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Temporal disorder in discontinuous nonequilibrium phase transitions: General results
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We develop a general theory for discontinuous nonequilibrium phase transitions into an absorbing state in
the presence of temporal disorder. We focus in two paradigmatic models for discontinuous transitions: the
quadratic contact process (in which activation is only spread when two nearest-neighbor sites are both active) and
the contact process with long-range interactions. Using simple stability arguments (supported by Monte Carlo
simulations), we show that temporal disorder does not destroy the discontinuous transition in the former model.
For the latter one, the first-order transition is turned into a continuous one only in the strong-disorder limit, with
critical behavior belonging to the infinite-noise universality class of the contact process model. Finally, we have
found that rare temporal fluctuations dramatically changes the behavior of metastable phase, turning it into a
temporal Griffiths inactive phase characterized by an exponentially large decay time.
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I. INTRODUCTION

Nonequilibrium phase transitions have constituted a rich
and lively topic of research for many years. They occur in a
wide variety of models in ecology [1], epidemic spread-
ing [2], sociophysics [3], catalytic reactions [4], depinning
interface growth [5,6], and turbulent flow [7], among other
fields [8–10].

Since disorder due to spatial or temporal inhomogeneities
is almost an unavoidable ingredient in many real systems, it
is then desirable to understand their effects on these phase
transitions. For continuous phase transitions, it was earlier
recognized that spatial and temporal disorder changes the
critical behavior whenever the generalized Harris criterion is
violated [11,12]: Quenched spatial disorder is relevant when-
ever dν⊥ > 2 is violated while temporal disorder is relevant
when ν‖ = zν⊥ > 2 is violated, with ν⊥, ν‖, and z being
critical exponents of the clean phase transition and d being
the number of spatial dimensions. Since the critical exponents
of the directed percolation universality class violate the Harris
criterion, it was then argued that this was the reason why it was
never seen in experiments [13] (see, however, Ref. [14]).

Later, it was shown that spatial disorder yields a critical be-
havior in the exotic universality class of infinite-randomness
type surrounding accompanied by a Griffiths effects in the
inactive phase [15–20]. More recently, it was shown that tem-
poral disorder yields to analogous effects, namely an exotic
infinite-noise universality class accompanied by a temporal
Griffiths active phase [21–24].

The effects of disorder in discontinuous nonequilibrium
phase transitions are much less understood. It was initially
shown that quenched spatial disorder can turn a discontin-
uous transition into a continuous one [25] and later it was
argued that it actually prohibits phase coexistence and dis-
continuous transitions in d � 2 [26]. In the case of temporal
disorder, however, a recent numerical study indicates that

first-order phase transitions can happen in low-dimensional
systems [27].

In this work, we develop a general theory for discon-
tinuous nonequilibrium phase transition in the presence of
temporal disorder. Analysis of two paradigmatic models in
the mean-field level is sufficient to draw quantitative accurate
predictions which we confirm in d = 1 and 2 via Monte
Carlo simulations. Our main result is that temporal disorder
does not forbid first-order phase transitions. In addition, it
can also turn a discontinuous transition into a continuous
one when disorder is sufficiently strong. Furthermore, we
find an interesting phenomenon: Temporal disorder turns the
clean metastable active phase into a temporal Griffiths inactive
phase characterized by extremely large decay times.

The remainder of this article, we define the studied models
in Sec. II and develop our main theory in Sec. III where
a mean-field analysis is performed. In Sec. IV we provide
Monte Carlo simulations confirming our theory and leave
concluding remarks to Sec. A.

II. THE MODELS

The usual contact process (CP) model [8,28] is defined
on a d-dimensional lattice in which each site is either ac-
tive (A) or inactive (I ). The corresponding dynamics has
the following processes: (i) a spontaneous inactivation and
(ii) an autocatalytic activation via nearest-neighbor contact.
In the former, a single active site spontaneously decays to the
inactive state with rate μ. In the latter, an active site turns an
inactive nearest-neighbor site into an active one with rate λ.

Schematically, A
μ→ I and A + I

λ→ 2A, respectively.
In this work, we study a particular case of the second

Schlögl model [29], known as the quadratic contact process
(QCP) model and a version of the CP model with long-
range interactions known as the σCP model [30]. They are
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identical to the CP model except for the activity spreading
dynamics. In the QCP model, activity is spread via the contact

with two active nearest-neighbor sites: 2A + I
λ→ 3A. In the

σCP model, the activation rate depends on the length � of
the continuous string of inactive sites between two active
ones, i.e., λ → λ� = λ(1 + a�−σ ), where a � 0 and σ > 0
are constants controlling the long-range “interaction” (with
a = 0 recovering the CP model). Schematically, the reaction

is A + I � λ�→ 2A + I �−1, where I � denotes the continuous
string of � inactive sites.

For simplicity, we set μ + λ = 1 and only deal with λ ∈
[0, 1].

Noise fluctuations (temporal disorder) are introduced in
these models by considering λ as a random time-dependent
variable. For concreteness, we divide the system time evolu-
tion in time intervals of equal duration �t within which λ is
constant, i.e., over the ith time interval the activity spreading
rate equals λ = λi , with λi being an independent random
variable drawn from a binary probability density distribution

P (λ) = pδ(λ − λ−) + (1 − p)δ(λ − λ+), (1)

with λ+ > λ−. For later convenience, we rewrite λ± in terms
of the average λ = pλ− + (1 − p)λ+ and δλ = λ+ − λ−
(which represents the disorder strength), namely λ+ = λ +
pδλ and λ− = λ − (1 − p)δλ. We report that we have also
considered boxlike distributions and have found no qualitative
difference.

III. THE MEAN-FIELD APPROACH

In this section, we present our mean-field approach for the
effects of temporal disorder on the first-order nonequilibrium
phase transitions to an absorbing state.

A. The clean system

We start by reviewing some key aspects of the clean phase
transition and later consider the effects of temporal disorder.

