical Fourier transform of Eq. (53). Note that this
function is not equal to 1 at t = 0 (it is also nonzero for t < 0).

for T2→1. The latter is indeed exact in a certain range of the
parameters, as we now discuss.

2. Spectral expression of the TE rate

The spectral expression of T2→1 is obtained by exchanging
the labels 1 and 2 in Eq. (49). For the present simplified model,
one has

H̃11(ω) = H11(ω) + ρH12(ω) = b − iω + ρceiωτ

(a − iω)(b − iω)
, (72)

which gives [cf. Eq. (83) in [25]]

T2→1 = 1

2

∫ ∞

−∞

dω

2π
ln

ω2 + b2 + c2 + 2ρcv(ω, b, τ )

ω2 + b2 + ρ2c2 + 2ρcv(ω, b, τ )
.

(73)

However, as was stressed above in Sec. III A 3, the domain
of validity of the spectral expression is limited and must be
carefully determined, a task that has been overlooked in [25].
Otherwise, the actual TE rate is underestimated. According
to the previous discussion, the correct result is obtained if
H̃11(ω) has no zeros in the upper half plane. The stationary
process X̃1(ω) = H̃11(ω)ξ1(ω) is then minimum phase, like
all stochastic processes considered in this work.

Remarkably, the solution to this problem is already avail-
able in the literature. Indeed, it turns out that the equation
f (ω) ≡ b − iω + ρceiωτ = 0 that determines the zeros of
H̃11(ω) is also the characteristic equation that determines the
stability of the linear equation

ẋ(t ) = −bx(t ) − ρcx(t − τ ), (74)

which has been widely studied in the literature on delay
differential equations. For instance, Ref. [57] (see also [58]
and Theorem 8.6 in [43]) tells us that this equation is asymp-
totically stable when all the roots of f (ω) have a negative
real part, a condition that is always satisfied if −b < ρc � b
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and always violated if ρc < −b, whatever the value of τ

(recall that −1 < ρ < 1 and b > 0 in the present model).
In the case ρc > b, there is a critical value of the delay
τ ∗ = arccos(−b/ρc)/

√
ρ2c2 − b2 beyond which the condi-

tion is violated (when τ = τ ∗, a Hopf bifurcation occurs).
Note that this has nothing to do with the stability of the
joint process X itself: As we have already mentioned, the
stationary state is stable for all values of τ . Likewise, there is
a spectral representation of the nth-order approximant, given
by

T (n)
2→1 = 1

2

∫ ∞

−∞

dω

2π
ln

Pn(ω)

Pn(ω) − c2(1 − ρ2)(1 + ω2τ 2/4n2)n
,

(75)

whose domain of validity depends on n.

IV. NUMERICAL ILLUSTRATION

A. Convergence with n

We first consider the issue of the convergence of T (n)
2→1

with n. A typical example is shown in Fig. 1, where ρ and
c are chosen such that the spectral formula (73) gives the
exact value of T2→1 for all values of τ . As indicated,
the good news is that T (n)

2→1 converges quite rapidly towards the
exact asymptotic value, even when τ is much larger than the
relaxation time b−1 of the process X2. (In this figure and in
the following we take b−1 as the time unit.) For instance, the
relative error between T (n)

2→1 and T2→1 for τ = 30 is already
less that 1% with n = 10. Therefore, there is no need to
use large values of n, which would have been a practical
limitation to our solution of the Wiener-Hopf factorization.6

Note that the exact PSD S11(ω) is very well reproduced by
S11,n = |H ′

11,n(ω)|2 even for n small, as shown in Fig. 2 where
n = 4. However, it is well known in the field of Wiener-Hopf
factorization (see, e.g., [54]) that by itself this is not a good
criterion for assessing the accuracy of the factorization: For
instance, the inverse Fourier transform of the function H ′

11(ω)
given by Eq. (53) [which, by construction, exactly reproduces
S11(ω)] is neither causal nor equal to 1 at t = 0, which implies
that the corresponding TE rate is infinite, as we have already
pointed out. This is illustrated in Fig. 3, which also shows the
evolution of H ′

11,n(t ) with n. The small wiggles for t < τ are
a consequence of the Laguerre formula (60) and they become
negligible for n � 40. It also seems that a cusp will occur at
t = τ in the limit n → ∞, as is the case with the function
H ′

1(t ) computed from Eq. (53).

