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Single-file diffusion in a multilayered channel
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We demonstrate that strongly repelling Brownian particles confined in two-dimensional microchannels with
multiple layers show single-file diffusion. At long times the mean-square displacement (MSD) is proportional
to t1/2, as in the one-dimensional case. On an intermediate timescale the MSD is further reduced. It scales with
a minimal exponent that decreases with the number of layers in the channel. In the limit of infinite width of the
channel, the MSD time evolution shows a crossover to a logarithmic time dependence.
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I. INTRODUCTION

We carried out Brownian dynamics simulations of interact-
ing superparamagnetic colloidal particles in two-dimensional
microchannels. Superparamagnetic colloidal particles at in-
terfaces can serve as an ideal model system to study crys-
tallization in two dimensions [1–6]. The interaction between
the particles can be tuned by an external magnetic field. The
interaction strength can be viewed as an inverse temperature
of the system. As one increases the external magnetic field
the interparticle repulsion increases and the particles start to
freeze into a triangular lattice.

The two-dimensional crystal is special since it has no true
long-range order, which has been proven by Mermin [7,8].
This is also true for the interaction potential used in our
study [7]. Instead, the two-dimensional crystal exhibits only
quasi-long-range order. Thus the displacement from perfect
lattice sites increases logarithmically with distance in two di-
mensions. Therefore, the mean-square displacement also does
not converge to a constant, but diverges on long timescales
due to elastic deformation of the two-dimensional crystal.

For the system of superparamagnetic colloids the crystal-
lization is a two-step process with an intermediate hexatic
phase with a sixfold orientational order only and a solid
phase with both translational and orientational order. This
two-dimensional melting is well understood by the formation
of topological defects (Kosterlitz-Thouless-Halperin-Nelson-
Young theory [1–3,9]), whereas less is known about the
dynamics in the solid phase, because of the exponentially
diverging timescales.

To overcome this problem we study the transition from
narrow quasi-one-dimensional channels to the infinite two-
dimensional crystal as a function of channel width LY at
constant density. Particles in restricted two-dimensional mi-
crochannels are also well studied [10–14]. In this confined
system the particles form layers parallel to the walls. This
layering takes place at interaction strengths similar to those of
the phase transition in the unrestricted system. If the channel
width LY is an integer multiple of the layer spacing R of the
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triangular lattice, then the layering is assisted by the walls
and occurs at lower interaction strengths. However, in the
case of a misfit such that the channel width LY is in between
two of these stable situations, the layering is suppressed up
to quite high interaction strengths [11]. As the interaction
strengths increases, the crossover from nl to nl + 1 layers gets
sharper [12].

It is well known that for narrow channels, with only one
layer, the particles undergo single-file diffusion (SFD), due
to their sequential ordering [15–31]. The long-time evolution
of the mean-square displacement (MSD) is not proportional
to the time, as it is in the case of normal diffusion, but
proportional to

√
t . The long-time limit in a one-dimensional

channel with interacting particles is given by

〈�x2(t )〉 = 2F
√

t, (1)

with single-file mobility F , which is determined by the
average space a particle has before it encounters another
particle. The first sign of single-file diffusion has been found
by Hodgkin and Keynes [15] in the permeability of potas-
sium in nerve fibers. The exponent 1/2 in Eq. (1) has been
theoretically derived for Brownian particles by Harris [16]
and for a one-dimensional lattice gas by Richards [17] and
Fedders [18]. Single-file diffusion was observed by Hahn et al.
[19] and then directly in real-space experiments in colloidal
ring systems by Wei et al. [20]. In recent years it has been
found that SFD is a more general phenomenon that occurs in
many different systems [21–31].

In narrow channels with a few layers slightly below the
liquid-solid phase transition the MSD shows single-file dif-
fusion on an intermediate-timescale, but only if layering is
favored by the channel width. The intermediate diffusion
exponent has a nonmonotonic dependence on the width LY

of the channel [13,25].
In this paper we concentrate on the high interaction limit

above the liquid-solid phase transition. We are interested in
the mean-square displacement 〈�x2(t )〉 along the channel
direction. We will study how the single-file behavior with
a mean-square displacement proportional to

√
t in the one-

dimensional case will cross over to a logarithmically di-
verging mean-square displacement in the unrestricted two-
dimensional crystal. Therefore, the width LY of the channel
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is varied at constant particle density n and at high interaction
strength beyond the liquid-solid phase transition. We will take
advantage of the universal property of the diffusion exponent
and compare the Brownian system to a simpler lattice-gas
system, which is much less numerically expensive.