1. Mean-field approach for the clean QCP model

Let us start with the QCP model at the level of one-site
mean-field theory. The density of active sites ρ obeys the
following logistic equation:

dρ

dt
= −(1 − λ)ρ + λρ2(1 − ρ), (2)

where the first term on the right-hand side accounts for the
spontaneous inactivation processes, whereas the second one
corresponds to the activity spreading.

There are three steady-state (time-independent) solutions
ρ∞ for Eq. (2):

ρ (I )
∞ = 0, ρ (S)

∞ = 1
2 + α, and ρ (U )

∞ = 1
2 − α, (3)

with α =
√

5
4 − 1

λ
. A phase transition occurs at λ = λc = 4

5

above which ρ
(S)
∞ and ρ

(U )
∞ exist (α ∈ R). As ρ

(S,U )
∞ → 1

2 when
λ → λ+

c , notice that the transition is discontinuous with the
order parameter being ρc = 1

2 at the transition. In order to
better understand the phases surrounding the transition point,
we study the stability of the steady-state solutions ρ∞ by
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FIG. 1. Mean-field phase diagram of the clean (a) QCP and
(b) σCP models (see main text). The dashed line denotes a first-
order phase transition and the solid line denotes a second-order one
belonging to the directed percolation universality class. The dotted
line denotes the end of the bistability in the active phase. For the
QCP model, λc = 4

5 . For the σCP model, λ∗ = 1
2 .

linearizing Eq. (2). It is found that ρ
(I )
∞ is a stable solution for

0 � λ < λ∗ = 1 with small deviations from it (r = ρ − ρ∞)
vanishing exponentially r ∼ e−(1−λ)t for large t . Likewise,
ρ

(S)
∞ is a stable solution (for λ > λc) with small deviations

vanishing as |r| ∼ e−[( 5
2 +α)λ−2]t for large t . Finally, the ρ

(U )
∞ is

an unstable solution (for λ > λc) in which deviations grow as
|r| ∼ e[2−( 5

2 −α)λ]t for small t . At the transition point λ = λc,
the solutions ρ

(S,U )
∞ degenerate and become a saddle point.

In this case when ρ > ρc = ρ
(S,U )
∞ , the deviations vanish

algebraically as r ∼ t−1 for large t ; otherwise, when ρ < ρc,
they increase as r ≈ −|r0|(1 + |r0|ρcλct ) for small t .

We call attention to the fact that for λc � λ < λ∗ there are
two stable solutions ρ

(I,S)
∞ with one of them corresponding to

the inactive absorbing state. As we show later, this bistability
is an important feature for understanding the temporal disor-
der effects. For this reason, we refer to this region of the active
phase as a metastable phase.

The mean-field phase diagram of the QCP model is shown
in Fig. 1(a). For 0 � λ < λc, the system is in the inactive
phase in which any activity becomes extinct as t → ∞ with
ρ → ρ

(I )
∞ . For λc < λ < 1, the system is in the metastable

phase in which activity persists [ρ → ρ
(S)
∞ ] indefinitely if the

initial density ρ(0) ≡ ρ0 is greater than ρ
(U )
∞ ; otherwise, the

system evolves towards the absorbing state. The transition
at λ = λc between the inactive and the metastable phase is
discontinuous. Finally, at λ = λ∗ = 1 the system is in the
usual active phase.

It worth noting that Eq. (2) can be fully integrated, yielding

ln

(
ρ

ρ0

)
−

[
ρ

(S)
∞

2α

]
ln

[
ρ − ρ

(U )
∞

ρ0 − ρ
(U )
∞

]

+
[

ρ
(U )
∞
2α

]
ln

[
ρ − ρ

(S)
∞

ρ0 − ρ
(S)
∞

]
= −(1 − λ)t. (4)

From this solution, all previous conclusions follow straight-
forwardly. Evidently, at the transition point λ = λc, a direct
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integration of the resulting logistic equation dρ

dt
= −λcρ(ρ −

ρc )2 yields to

ln

[
ρ0(ρ − ρc )

ρ(ρ0 − ρc )

]
+ ρc(ρ0 − ρ)

(ρ − ρc )(ρ0 − ρc )
= ρ2

c λct. (5)

2. Decay time towards the absorbing state close to the transition:
General results

An important quantity for our analysis is the time T nec-
essary for the system to decay into the absorbing state when
it is in the inactive phase but very close to the transition, i.e.,
when λ = λc − �, with 0 < � � λc (see Fig. 2). A intuitive
definition for T would be the following: Starting from ρ0 = 1,

the decay time T is such that ρ(T ) � ρc. Although this can
be easily accomplished, we adopt another (and more elegant)
one: We define T as the time interval for the evolution from
ρ0 = ρc + ε to ρ(T ) = ρc − ε, with 0 < ε � ρc. Because we
now have two small parameters �

λc
and ε

ρc
, we then need to

specify which one is smaller. Since we wish to connect with
the first definition, we then require that �

λc
≪ ε

ρc
. Inspections

of the resulting logistic equation show that �ρ2
c � ε2λc is

sufficient.
We are now in the position of computing T . This task can

be accomplished more generally (applicable to other models)
by considering a logistic equation of type

dρ

dt
= ρ[λf (ρ) − 1]. (6)

(The choice f = 1 + ρ − ρ2 recovers the QCP model.) The
discontinuous transition point λc and density ρc are obtained
from λcf (ρc ) = 1 and f ′(ρc ) = 0. Defining ρ(t ) = ρc −
r (t ), we study the time T required for r (t ) evolving from −ε

to ε. Expanding the logistic equation (6) for |r| and � [and
noticing that f ′′(ρc ) < 0], then

dr

r2 + R2
≈ π

RT
dt, (7)

where R =
√

2�
|f ′′(ρc )| f (ρc ) and

T = 2π√
2�|f ′′(ρc )|ρc

= t0(λc − λ)−φ. (8)
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FIG. 2. The mean-field density ρ as a function of time t for the
QCP model for various activation rates λ in the inactive phase λ <

λc. The inset shows the time T when ρ = 0.1 (dotted line of the main
panel). The dashed line is the analytical result Eq. (8).