B. Influence of τ and ρ

We are now in position to compare the TE rate estimated
from Eq. (71) with the predictions of Eq. (73) and investigate
the influence of the delay. This is illustrated in Fig. 4. Since
ρc > b with our choice of the parameters, the discussion in

6In any case, there exist sophisticated polynomial root finders in the
literature which allow one to consider very large values of n. Here
we simply determine the roots of Pn(ω) with the command fsolve of
MAPLE that works well up to n � 100.
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τ

0.8

1.2

1.6

T 2
->
1

FIG. 4. Comparison between T (n)
2→1 obtained from Eq. (71) for

n = 25 (black circles) and the spectral formula (73) of T2→1 (red line)
as a function of τ for ρ = 0.5 and c = 4. Equation (73) is valid for
τ < 1.209 only, as indicated by the vertical dashed line.

the preceding section tells us that the spectral formula is valid
up to τ = τ ∗ ≈ 1.209. Indeed, we see in the figure that the
agreement is excellent for τ � τ ∗ but that the two curves
deviate beyond τ ∗. The spectral formula then predicts a lower
value of the TE rate, in line with the arguments of [47]. More
generally, our calculations show that T2→1 is monotonically
increasing with τ for ρc > 0, whereas it first decreases and
then increases for ρc < 0. (It can be analytically shown that
d/dτ ln T2→1|τ=0 = ρc.) In both cases, T2→1 goes to a finite
value as τ → ∞. Note that the behavior of T 2→1 computed
from Eq. (A16) is completely different. Consider, for instance,
the simplest case of independent noises (ρ = 0). Then T2→1 =
(
√

b2 + c2 − b)/2 does not depend on τ , as already noticed
in [25], whereas T 2→1 decreases with τ .7 (We chose not to
plot T 2→1 since it depends on the value of a, in contrast with
T2→1.)

To further illustrate the differences between Eqs. (71) and
(73), the behavior of T2→1 as a function of ρ for a fixed
value of τ is shown in Fig. 5. The spectral formula is now
valid in the interval −0.25 � ρ � 0.565, where the minimal
value corresponds to ρ = −b/c and the maximal value is the
solution of the equation τ

√
ρ2c2 − b2 − arccos(−b/ρc) = 0.

The most striking feature is that T2→1 goes to a finite value
for ρ = ±1, at variance with the outcome of the spectral
formula.8 It is a nontrivial fact that the TE rate remains finite
even when the noises are strongly correlated or anticorrelated.

7This can be easily understood. Since X1(t + h) for h infinitesimal
is determined by X1(t ) and X2(t − τ ), the additional information
provided by the knowledge of X2(t ) becomes less and less relevant
as τ increases, which makes T 2→1 decrease. On the other hand, if the
whole past of X1 up to t is already known and one adds information
about the whole past of X2 (that includes its value at t − τ ), then τ no
longer plays a role and T2→1 remains constant. For ρ 	= 0, however,
this reasoning is no longer valid.

8The same feature already occurs for τ = 0. Consider, for in-
stance, ρ = −1. The exact expression of the TE rate given by
Eq. (39) (exchanging the labels 1 and 2) with r1 = |b − c| yields
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FIG. 5. Same as Fig. 4 as a function of ρ for τ = 1. The spectral
formula (73) is only valid in the range of ρ delimited by the vertical
dashed lines.

C. Delay detection

Finally, we discuss the issue of delay detection and estima-
tion. As pointed out in the Introduction, this is a potentially
important application of transfer entropy, especially in neuro-
science [16,25]. Since it is still actively debated whether or not
this method is reliable [24], it is sensible to perform numerical
tests on well-controlled dynamical systems, even as simple as
the present one.