II. MODEL

We use Brownian dynamics simulation [32], which is an
Euler integration of the overdamped Langevin equation. The
positions ri (t ) of particle i are updated to a new position after
the time step �t ,

ri (t + �t ) = ri (t ) + D0�t

kBT
Fi +

√
2D0�tR(t ), (2)

with microscopic diffusion constant D0, thermal energy kBT ,
δ-correlated Gaussian random numbers R(t ) with zero mean
and unit variance, and the deterministic force Fi acting on
this particle. The particles are restricted to the xy plane
and confined in a channel. Periodic boundary conditions are
applied in the x direction and hard-wall boundary conditions
are applied in the y direction. The hard-wall boundary is
realized by using the analytically known transition probability
of a Brownian particle near a hard boundary as propose by
Behringer and Eichhorn [33]. The length LX = 1000 of the
channel in the x direction is much larger than the width
LY in the y direction to minimize finite-size effects. This is
important, since it has been shown [34] for one-dimensional
lattice systems with periodic boundary conditions, where the
mean-square displacement of a tagged particle is computed
by following the particle coordinate without renormalizing the
coordinate due to periodic boundary conditions by adding or
subtracting the lattice system length each time a boundary is
crossed, that the exponent in Eq. (1) must cross over from
1/2 to 1 at long times due to a normal diffusion of the full
particle system across the periodic boundaries. However, with
sufficient channel length these timescales are larger than the
simulation times.

The particles interact via the repulsive potential of parallel
dipoles V = ε(σ/rij )3, with interaction strength ε, particle
diameter σ , and interparticle distance rij = |ri − rj |. We used
a cutoff at a distance rc = 12.0σ . This potential models the
interaction of superparamagnetic colloidal particles in a per-
pendicular magnetic field, as they were used for experiments
in two dimensions [5,6,20,35,36].

The melting in this system is described by the dimension-
less control parameter [10]

� = ε

kBT

σ 3

R3
, (3)

which is given by the ratio of potential energy to thermal
energy kBT . The system is in a solid phase for � > 15. There
is also a hexatic phase for 15 > � > 12 with only orienta-
tional order, which is discussed, e.g., in [37] for different
power-law potentials. We compare the results with those of a
quasi-one-dimensional lattice-gas model in channel geometry,
in which the particles can only move in one dimension in their
own layers parallel to the channel walls, but also interact via
an exclusion process with particles on neighboring layers. The
square lattice has a length of LX in the periodic x direction

FIG. 1. Snapshot of the colloidal particles in a part of a channel
of width LY = 14.5 forming nl = 10 layers and a sketch of the initial
condition of the lattice-gas model with particle spacing d = 3 and nl

layers.

and consists of nl coupled layers in the y direction with freely
moving boundary particles. At the beginning of the simulation
the particles were placed equally spaced in each layer with a
distance of 2d (d is an integer multiple of the lattice spacing),
while the positions are shifted from layer to layer by d (see
Fig. 1). In this manner the particles form a triangular lattice.

In each step one of the N particles is randomly selected and
attempts to move with equal probability to an adjacent lattice
site either to the left or to the right. Hence the diffusion con-
stant of the lattice gas is ν = 0.5. The particles are prevented
from moving if the targeted lattice site itself is occupied or
one of the two sites on the adjacent layers is occupied. Due to
the alternating starting condition, a particle will never attempt
to move onto an occupied site. Thus the particle is caged by
the four surrounding particles on the adjacent layers. In this
manner, the particles keep their mutual order.

This model is equivalent to the two-dimensional cage
model of Centres and Bustingorry [38]. In their model each
particle is caged by the four surrounding particles and can
move within this cage in the x and y directions. However, the
motion in both dimensions is independent, since the accessi-
ble region for a move in the x direction only depends on the
x positions of the four surrounding particles. The same is true
for the motion in the y direction. Therefore, their model can be
separated in two independent systems with one-dimensional
dynamics but two-dimensional interactions. This is the model
presented here.

This lattice-gas system can be seen as a model for diffusion
in an ideal two-dimensional solid, where the particles keep
their mutual order. In a realistic solid there is also a diffusion
due to interchange of particles, which is closely related to the
diffusion of defects. However, in our model the interchange
of particles is suppressed on the timescales we study, due to
rather long-range interactions and high interaction strengths.