The time scale T is exactly the decay time obtained by
integrating Eq. (7) from −ε to ε and taking the limit ε � R.
We finally conclude that, in the mean-field approximation,
T diverges with exponent φ = 1

2 . (For the QCP model, the
microscopic time scale is t0 = 2π , see also Fig. 2.).

3. Mean-field approach for the clean σCP model

In this case, at the level of one-site mean-field theory, the
density of active sites ρ is obtained from

dρ

dt
= −(1 − λ)ρ + λρ2

∞∑
�=1

(1 + a�−σ )(1 − ρ)�

= (2λ − 1)ρ − λρ2[1 − agσ (1 − ρ)], (9)

where gν (z) = ∑∞
�=1

z�

�ν = 1
�(ν)

∫ ∞
0

xν−1

z−1ex−1dx is the poly-
logarithm function which, for 0 � z < 1 and ν > 0, be-
comes the familiar Bose-Einstein function. Notice that when
agσ (1 − ρ) � 1, the nonlinear term ∝ ρ2 changes sign and a
new behavior is expected; otherwise, the same physics of the
usual CP model is recovered. Finally, notice that Eq. (9) is of
the type (6) with f = 2 − ρ[1 − agσ (1 − ρ)].

As in the QCP model, there is a trivial steady-state density
ρ

(I )
∞ = 0 representing the inactive absorbing state. It is stable

for λ � λ∗ = 1
2 and unstable for λ > λ∗. Thus, λ > λ∗ de-

limits the usual active phase (without bistability). Nontrivial
steady-state densities are shown in Fig. 3 for some values
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FIG. 3. The possible steady-state densities ρ∞ as a function of
the activity spreading rate λ for the values of the exponent σ = 0.5
(top) and σ = 2.0 (bottom panel) and various values of the parameter
a as indicated.

032129-3



C. E. FIORE, M. M. DE OLIVEIRA, AND JOSÉ A. HOYOS PHYSICAL REVIEW E 98, 032129 (2018)

of a and σ , which are the real solutions of the equation
f (ρ∞) = λ−1, namely

ρ∞[1 − agσ (1 − ρ∞)] = 2 − λ−1. (10)

When λ > λ∗, Eq. (10) has only one stable solution ρ
(S)
∞

corresponding to the usual active phase as already anticipated.
When f ′(0) > 0 [or agσ (1) > 1], Eq. (10) has two finite-
density steady-state solutions, ρ

(S)
∞ and ρ

(U )
∞ [with ρ

(S)
∞ �

ρ
(U )
∞ ], which are stable and unstable, respectively. Thus, the

region λc < λ < λ∗ corresponds to the metastable phase. At
λ = λ∗, the bistability of the active phase ends.

For f ′(0) > 0, it is clear the transition from the inactive
phase to a metastable phase at λ = λc < λ∗ is discontin-
uous. The order parameter ρc at the discontinuous transi-
tion is obtained from f ′(ρc ) = 0, i.e., a−1 = gσ (1 − ρc ) −

ρc

1−ρc
gσ−1(1 − ρc ). The corresponding transition point is λc =

f −1(ρc ) = {2 − ρc[1 − agσ (1 − ρc )]}−1 [see the dashed line
in Fig. 1(b)]. On the other hand, if agσ (1) � 1, then the
transition from the inactive to the active phase is continuous at
λ = λ∗ and belonging to the directed percolation universality
class.

Finally, at the inactive phase but near the transition point
to the metastable phase, λ = λc − �, the time needed for
decay from an initial state such that ρ(0) > ρc diverges when
� → 0+ as T = t0�

−φ , with exponent φ = 1
2 and constant

t0 = 2π (ρ−1
c − 1)/

√
2a[(2 − ρc )gσ−1 − ρcgσ−2], according

to Eq. (8).

B. Overview of the temporal disorder effects

Let us now discuss the effects of temporal disorder on the
clean phase diagram of the QCP and σCP models (see Fig. 1).
For simplicity, we assume that λ takes only two possible
distinct values with equal and independent probabilities [see
Eq. (1) for p = 1/2] along system time evolution. As will
become clear, although we base our quantitative conclusions
on the mean-field analysis, our conclusions are qualitatively
applicable to any dimension provided that it supports a dis-
continuous phase transition.

1. Effects on the phases

First, let us discuss the effects of temporal disorder on the
nature of the phases, i.e., let us discuss the case in which both
λ− and λ+ are in the same (clean) phase.

When 0 � λ± < λc, the system inevitably evolves into
the absorbing state, and hence, the inactive phase is not
qualitatively affected by the temporal disorder. Naturally, the
decay dynamics change whether λ = λ+ or λ−.

Likewise, the active phase is also unaffected by disor-
der (λ∗ < λ± � 1). Evidently, the steady-state density ρ∞
fluctuates between the corresponding values ρ

(S)
∞ (λ−) and

ρ
(S)
∞ (λ+), but the main feature of supporting long-standing

activity regardless of the initial state (provided that ρ0 �= 0)
is unaffected.

The analysis of the metastable phase is more involving.
Since ρ

(U )
∞ (λ+) < ρ

(U )
∞ (λ−) [see, e.g., Eq. (3) and Fig. 3],

when the initial state density ρ0 � ρ
(U )
∞ (λ−) [ρ0 � ρ

(U )
∞ (λ+)],

the system will evolve to the active [inactive] state just like
in the clean metastable phase. The new feature occurs when

ρ
(U )
∞ (λ+) < ρ0 < ρ

(U )
∞ (λ−). In this case, the fate of the density

will depend on the details of the temporal fluctuation. If a rare
fluctuation of long activity window appears in the beginning,
i.e., if initially λ = λ+ for a sufficiently long period, then the
density increases beyond ρ

(U )
∞ (λ−) and the system will thus

evolve towards the long-standing activity. On the other hand,
if this rare fluctuation is such that λ = λ−, then ρ will become
less than ρ

(U )
∞ (λ+), putting the system towards inactivity. The

lack of determinism for the evolution of ρ(t ) based only
on knowledge of the initial condition ρ0 is a new feature
appearing in the metastable phase due to temporal disorder
in the region ρ

(U )
∞ (λ+) < ρ0 < ρ

(U )
∞ (λ−).