The idea is that the finite-horizon TE, in the present case
T2→1(h), should display a maximum in the vicinity of h = τ .
Indeed, as long as h � τ , the trajectory of X2 in the time inter-
val [t − τ, t + h − τ ] provides a useful information about the
future of X1, which makes T2→1(h) increase with h. On the
other hand, for h � τ , the trajectory of X2 in the time interval
[t, t + h − τ ] is no longer taken into account in T2→1(h)
since only the trajectory of X2 prior to t contributes, by def-
inition. Eventually, as h → ∞, both p[X1(t + h)|{X(s)}s�t ]
and p[X1(t + h)|X−

1 (t )] approach the stationary probability
distribution function p(X1) and T2→1(h) → 0.

The above argument is only qualitative though, and the
accuracy of the estimate of τ must be checked numerically.
Typical results are shown in Fig. 6, where the value of ρ

is arbitrarily fixed at 0.5. Indeed, whereas the magnitude of
T2→1(h) depends on ρ, the overall behavior remains qualita-
tively unchanged and in particular the position of maximum
varies little.9 In line with the qualitative argument above, we
observe in the figure that the maximum in T2→1(h) occurs just

T2→1 = (1/2)(|b − c| − b + c) = c − b for c > b. On the other
hand, the spectral formula always gives T2→1 = (1/2)(|c − b| −
|b − c|) = 0.

9This was already noticed in [25] (see Fig. 4 therein). Although
the results in [25] are obtained by using a flawed Wiener-Hopf
factorization, the choice of the model parameters, in particular the
very large value of τ , makes the errors rather small. In particular, the
fact that the Granger causality FY→X (h) does not vanish at the origin
when ρ 	= 0 is invisible on the scale of the figure. This is no longer
true for the parameters used in our Fig. 6.

0 0.5 1 1.5 2 2.5 3 3.5 4
h
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0.2

0.4
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0.8

T 2
->
1(
h)

FIG. 6. Finite-horizon TE T
(n)

2→1(h) computed from Eq. (65) for
n = 30, ρ = 0.5, and different values of the delay: from top to
bottom, τ = 2.5 (black line), τ = 1 (blue line), τ = 0.25 (red line),
and τ = 0 (green line). The model parameters are a = 2, b = 1, and
c = 4. The corresponding dashed lines represent T 2→1(h).

beyond τ for the two largest values of the delay (we recall
that b−1, the relaxation time of the process X2, is here taken
as the natural time scale in the problem). On the other hand,
the agreement is not so good for the smallest values of τ . The
obvious problem is that T2→1(h) exhibits a maximum at a
certain time h = h0 even when τ = 0. This time depends in
a complicated way on the two relaxation times a−1 and b−1

and on the coupling strength c. It also differs from the time
hmax associated with the maximum of the cross-correlation
function φ21(h) (for the case considered in Fig. 6, h0 ≈ 0.29
whereas hmax ≈ 0.15). We may tentatively regard h0 as the
time it would take for X2 to effectively influence X1 if there
were no inherent delay in the coupling between the two
processes. Therefore, the lesson to be drawn from the example
in Fig. 6 is that τ must be significantly larger than h0 to be
properly estimated by scanning the horizon h in T2→1(h). This
is certainly a limitation because the value of h0 is unknown in
practice (e.g., in biochemical processes), although its order of
magnitude may possibly be guessed.

On the positive side, we wish to stress that τ can be
detected via T2→1(h) even when there is no clear signature of
a delayed interaction in the cross-correlation function φ21(h).
[Otherwise, there would indeed be no profit in using T2→1(h),
which is much less easily extracted from time-series data
than φ21(h).] This occurs, for instance, when the coupling
parameter c is small, as illustrated in Fig. 7. In this case,
there is no maximum in φ12(h), except in h = 0, whereas
the maximum in T2→1(h) still takes place in the vicinity of
h = τ .10

We end this section with a short comment about T 2→1(h),
which is also represented in Figs. 6 and 7 [this function is
computed from Eq. (A7) with the labels 1 and 2 exchanged].

10One could object that there is a kink at h = τ in both φ11(h)
and φ21(h) which signals the presence of a delay in the interaction.
However, it is very difficult in general to recognize such a feature in
experimental data.
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FIG. 7. (a) Finite-horizon TE T
(n)

2→1(h) for n = 30, ρ = 0.5, and
τ = 1. The model parameters are a = 2, b = 1, and c = 0.1. The
dashed line represents T 2→1(h). (b) Corresponding cross-correlation
function φ21(h).