III. RESULTS

All results of the Brownian dynamics simulation are given
in units of particle diameter σ , thermal energy kBT , and diffu-
sion times τD = σ 2

D0
. Simulations have been performed at fixed
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particle density n = 0.4 in channels of length LX = 1000 and
variable width 1 � LY � 33.8 with up to N = 13 520 parti-
cles. The MSD has been calculated from 60 × 106 simulation
steps and averaged over 50 systems with different random
seeds and initial conditions. For the purpose of equilibration,
the system starts with random particles positions and the
interaction strength is slowly increased. We study the colloidal
systems in the high interaction limit with ε = 200. This corre-
sponds to a value of the dimensionless interaction parameter
of � = 62.8, which is far in the solid phase for the unrestricted
two-dimensional system. The interesting nonlinear behavior
near the critical � has already been discussed in Ref. [25].

In the two-dimensional system the particles form a trian-
gular lattice. In channels the positional order perpendicular to
wall is stabilized at the expense of the positional order along
the channel direction. The particles form layers parallel to the
wall with a spacing of R = (

√
3/2n)0.5 ≈ 1.47. As one can

see in Fig. 1, the density on the boundary layer is slightly
higher, thus the stable formation of nl layers is slightly shifted
compared to the ideal case where the expected number of
layers is LY /R + 1. With a higher number of layers this shift
becomes smaller.

The crossover from the one-dimensional channel with only
one layer to the two-dimensional channel with two layers
is a bit vague, mostly because the definition of the density
is different in one and two dimensions [39]. Eventually the
particle will form two layers, where the particles tend to be
alternately ordered at one of the two walls of the channel.
The strict alternate order is not stable, since there is no long-
range order in one dimension. Strictly speaking, this argument
should be true for all finite width LY and all number of layers,
but already three and four layers of particles are quite stable.

A. Diffusion along the channel

Regarding the diffusion along the channel direction there
is no distinct difference between a system with two layers
and a system with one layer. The particles perform single-file
diffusion as long as the particles cannot bypass each other.
However, what happens if one further increases the width
LY of the channel at constant particle density? How does
the crossover from the single-file diffusion in an ordered
one-dimensional system to the diffusion in a two-dimensional
crystal take place?

We are interested in the diffusion due to elastic lattice de-
formation, therefore we look at a system with strong repelling
particles, where the interchange between two or more particles
is suppressed. In the lattice-gas model, interchange of the
particle order is strictly forbidden.

Figure 2(a) shows the evolution of the mean-square dis-
placement of the colloidal particles along the x axis for
different channel widths LY , at which the particles form stable
layers. In the smallest channel of width LY = 3.8 the particles
form three layers and show a similar evolution of the mean-
square displacement as in the case of single-file diffusion. If
the number of layers is increased, the mean-square displace-
ment decreases. It shows an intermediate subdiffusion with
an even smaller exponent below the single-file exponent 0.5,
but the long-time evolution develops again with the single-
file exponent. The single-file mobility F of this long-time

evolution decreases as the number of layers increases. From
these data it is not clear whether the single-file mobility
vanishes in the limit of an infinite number of layers.

Figure 2(b) shows the time-dependent diffusion exponent

α(t ) = d log 〈�x2(t ′)〉
d log t ′

∣∣∣∣
t ′=t

, (4)

which is defined as the logarithmic derivative of the MSD. The
time-dependent exponent reveals that the long-time evolution
is single-file-like for all channels with 24 or fewer layers. To
go to even wider channels it would be necessary to not only
increase the width, but also to increase the simulation time and
the length of the channel, in order to avoid finite-size effects.
Due to computer time restrictions, it is necessary to switch to
the simpler lattice-gas model.

In the lattice-gas system the number of layers is varied
up to a maximum number of nl = 600 layers. The channels
have a length of L = 2500 lattice sites per layer. The aver-
age particle spacing d is also varied between 2 and 6. The
MSD has been averaged over 108 time steps and 50 different
random seeds. With a proper rescaling of the time t∗ = t d2

ν

and space x∗ = x 1√
d(d−1)

, the MSD is nearly independent of
d and mainly depends on the number of layers nl . In the
following only dimensionless (reduced) quantities are used
and the asterisks are omitted.