2. Effects on the phase transitions

Let us now discuss the more interesting cases when λ− and
λ+ are in different phases of the clean phase diagram. We
start analyzing the case when there is a mix of the inactive
(λ− < λc) and the metastable (λc � λ+ < λ∗) phases. Here,
temporal disorder destroys the metastable phase, replacing
it with the inactive one. The explanation is simple. After a
sufficiently long time, the system encounters with probability
one a rare fluctuation in which λ = λ− for a sufficiently long
time interval [greater than T in Eq. (8)]. When this happens, ρ
evolves below ρ

(U )
∞ (λ+) and, thus, the system activity decays

towards extinction. In addition, notice that the first-order
character of the transition between the inactive and metastable
phases (happening when λ− → λc) is preserved.

Because extinction happens only after a large and rare
temporal interval in the inactive phase, we call this phase the
temporal Griffiths inactive phase. Evidently, confirming the
complete destruction of the metastable phase numerically is
a difficult task since the time T ′ needed for ρ evolving below
ρ

(U )
∞ (λ+) is exponentially large in the interesting regime of λ−

being sufficiently close to λc (or �t � T ) and λ+ being far
from λc. On average, the upper limit time for decaying into
the absorbing state is given by (see Appendix A)

ln T ′ ∼ − ln p

�t (λc − λ−)φ
, (11)

with p and �t defined in Eq. (1) and the diverging T ∼
(λc − λ−)−φ , as defined in Eq. (8). The fact that T ′ is very
different from T when approaching the transition reinforces
our definition of temporal Griffiths inactive phase. In the usual
quenched (spatially) disordered case, the inactive phase near
the transition is called Griffiths phase because of the slower
decay into the absorbing state due to the existence of rare and
large regions locally in the active phase. In our case, however,
a rare fluctuation in the inactive phase is required.

In order to illustrate the numerical effort for confirming the
instability of the metastable phase towards the temporal Grif-
fiths inactive one, we plot in the top panel of Fig. 4 (for clarity
only) 20 different disorder realizations together with the aver-
age over 103 disorder realizations. Notice the large spread of
the decaying time for different samples; as a consequence, the
average ρ decays smoothly over 2 orders of magnitude. Thus,
we conclude that the average and typical decay times behave
very differently (another reason for associating this phase to
Griffiths physics). In addition, and most importantly for our
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FIG. 4. The mean-field density ρ as a function of time for the
QCP model. The temporal disorder parameters are p = 1

2 , λ− =
0.79, and λ+ = 0.95. In the top panel, ρ is shown for 20 disorder
realizations by the data in various symbols and colors and thin lines
for �t = 5. The average density 〈ρ〉 (circles with thick lines) is
obtained from 103 disorder realizations. In the bottom panel, the
density is averaged for 103 disorder realizations for different time
windows �t . In all cases, the lines connecting data symbols are guide
to the eyes.

discussion, notice the difference between the decay times of
the clean and random systems. It rapidly increases for smaller
time windows �t in accordance with Eq. (11) as shown in the
bottom panel. Even though we have the analytical solution
Eq. (4), we could not reach the required time for the explicit
demonstration of the instability of the metastable phase for
�t = 1, which would happen for T ′ ∼ 1014.

When λ− < λc (inactive phase) and λ+ � λ∗ (active
phase), the actual system phase is decided by the analysis of
the low-density dynamics Eqs. (2) and (9).

For the QCP model, the density decays exponentially
in the inactive phase as ρ ∼ e−(1−λ− )t in the ρ → 0 limit.
The active phase appears only when λ = 1 and thus ∂tρ ∼
ρ2. Therefore ρ grows much slower than the exponential.
Consequently, the system is in the temporal Griffiths inactive
phase.

For the σCP model, on the other hand, the fate in the
low-density regime is determined by the competition between
periods of inactivation, in which ρ ∼ e

2(λ−−λ∗ )t
, with λ∗ = 1

2 ,

and periods of activation, in which ρ ∼ e
2(λ+−λ∗ )t

. Therefore,
the system is in the active phase if λ+ + λ− > 2λ∗, and it
is in the inactive phase if λ < λ∗. For λ = λ∗, the system
is at the infinite-noise critical point in the same universality

class of the temporally disordered CP model [22]. Evidently,
both the inactive and active phases are of temporal Griffiths
type. The latter has Griffiths singularities in the same sense
as in the contact process model with temporal disorder in
which the lifetime of finite systems does not increase expo-
nentially with the system volume (as in the pure active phase)
but rather as a power law [21–23].

Finally, let us analyze the case when there is a mix of
the metastable (λc � λ− < λ∗) and active (λ+ � λ∗) phases.
Again, we analyze details of the dynamics in the low-density
regime. Since the metastable phase behaves just as the inactive
one in the low-density regime, the same conclusions are
obtained for λ− in the inactive and λ+ in the active phases
applies.