Although the initial behavior of T 2→1(h) with h differs from
that of T2→1(h), in relation to the fact that the rates T 2→1 and
T2→1 are quite different, T 2→1(h) also displays a maximum
in the vicinity of h = τ when τ is sufficiently larger than
h0. This is interesting because this function can be more
easily estimated from time-series data than T2→1(h) as it only
requires the knowledge of the stationary correlation functions
or the corresponding power spectral densities. One then cir-
cumvents the numerically challenging problem of estimating
high-dimensional probability distributions (the so-called curse
of dimensionality [59]). Note, however, that the delay is
better estimated with T2→1(h): For instance, in Fig. 6 and
τ = 2.5, the maxima of T2→1(h) and T 2→1(h) are located at
h ≈ 2.52 and h ≈ 2.79, respectively. In Fig. 7, where τ = 1,
the maxima are located at 1.19 and 1.27 respectively.11

V. SUMMARY

Is an information-theoretic measure such as the transfer
entropy able to detect interaction delays in coupled systems?
This question, still debated, has prompted us to revisit the
recent calculation performed in [25] for a linear stochastic
process with a delayed coupling. By focusing on a simple
model that can be solved analytically in continuous time, thus

11We have not considered in this work the time-delayed variant
of the TE introduced in [16] (see also [15,60]) which is claimed
to fulfill the so-called self-prediction optimality condition required
by Wiener’s causality principle. The continuous-time version of this
quantity would be T i→j (u) = limh→0+ (h−1)I [Xj (t + h) : Xi (t −
u)|Xj (t )], which is parametrized by the delay variable u. For Gaus-
sian stationary processes, it is rather easy to guess, by extrapolating
the calculation of T 1→2 ≡ T 1→2(u = 0) [see Eq. (8) in [60]], that
the expression of T i→j (u) involves the derivative of the correlation
function φij (u) at time u [cf. Eq. (A8)]. In the case of a discrete
delay τ , this implies that T i→j (u) has a jump discontinuity at u = τ .
In a sense, one might say that this piece of information is already

provided by the kink in the correlation functions, as noticed above
(preceding footnote).
avoiding the difficulties arising from time discretization, one
may hope to get a better understanding of the issue. However,
even in the simple case of stationary Gaussian processes, the
calculation of the finite-horizon TE (or equivalently Granger
causality) in the presence of delay requires the solution of
a nontrivial Wiener-Hopf factorization problem that was not
properly treated in [25]. The main contribution of the present
work is to provide an efficient solution to this problem in the
case where the stochastic noises are correlated, as is often
required in the modeling of real networks. As a by-product,
we have derived a compact expression of the zero-horizon
TE rate. We have also clarified the conditions under which
the spectral representation the TE rate is valid, an issue that
seems to be overlooked in the literature. Our numerical results
for a bivariate model with unidirectional delayed coupling
show that the finite-horizon TE is indeed able to detect and
estimate the delay (under some conditions though), even when
there is no clear signature in the cross-correlation function.
Interestingly, this is also true for the much simpler version
of TE that only takes into account the immediate past of the
source and the target.

It is clear, however, that more analytical and numerical
work remains to be done before reaching a comprehensive
picture. A natural extension of the present work would be
to consider multiple delays occurring in both directions (not
to mention the case of multivariate systems). It would also
be interesting to investigate the behavior of the TE in an
oscillatory regime and in the vicinity of a Hopf bifurcation.
We leave this to future investigations.

APPENDIX A: EXPRESSIONS OF T i→ j (h) AND T j→i

IN THE PRESENCE OF TIME DELAY

In this appendix we derive the expressions of the simpli-
fied TE T i→j (h) (i, j = 1, 2) defined by Eq. (7) and of the
corresponding rate T i→j for the bivariate process governed
by Eq. (10). Our starting point is the expression of the con-
ditional probability distribution function p(x, t + h|x′, t ) of a
Gaussian stationary process in terms of the matrix �(t ) of the
correlation functions φij (h) ≡ 〈Xi (t )Xj (t + h)〉,

p(x, t + h|x′, t )