Figure 2(c) shows the mean-square displacement of the
lattice gas with a different number of layers nl and different
average particle spacings d. For nl = 2 layers this model is
equivalent to the single-file lattice gas, also known as a simple
exclusion process in one dimension. The long-time limit of
the mean-square displacement is analytically known to be
〈�x2(t )〉 = 2( t

π
)0.5 [34]. For a higher number of layers we

see the same behavior as in the colloidal system; however,
now we can extend the study to wider channels.

Here we show that the mean-square displacement con-
verges for an infinite number of layers to a logarithmic time
dependence. It can be expressed in a minimal form

〈�x2(t )〉nl→∞ = C ln

(
1 + 2t

C

)
, (5)

which is designed to fit the short-time linear diffusion and has
one additional fit parameter C that describes the long-time
logarithmic behavior. The fits to the MSD of nl = 300 give
slightly different values for different layer spacing d around
C ≈ 0.25. In Fig. 2(c) this curve is plotted with C = 0.25 as
the limit nl = ∞. The MSD for nl = 600 does not deviate
from this limit for times t < 105. This fit does not give
the exact time evolution, but shows that the MSD increases
logarithmically in time in the limit LY → ∞.

Figure 2(d) shows the time-dependent diffusion exponent
of the lattice gas. It shows the same behavior as the MSD of
the Brownian particle in the limit of high interaction strengths.
All curves up to nl = 20 layers converge for long times to
the single-file exponent 0.5 indicated by the horizontal line.
For wider channels the simulation time is too short to reach
this limit, since the timescales diverge exponentially. For
the largest channel with nl = 600 layers the time-dependent
diffusion exponent is strictly monotonically falling in the
interval of the simulation time.
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FIG. 2. (a) Mean-square displacement and (b) time-dependent exponent α(t ) for the colloidal channel of width LY , corresponding to
nl = 3, 4, 5, 7, 10, 12, 24 layers, and (c) MSD in a master plot with all average particle spacings d = 2, 3, 6 and (d) time-dependent exponent
α(t ) in the corresponding lattice-gas system with nl layers.

The diffusion exponent reveals another universal behavior.
It seems that the minimum of the time-dependent exponent
α(t ) not only is independent of d in the lattice-gas system,
but is also similar to the high interaction limit of the colloidal
system for corresponding channel widths. Figure 3 shows the
minimal diffusion exponent αmin, which is the minimal value
of the diffusion exponent α(t ). It is plotted as a function of
the number of layers nl for the lattice gas and as a function
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FIG. 3. Minimal diffusion exponent αmin of the Brownian system
as a function of reduced width LY /R for different interaction strength
� and minimal diffusion exponent of the lattice-gas system as a
function of the number of layers nl with different mean particle
separation d .

of the reduced width LY /R for the colloidal system. For the
colloidal system the minimal exponent converges for large �

to the limiting results of the lattice-gas system. For intermedi-
ate � it shows an oscillating behavior as a function of channel
width (as in Ref. [25]).

For layered systems with multiple ordered layers the min-
imal diffusion exponent is a universal quantity that only
depends on the number of layers nl . For a high number of
layers the minimal exponent seems to follow a power-law
decay that can be well described by

αmin = 0.5n−0.25
l . (6)

Hence the minimal diffusion exponent vanishes in the limit
of the two-dimensional system (nl → ∞). This implies the
vanishing of the long-time single-file mobility F .

B. Diffusion in the direction orthogonal to the wall

Figure 4(a) shows the mean-square displacement orthogo-
nal to the channel direction for the colloid system for different
channel widths LY . The motion of the particles in the y

direction is confined to their layers. Therefore, the mean-
square displacement in the orthogonal direction stays finite. It
converges for long timescales to a plateau. The plateau value
increases with the number of layers in the channel. However,
for the limit of an infinite number of layers the MSD in
the y direction is the same as the MSD in the x direction,
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FIG. 4. (a) Mean-square displacement in the direction orthogo-
nal to the walls for the colloidal channel of width LY and (b) MSD
for the corresponding lattice-gas model with many layers and a finite
length LY = Nd with closed ends (only for average particle spacing
d = 2).

since in the limit of infinite channel widths the influence
of boundary conditions vanishes. Indeed, the MSD in the y

direction approaches the same logarithmic scaling as in the
x direction. However, the maximal channel width LY = 33.8
with only 24 layers is too small to reach the limit LY → ∞.
Again, the lattice-gas model helps to analyze the correspond-
ing diffusion behavior in much larger systems. Figure 4(b)
shows the mean-square displacement of the corresponding
lattice-gas model with many layers, but only a finite length of
LY = Nd and closed ends. Here N corresponds to the number
of layers in the Brownian particle system. Since the motion is
limited to the finite length scale, the MSD stays also finite
as in the colloidal system. With increasing channel lengths
the long-time plateau rises and occurs at larger timescales. In
the limit LY → ∞ the mean-square displacement converges
from below to the same logarithmic scaling as the system with
periodic boundaries [Fig. 2(d)].