We are now able to determine the mean-field phase di-
agram for the QCP and σCP models in the presence of
temporal disorder as shown in Fig. 5. The dotted lines are
just crossovers. The inactive and active phases, apart from
trivial fluctuations, are akin to the pure phases as discussed
in Sec. III B 1. (Notice, however, that for the QCP model
only the pure active phase exists.) The temporally disordered
metastable phase (δλ �= 0) is also akin to the pure one except
for the unpredictability of the fate of the system state when
the initial density is between the ρ

(U )
∞ (λ+) and ρ

(U )
∞ (λ−) as

discussed in Sec. III B 1. The temporal Griffiths phases have
the same nature of their hosting phases but with different
behaviors due to rare temporal fluctuations. The dashed lines
are first-order phase transitions between the metastable and
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FIG. 5. The mean-field phase diagram in the temporally disor-
dered case for the (a) QCP and (b) σCP models. The temporal
disorder parameters are defined in Eq. (1) with p = 1/2. In the σCP
model, we are considering that aζ (σ ) > 1; otherwise, the metastable
phase vanishes. Dashed (solid) lines denote first- (second-) order
phase transitions. Dotted lines represent crossovers. The parameter
space outside the shaded triangle is unphysical. For the QCP model,
λc = 4

5 while it depends on a and σ for the σCP model; and λ∗ = 1
2 .

(A) stands for active, (I) for inactive, (M) for metastable, and (TG)
for temporal Griffiths.
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the inactive phases, while the solid line in the σCP model
is a continuous phase transition between the inactive and the
active phases in the infinite-noise universality class of the
CP model. Finally, notice that this is the first example of a
nonequilibrium phase transition in which there are temporal
Griffiths phases in both sides of the transition.

C. The probability density distribution for
the density of active sites

Due to noise (temporal disorder), the density of active sites
greatly fluctuates from sample to sample. It is thus desirable
to obtain the probability R(ρ, t ) of finding the system density
between ρ and ρ + dρ at time t .

Let us start by analyzing the cases in which the density can
become arbitrarily small in the long-time limit. On then can
be obtained R(ρ, t ) using the methods of Ref. [22], where the
logistic equations (2) and (9) are linearized. In this approxima-
tion, the problem can be mapped into a random-walk problem
for x = − ln ρ. The nonlinear terms are then replaced by a
reflecting wall at the origin ensuring that the walker position
is always x � 0 (ρ � 1). Therefore, the probability density
distribution becomes

Q(x, t ) =
√

2

πσ 2
v n

e
− (x−v̄n)2

2σ2
a n − 2

v̄

σ 2
v

e
2xv̄

σ2
v �

(−x − vn

σv

√
n

)
, (12)

where �(z) = 1√
2π

∫ z

−∞ e− 1
2 y2

dy is the cumulative normal
distribution; v and σv are the random walker bias and bare
width, respectively; and n = t/�t measures time in units
of the time interval �t . For the QCP model, v = μ�t =
(1 − λ)�t and σ 2

v = (μ�t )2 − (μ�t )
2 = 1

4δλ2�t2, whereas
for the σCP model, v = (μ − λ)�t = 2(λ∗ − λ)�t and σ 2

v =
δλ2�t2.

The result (12) is accurate far from the reflecting wall and
in the long-time regime. Hence, in the inactive phase we find
that

Qinactive(x, t ) ≈
√

�t

2πσ 2
v t

e
− (x−xinactive )2

2σ2
v t/�t , (13)

where x inactive = vn + σ 2
v

2v̄
+ O(t−1) is the walker mean value,

with the constant term being the leading correction due to
the reflecting wall. Notice that Qinactive represents a simple
random walker drifting away from the origin as t → ∞.

The result (12) can also be applied to the active phase close
to the transition (which happens only for the σCP model for
λ � λ∗), yielding

Qactive(x, t → ∞) ≈ −2v̄

σ 2
v

e
2v̄

σ2
v

x = e−x/xactive

xactive
, (14)

where the walker mean value is xactive = σ 2
v

2|v| .
Naturally, Eq. (12) also applies to the transition between

the active and inactive phases in which

Qcritical(x, t ) ≈
√

2�t

πσ 2
v t

e
− x2�t

2σ2
v t . (15)

Notice that Qcritical is a half-Gaussian distribution which
broadens without limit as t → ∞, illustrating the

infinite-noise criticality concept. This also implies that

the walker mean value is xcritical =
√

2σ 2
v t

π�t
.

The result (12) can also be applied to the entire metastable
phase of both models if one starts with sufficiently small initial
densities [below ρ

(U )
∞ (λ+)]. In this case, the metastable phase

behaves similarly to the inactive phase, and, hence, Qinactive

in Eq. (13) accurately describes the probability density
distribution.

We now comment on the cases in which the density ρ

does not become small. These happen for the active phase
(of the σCP model) far away from the inactive phase and
for the metastable phase (of both models) provided that one
starts with a sufficiently high initial density [above ρ

(U )
∞ (λ−)].

Clearly, the density of active sites fluctuates between the
values ρ

(S)
∞ (λ−) and ρ

(S)
∞ (λ+). Since the nonlinear terms in

Eqs. (2) and (9) are important, it becomes cumbersome to
analytically predict the resulting stationary probability density
distribution R(ρ, t ) → S(ρ). For instance, if �t is much
greater than the relaxation time required to go from ρ

(S)
∞ (λ−)

to ρ
(S)
∞ (λ+) (and vice versa), then one mostly finds ρ either

very close to ρ
(S)
∞ (λ−) or ρ

(S)
∞ (λ+). Therefore, S(ρ) is approx-

imately a bimodal distribution peaked around ρ
(S)
∞ (λ−) and

ρ
(S)
∞ (λ+). On the other hand, for small �t , the system has little

time to relax between ρ
(S)
∞ (λ−) and ρ

(S)
∞ (λ+). Hence, S(ρ) will

be peaked at some value between ρ
(S)
∞ (λ−) and ρ

(S)
∞ (λ+).

Finally, let us analyze the last case in which both λ+ and
λ− are in the metastable phase and the initial density is such
that ρ

(U )
∞ (λ+) < ρ0 < ρ

(U )
∞ (λ−). As discussed in Sec. III B,

the fate of the activity depends on the details of the tempo-
ral disorder. If initially λ = λ+ for a long interval of time,
then the density will increase above ρ

(U )
∞ (λ−) and thus will

remain finite in the stationary regime. Otherwise, if λ = λ−
for a long time window, then the system evolves towards the
inactive absorbing state. In this case, therefore, the distribution
of ρ will have two components resulting in (1 − α)S(ρ) +
αρ−1Qinactive(e−ρ, t ), where α is the probability that the sys-
tem evolves into the absorbing state.