= 1

2π
√

Det�(h)
e−{[x−G(h)x′]T ·�(h)−1·[x−G(h)x′]}/2, (A1)

where

G(h) = �(h)T · �−1 (A2)

and

�(h) = � − G(h) · �(h). (A3)

We recall that � = �(∞) is the stationary covariance matrix
with elements σij = φij (0) and that

p(x) = 1

2π
√

Det�
e−(xT ·�−1·x)/2. (A4)

One can check that the correlation functions are indeed
the second moments of p(x, t + h; x′, t ) = p(x, t +
h|x′, t )p(x′), i.e., φij (h) = ∫

dx dx′x ′
ixjp(x, t + h; x′, t ).
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Consider, for instance, T 1→2(h). By integrating Eq. (A1) over x1 and then p(x2, t + h; x′, t ) over x ′
1, we successively obtain

p(x2, t + h|x′, t ) = 1√
2πσ22(h)

exp

[
− (x2 − G21(h)x ′

1 − G22(h)x ′
2)2

2σ22(h)

]
(A5)

and

p(x2, t + h|x2, t ) =
√

σ22

2π [G2
21(h)Det� + σ22(h)σ22]

exp

[
− σ22

(
x2 − G21(h)σ12+G22(h)

σ22
x ′

2

)2

2
[
G2

21(h)Det� + σ22(h)σ22
]
]
. (A6)

This readily yields

T 1→2(h) ≡ 1

2

∫
dx dx′ ln

p(x2, t + h|x′, t )

p(x2, t + h|x2, t )
= 1

2
ln

(
1 + G2

21(h)Det�

σ22(h)σ22

)

= −1

2
ln

σ22

Det�
+ 1

2
ln

σ 2
22 − φ2

22(h)

σ22Det� − φ2
22(h)σ11 + 2φ22(h)φ12(h)σ12 − φ2

12(h)σ22
. (A7)

Expanding φ12(h) and φ22(h) in powers of h, we then obtain
the expression of the rate T 1→2 = limh→0+ T 1→2(h)/h,

T 1→2 = − 1

4σ22Det�

[φ̇22(0+)σ12 − φ̇12(0+)σ22]2

φ̇22(0+)
. (A8)

The corresponding expressions of T 2→1(h) and T 2→1 are
obtained by exchanging the labels 1 and 2.

To proceed further and express T 1→2 and T 2→1 in terms
of the σij ’s only, we need to compute the derivatives of the
correlation functions at t = 0+. This can be done without
fully solving the dynamics by using together the Fokker-
Planck equation for the time-dependent probability distribu-
tion p(x, t ) and the differential equations satisfied by the φij ’s.
The Fokker-Planck equation is obtained as usual by starting
from the definition p(x, t ) = 〈δ(X1(t ) − x1)δ(X2(t ) − x2)〉,
inserting the Langevin equations, and using Novikov’s the-
orem [61]. This yields

∂p(x, t )

∂t
= ∂

∂x1

[
a11x1p(x, t ) + a12

∫
dy y p(x, t ; y, t − τ )

]

+ ∂

∂x2
[(a21x1 + a22x2)p(x, t )] + D11

∂2

∂x2
1

p(x, t )

+D22
∂2

∂x2
2

p(x, t ) + 2D12
∂2

∂x1∂x2
p(x, t ), (A9)

where p(x, t ; y, t − τ ) = 〈δ(X1(t ) − x1)δ(X2(t ) − x2)δ
(X2(t − τ ) − y)〉 is a two-time probability density. [In
passing, note that Eq. (A9) is not a closed equation, which
is a characteristic feature of time-delayed stochastic sys-
tems [62,63].] Multiplying this equation by x2

1 , x2
2 , and x1x2,

respectively, and integrating over x, we obtain the relations

a11σ11 + a12φ21(τ ) = D11,

a21σ12 + a22σ22 = D22,

(a11 + a22)σ12 + a21σ11 + a12φ22(τ ) = 2D12. (A10)

On the other hand, from the differential equations for the
correlation functions for t ∈ [0+, τ ],