IV. DISCUSSION

Our results suggest that the mean-square displacement in
two-dimensional crystals diverges logarithmically. It is well
known that the displacement from the lattice position diverges
logarithmically with distance in two dimensions [7], hence
it is clear that the mean-square displacement should also
diverge, but the time dependence was not known. Also a

logarithmic scaling of the MSD with system size has been
found in two-dimensional glasses [40].

The logarithmic time scaling of the MSD in a two-
dimensional colloidal crystal has not been discussed prop-
erly in the literature. In Ref. [41], a logarithmic long-time
evolution of the hard-disk MSD was discussed, based on the
assumption of an algebraic time decay of the positional order
parameter. However, in the cited literature the decay of the
translational order parameter in time has not been studied
carefully.

Nelson only showed that the bond orientation order pa-
rameter decays algebraically in time in the hexatic phase,
thus resulting in a logarithmic long-time evolution of the
mean-square bond angle difference [42]. However, assuming a
dynamical critical exponent z = 2 for both hexatic and crystal
phases of the two-dimensional colloidal system would lead to
this algebraic time decay of the positional order parameter.
Hence the MSD has a logarithmic time scaling. This is also
supported by the analogy to the Edwards-Wilkinson model,
which shows the same scaling behavior [38,43].

Here we note that these arguments are only valid for
timescales where particles do not switch their positions. Since
the interchange of two particles is separated by a finite-
energy barrier, there will be an associated timescale where the
particles perform normal diffusion. However, on the observed
timescales the mean-square displacement is given by lattice
deformations and not by the diffusion of defects.

In the single-file case a particle is confined by particles in
its own layer. In channels with more than two layers the parti-
cle motions are restricted by particles of more and more layers
involving increasing timescales. For short times the motion of
a particle is restricted by the four particles left and right on
the two adjacent layers. These particles are also restricted by
particle on their adjacent layers. With increasing time more
and more layers get involved. The diffusion exponent drops
below the single-file exponent while more layers get involved
in the diffusion process. At timescales where all nl layers
are involved, no more layers can restrict the particle and the
diffusion exponent increases again to the single-file exponent.

To justify why the single-file exponent is also found as the
long-time limit of diffusion in channels with multiple layers,
an idea of the renormalization-group theory can be followed.
Quadratic patches of nl × nl particles can be approximated as
renormalized block particles that are ordered sequentially in
the channel. These block particles cannot bypass each other
if the particles are ordered in a triangular lattice structure.
The interaction between these blocks may be complicated, but
for single-file diffusion it is only important that they cannot
bypass each other. Hence the diffusion of these block particles
is single-file-like. Since the single particles are caged within
their block particle, there is a timescale where the MSD of the
single particle is dominated by the MSD of the block particle.
On this timescale the diffusion of the individual particle takes
place also with the single-file exponent.

V. CONCLUSION

Channels with a finite number of layers of colloidal par-
ticles show single-file diffusion in the long-time limit. This
can be reasoned by the idea of block particles spanning the
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whole width of the channel. These block particles are ordered
in a single-file geometry and therefore show SFD. If the
single particles are caged within their block, their long-time
limit of the MSD will also be single-file-like. It would not
be surprising to find SFD also in ordered three-dimensional
channels and in quasi-one-dimensional glasses, since it is only
necessary that the particles are not allowed to rearrange within
a block, spanning the whole cross section of the channel.

In the limit of the two-dimensional solid (LY → ∞)
the single-file long-time evolution is postponed to infinity.
The MSD only grows logarithmically in time and the time-
dependent exponent declines towards zero. This crossover
implicates a minimal exponent αmin that also decays to
zero with increasing channel width. The decay is given by
a universal power law that only depends on the reduced

channel width LY /R or the number of layers nl . With this, the
single-file mobility decreases by adding more and more layers
and the MSD follows for longer and longer timescales the
logarithmic scaling instead of the power law of SFD. In this
sense the SFD vanishes in the limit of the two-dimensional
solid.
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