We report that we have confirmed all the above results
by numerically solving Eqs. (2) and (9) in the presence of
temporal disorder via the Euler method and then computing
the corresponding probability density distribution. Here, we
only show in Fig. 6 the logarithm of the typical density as a
function of time for parameters near the transition between
the inactive and active phases for the σCP model. We also
show as solid lines the analytical prediction for the infinite-
noise criticality in the long-time regime as discussed after
Eqs. (13)—(15). The agreement is remarkable.

IV. MONTE CARLO SIMULATIONS

Our Monte Carlo simulations were performed in the lowest
dimensions in which both models exhibit a first-order phase
transition: d = 2 and d = 1 for the QCP and the σCP models,
respectively [31,32]. In all cases, we consider periodic bound-
ary conditions and μ = 1 − λ with 0 < λ < 1. For the σCP
model, we have studied only the case σ = 0.5 and a = 2.

As discussed in Sec. III, simulations of first-order tran-
sitions demands long computational times, especially in the
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FIG. 6. The logarithm of the typical density as a function of
the time t for the σCP model at the mean-field level. The long-
range interaction parameters are a = 1 and σ = 0.5. The temporal
disorder parameters are δλ = 0.4 and �t = 10 [see Eq. (1)]. Data
points are averaged over N = 5 × 105 disorder realizations. Error
bars are about the size of the symbols. Solid lines are the analytical
predictions (no fitting parameters) based on the simple random-walk
picture (see main text).

presence of temporal disorder. For this reason, our purpose is
not to provide precise quantitative numbers but rather confirm
the qualitative scenario of the temporal disorder effects on
the first-order phase transitions of Sec. III. Hence, we first
review the clean system in order to confirm the metastability
of the active phase and the algebraically diverging time T in
Eq. (8). Then, we provide data supporting the instability of
the metastable phase towards the absorbing state when tem-
poral disorder allows for fluctuations into the inactive phase.
Finally, we confirmed the infinite-noise criticality governing
the transition between the inactive and active phases which
takes place in the strong disorder regime of the σCP model.
We emphasize that it is not our purpose to perform a careful
quantitative study. Thus, finite-size effects, unimportant for
our discussion, may be strongly present in our data.

A. The Monte Carlo dynamics

The actual dynamics is implemented following Ref. [33].
In the 2D square lattice QCP model, an active site, say, i, is
randomly chosen among all M active sites in the system. With
probability μ

μ+λ
= 1 − λ, site i becomes inactive, whereas,

with complementary probability, one of its four nearest-
neighbor sites, say, j , is randomly chosen. If j is active, then
the system state remains unchanged; if not, then it will become
active if there is at least one pair of diagonal nearest-neighbors
active sites. Otherwise, the state remains unchanged. Finally,
the time is increased by 1/M .

The dynamics in the 1D σCP model is very similar. After
randomly choosing a site i among all the M active ones, we
also choose with equal probability one of the two directions
in the lattice. Then, we compute the corresponding activity
spreading rate λ� = λ(1 + a�−σ ), with � being the distance (in
units of lattice spacing) to the next active site in the chosen di-
rection. Afterwards, with probability μ

μ+λ�
= 1−λ

1+λa�−σ , the site
i becomes inactive, whereas, with complementary probability,
the nearest-neighbor site in that chosen direction becomes

active (if it was already active, the system state remains
unchanged). As in the QCP model, the time is incremented
by 1/M . In these cases, one performs averages over NMC

different Monte Carlo runs. Since we also aim to study the
metastable phase, we need as well to perform simulations
starting from a partially filled lattice in which a fraction 0 <

ρ0 < 1 of sites (randomly chosen) is active.
Temporal disorder is implemented as explained in Sec. II.

We start with an activity spreading rate drawn from Eq. (1),
and whenever the many time increments sum �t , a new λ is
drawn from the same binary distribution.

In the usual clean CP model, one usually performs sim-
ulations averaging over NMC different Monte Carlo runs. In
our study, we also need to average over ND different disorder
realizations of the temporal sequence {λ1, λ2, λ3, . . . }. We
verified that our results have no dependence on NMC as long
as ND � 1, i.e., it is sufficient using only one Monte Carlo
run NMC = 1 for a given temporal sequence {λi} provided that
the number of different disorder realizations ND is sufficiently
large. In addition, because we want to study the metastable
phase, we need as well to perform simulations starting from
a partially filled lattice in which a fraction 0 < ρ0 < 1 of
(randomly chosen) sites is active. Therefore, we also need to
average over NS different initial states for each sequence {λi}.
We report that only one different state NS = 1 for each tem-
poral sequence is sufficient for obtained unbiased and reliable
data as long as the number of different disorder realizations
ND is large. For these reasons, in what follows, we present
our data average averaged over ND = N disorder realizations.
This means that only one Monte Carlo run NMC = 1 for each
of these sequences were performed. For the cases in which
0 < ρ0 < 1, this also means that N different initial states were
considered in the simulation.

B. The clean system

Let us start by analyzing the clean case. The metastability
of the active phase near a first-order nonequilibrium phase
transition into an absorbing state has been reported in the
literature in many different situations [34,35]. It persists in
any spatial dimension supporting a first-order phase transition
and we have confirmed it in both studied models.

In Fig. 7, we plot the average density of active sites ρ(t )
as a function of time t for the QCP model for systems of
linear size L = 200 (we have also used L = 400 and verified
the same conclusions). In the top panel, the initial density is
fixed at ρ0 = 1 and the activity spreading rate λ is varied.
In the remaining panels, ρ0 is varied while λ is fixed at
0.8613 (middle) and 0.98 (bottom). From the top and middle
panels we conclude that a first-order phase transition takes
place at 0.8610 < λc � 0.8613. Interestingly, we conclude
from the bottom panel that, in similarity with the mean-field
results of Sec. III A 1, the active phase of the QCP model is
entirely metastable (except for the trivial case λ = 1). We have
also confirmed it for slightly different implementations of the
dynamics and for λ = 0.99. We thus conjecture that this is a
general feature of the active phase of the QCP model for any
spatial dimension d � 2.