φ̇11(t ) = −a11φ11(t ) − a12φ21(τ − t ),

φ̇21(t ) = −a11φ21(t ) − a12φ22(τ − t ),

φ̇12(t ) = −a21φ11(t ) − a22φ12(t ),

φ̇22(t ) = −a21φ21(t ) − a22φ22(t ), (A11)

we obtain

φ̇11(0+) = −a11σ11 − a12φ21(τ ),

φ̇21(0+) = −a11σ12 − a12φ22(τ ),

φ̇12(0+) = −a21σ11 − a22σ12,

φ̇22(0+) = −a21σ12 − a22σ22. (A12)

Combining Eqs. (A10) and (A12) then gives

φ̇11(0+) = −D11,

φ̇21(0+) = −2D12 + a21σ11 + a22σ12,

φ̇12(0+) = −a21σ11 − a22σ12,

φ̇22(0+) = −D22. (A13)

Inserting these expressions into Eq. (A8) and into the
corresponding equation for T 2→1, we finally obtain

T 1→2 = a2
21Det�

4D22σ22
(A14)

and

T 2→1 = [D11σ12 + (a21σ11 + a22σ12 − 2D12)σ11]2

4D11σ11Det�
. (A15)

Note that T 1→2 depends on τ and ρ only through the
covariances σij , so Eq. (A14) is formally the same
equation as the one derived in [64] for a simple bipartite
Ornstein-Uhlenbeck process. Finally, for the model studied in
Sec. III B, Eq. (A15) reduces to

T 2→1 =
[

1
2σ12 + (bσ12 − ρ)σ11

]2

2σ11Det�
, (A16)

with

σ11 = 2bcρe−aτ + ab + b2 + c2

2ab(a + b)
,

σ12 = ce−bτ + 2bρ

2b(a + b)
,

σ22 = 1

2b
. (A17)
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APPENDIX B: GAMMA-DISTRIBUTED DELAY

An approximation often used in the context of biolog-
ical modeling [42–44] consists in replacing the discrete
delay kernel δ(t − τ ) in the time domain by a sequence
of � distributions δ(t − τ ) ≈ gn(t, τ/n), where gn(t, T ) =
[(n − 1)!T n]−1tn−1e−t/T . For instance, at the lowest order
n = 1, the memory kernel reduces to a low-pass filter with
bandwidth τ−1 and X2(t − τ ) in Eq. (10) is replaced by
(1/τ )

∫ t

−∞ ds e−(t−s)/τX2(s). In the frequency domain, this
approximation amounts to replacing eiωτ by (1 − iωτ/n)−n.
Equation (61) is then replaced by

S11,n(ω) = Pn(ω)

(a2 + ω2)(b2 + ω2)
(
1 + ω2τ 2

n2

)n , (B1)

where

Pn(ω) = (ω2 + b2 + c2)

(
1 + ω2τ 2

n2

)n

+ ρc
[(

1 + i
ωτ

n

)n

× (b + iω) +
(

1 − i
ωτ

n

)n

(b − iω)
]
, (B2)

and the Wiener-Hopf causal factor is

H ′
11,n(ω) = i

∏n+1
k=1 (ω − ωk )

(ω + ia)(ω + ib)(ω + in/τ )n
. (B3)

Noting that Ḣ ′
12,n(0+) = 0 with this approximation of eiωτ , we

finally arrive at

T (n)
2→1 = 1

2

[
a − n

τ
− lim

ω→∞ ω2

(
H ′

11,n(ω) − 1

n/τ − iω

)]

= 1

2

[
− b + i

n+1∑
k=1

ωk − n2

τ

]
, (B4)

which replaces Eq. (71).
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FIG. 8. Same as Fig. 5 with, in addition, the predictions of
Eq. (B4) for n = 30, 60, 90 (black squares, from top to bottom).

The advantage of this representation of δ(t − τ ) is that a
finite value of n may provide a good description of a given
physical or biological process [whereas taking n finite in
the Laguerre shift formula (60) does not correspond to a
bona fide Langevin process with distributed delay]. Equations
(B1)–(B3) then give the exact solution of the corresponding
Wiener-Hopf factorization and in turn the exact expression
of the TE. On the other hand, as illustrated in Fig. 8, the
convergence with n is very slow. Therefore, this approxi-
mation is not appropriate for dealing with a true discrete
delay.
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