In Fig. 8 we study the σCP model for a = 2.0 and σ = 0.5
for systems size L = 105. As in the mean-field approach, we
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FIG. 7. The average density as a function of the simulation time

for the QCP. In the top panel, ρ is shown for various λ starting for
ρ0 = 1. The middle and bottom panels show ρ for λ = 0.8613 and
λ = 0.98 and various different initial densities ρ0. Data are averaged
over 102 (for the cases when ρ is large for large t) to 105 (otherwise)
different Monte Carlo runs for systems of linear size L = 200.

find an active metastable phase in the interval λc � λ < λ∗,
where we have identified λc � 0.643 and λ∗ � 0.670.

We close this section by studying the time T ∼ (λc − λ)−φ

required for the system decaying into the absorbing state as
λ → λc (see Fig. 9). We estimate T from the data on the
top panels of Figs. 7 and 8 when ρ(T ) = 0.1. (We have used
further data with fewer statistics which are not shown.) We
find the decay exponent φ ≈ 1.56(1) and 4.52(1) for the QCP
and σCP, respectively. Also, we obtain the transition points
λc = 0.8611(3) and 0.647(2) (for the QCP and σCP models,
respectively) from the data fitting. Notice that we could not
study T for more than 2 orders of magnitude close to the
transition point and, thus, our estimate may be plagued with
large systematic errors.

100 101 102 103 104 105 10610-3

10-2

10-1

100

λ=0.639
λ=0.640
λ=0.641
λ=0.642
λ=0.643
λ=0.644

100 101 102 103 104 105 106 107 10810-6

10-4

10-2

100

100 101 102 103 104 105 10610-4

10-3

10-2

10-1

100

λ=0.65

λ=0.67

ρ

t
FIG. 8. Similar to Fig. 7 but for the σCP model with a = 2.0,

σ = 0.5, L = 105 and the data are averaged over 103–105 different
Monte Carlo runs.

C. Temporal disorder

We start our study analyzing the 2D QCP model. In panels
(a) and (c) of Fig. 10 we confirm the instability of the active
phase (λ+ = 1.0) with respect to temporal fluctuations into
the inactive phase λ− < λc ≈ 0.8613. In panel (a), we show
for various λ− close to λc that the systems do not decay into
the absorbing state up to large times ∼107, which could be
naively interpreted as the system being active. However, as
discussed in Eq. (11), this is not the case because the required
time for decaying is extremely large. Increasing �t to 104 [see
panel (c)] reveals the instability of the active phase of the 2D
QCP model, just as in the mean-field approach. Panel (b) of
Fig. 10 corroborates the metastability of the transition point
λ− = λc and λ+ = 1 between the inactive to the active phase
of the QCP model, and therefore, confirms the preservation
of the first-order transition character with respect to temporal
disorder in the QCP model. Finally, similarly to panel (c), in
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FIG. 9. The decay time T to the system toward the absorbing
state as a function of s λ for the (top) QCP and (bottom) σCP models.
In both cases, we observe an algebraic behavior of type (λc − λ)−φ ,
where φ = 1.56(1) and 4.52(3), respectively.

panel (d) we confirm the instability of the metastable phase
(λc < λ+ = 0.95 < λ∗ = 1) towards the absorbing state. We
report that the transition point λ− = λc and λ+ = 0.95 is also
metastable [as in panel (b)]. Finally, we conclude that the
phase diagram for the random 2D QCP model is just as the
mean-field one shown in Fig. 5(a) with λc ≈ 0.8613.

Figure 11 shows the main numerical results for the 1D
σCP. In panels (a) and (c) we plot ρ(t ) for many cases in
which λ− < λc ≈ 0.643 is in the inactive phase while λ+ =
0.650 < λ∗ ≈ 0.670 is in the metastable phase. As in the QCP
model, the instability of the metastable phase is manifest for
the time window studied only when we consider sufficiently
large �t = 105 as shown in panel (c). Panel (c) is analogous
to panel (a) but λ+ = 0.700 > λ∗ is in the active phase, and
the simulations start from ρ0 = 5 × 10−5. As can be seen, the
active phase is stable for λ− � 0.620. Finally, panel (d) shows
ρ(t ) starting from different initial conditions for λ+ = 0.700
in the active phase and λ− = 0.645 in the metastable one. In
this condition, it is clear that the system is effectively active
with no indications of bistability. Due to the small range of the
metastable phase (0.643 < λ < 0.670) we could not reliably
study the crossover line between the metastable and active
phases analogous to the dotted line in Fig. 5(b).

As shown in Fig. 11(b), there is a transition between the
active and inactive phases for large δλ. Our final numerical
study is to confirm that this transition is in the infinite-noise
criticality. We then repeat the study of Fig. 11(b) but starting
from the full lattice ρ0 = 1 as shown in Fig. 12. We find
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FIG. 10. The average density ρ as a function of time t for the
2D QCP model for systems of size L = 200 averaged over NMC =
102–105 disorder realizations. The disorder parameters [see Eq. (1)]
λ± are indicated in the legends [the one in panel (a) also applies to
(c)], p = 1

2 , and �t = 102 for panels (a) and (b) and �t = 104 for
(c) and (d). In all panels the initial density is ρ0 = 1 except in panel
(b), where ρ0 is varied.

that for λ− ≈ 0.6195(5) the system is critical with average
density vanishing (for 2 orders of magnitude in time) as
ρ(t ) ∼ (ln t )−1, exactly the same behavior of a system in the
infinite-noise criticality of the CP model [22,23].

Finally, we comment on the phase diagram of the ran-
dom σCP. As in Fig. 5(b), the dashed line representing the
first-order phase transition is preserved in any dimension, i.e.,
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FIG. 11. The average density as a function of time for the dis-
ordered 1D σCP with disorder parameters [see Eq. (1)] p = 1

2 , �t ,
and λ± being specified in the legends [with the ones in panel (a)
applying to panel (c) as well]. The system size is L = 105 averaged
over 102–104 disorder realizations. In panels (a) and (c), λ+ = 0.65
is in the metastable phase while the various λ− � λc ≈ 0.643 are in
the inactive phase. Panel (b) shows ρ (starting from ρ0 = 5 × 10−5)
for various λ− in the inactive phase while λ+ = 0.700 is in the active
one. Panel (d) ρ starting from various different initial conditions for
λ+ in the active phase while λ is in the metastable one.
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FIG. 12. The average density as a function of time for the σCP
with λ+ = 0.7, p = 1

2 , �t = 102, and various distinct values of λ−.
The straight (blue) line has slope ρ ∼ (ln t )−1 for more than two
orders of magnitude in t . The system size is L = 105 averaged over
103–3 × 103 different disorder realizations.

its slope does not depend on d. For the studied case (a = 2
and σ = 0.5 in d = 1) we find that λc ≈ 0.643 and λ∗ ≈
0.670. We could not determine the dotted line separating the
bistability region from the usual active one. For the continuous
transition between the inactive and active phase (solid line),
we report that we have numerically verified that it tilts to the
right favoring the inactive phase. This is expected because
inactivation always provide an exponential decay of ρ for
any dimension. On the other hand, only in the mean-field
approximation does the activity spread exponential fast. For
finite dimensions, it can only spread ballistically. Therefore,
we expect smaller active phases when compared with mean
field, and, thus, the solid line must tilt to the right.

V. CONCLUSIONS

We have established a general theory of the effect of
temporal disorder in discontinuous nonequilibrium phase
transitions into an absorbing state. A quantitative analysis
is present in the framework of the mean-field approach as
well as numerical simulations in finite dimensions for two
paradigmatic models exhibiting first-order phase transitions,
namely the QCP and the contact process with long-range
interactions (σCP) models. Our work provides an analytical
basis for the numerical findings of Ref. [27] that, in contrast
to the spatial disorder, temporal disorder does not forbid
discontinuous transition in low-dimensional systems. This is
not to be mistaken as a weaker effect in comparison since the
metastable active phase is replaced by the temporal Griffiths
inactive phase.

We have found that temporal disorder noise does not qual-
itatively affect the phases when the fluctuations are confined
within the phases, except for small details in the metastable
phase as discussed in Sec. III B 1.

On the other hand, the metastable phase is always unstable
against temporal disorder whenever it allows for fluctuations
into the inactive phase. Due to rare temporal fluctuations,
the metastable phase becomes a temporal Griffiths inactive
phase in which the decay time become exponentially large

[see Eq. (11)]. Furthermore, our general mean-field results
show that the temporal Griffiths inactive phase is a more
general phenomena expected to appear in any nonequilibrium
first-order phase transition into an absorbing state.

For the QCP model, the active phase is also unstable
against temporal disorder and, thus, only exists in the clean
limit. As a consequence, the first-order character of the transi-
tion is not destabilized by temporal disorder for any disorder
strength. In contrast for the σCP model, the active phase
is robust against small fluctuations into the inactive phase.
As a consequence, the first-order transition is turned into
a continuous one when the disorder strength is sufficiently
strong. In addition, we have found that the critical behavior
belongs to the infinite-noise universality class of the contact
process model but with two Griffiths phases surrounding it.

Finally, we notice that the inactive phase being charac-
terized by an absorbing state is not a necessary condition
for our theory, whereas the bistability of the active phase is.
Therefore, although we have focused only on two models,
we expect that our theory applies to other models exhibiting
discontinuous nonequilibrium phases transitions such as, e.g.,
the Ziff-Gulari-Barshad model [4] and the majority-vote with
inertia model [36].
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APPENDIX: DECAYING TIME NEAR THE
TEMPORAL GRIFFITHS INACTIVE—METASTABLE

PHASE TRANSITION

We intend to estimate the average time T ′ for decaying
when the system undergoes a first-order phase transition
from the inactive to the metastable phase in the presence of
temporal disorder.

For simplicity, consider the case of binary disorder as
defined in Eq. (1) where λ− < λc places the system in the
inactive phase and λc < λ+ < λ∗ places the system in the
metastable one. In this case, notice there are only three rele-
vant time scales in the problem: the time interval �t , the decay
time τ− (related to λ−), and the relaxation time τ+ (related to
λ+). Precisely, the second is defined as the time required for
the system to evolve from ρ (S)(λ+) to ρ (U )(λ+) when λ = λ−
while the latter is the other way round when λ = λ+.

Let us consider the case when the disordered system is
close to the metastable phase, thus λc � λc − λ− > 0 [im-
plying τ− ∼ T in Eq. (8)]. For further simplicity, consider the
case τ+ � �t � τ− (which could possibly be accomplished
when λ+ is deep in the metastable phase: λ∗ � λ∗ − λ+ > 0).
With those assumptions, the only way of decaying into the
absorbing state (starting from the initial condition ρ0 = 1) is
via a sufficiently long and continuous sequence of k = τ−/�t

inactive time intervals (λ = λ−) such that ρ becomes less than
ρ (U )(λ+) afterwards.

Since this long sequence is rare, the waiting time T ′ can
be extremely long as we show in the following. Consider
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intervals of duration τ− which appear with probability pτ =
pk , with p being the probability for an interval being of
inactive type [see Eq. (1)]. Then, starting from an active state,
the probability that the system decays just after the nth of such
time intervals is

Pn = (1 − pτ )n−1pτ . (A1)

Thus, the average waiting time for decaying into the absorbing
state is

T ′ ≈ τ−
∞∑

n=1

nPn = τ−p− τ−
�t ,

and we recall that τ− ∼ T .
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