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The photoacoustic effect is usually studied in an isotropic medium on a laboratory scale. However, it is
possible to use optical sources to launch pressure perturbations in the atmosphere consisting of both acoustic and
gravity waves. Here photoacoustic theory is extended to incorporate the effects of a stratified atmosphere and a
gravitational field on launching and propagation of pressure waves in the atmosphere. Properties of pressure
waves corresponding to several optical excitation schemes are investigated. The acoustic component of the
optically launched pressure waves is explored separately to delineate its properties from those found without
the effects of a gravitational field.
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I. INTRODUCTION

The photoacoustic effect refers to the generation of sound
by absorption of optical radiation, which was reported by Bell
in his invention of the photophone [1]. However, it was not
until after the invention of the laser that the photoacoustic
effect received considerable research interest in the fields of
spectroscopy and trace gas detection [2–4]. The past decade
has witnessed additional interest in the photoacoustic effect
owing mainly to its unique advantages in noninvasive biomed-
ical imaging [5,6].

Apart from laboratory applications, the photoacoustic ef-
fect has been shown to be manifest in natural phenomena.
For example, the mysterious hissing sound occurring con-
currently with the flash of meteors has been ascribed to
a photoacoustic mechanism [7,8]. Notably, the source term
of the photoacoustic wave equation indicates that a moving
source with constant intensity can also broadcast acoustic
waves [9,10]. Such moving sources are associated with the
widely observed pressure disturbance induced by the motion
of moon shadow during a solar eclipse [11] and the rotation of
the earth’s terminator [12]. Other events such as the volcanic
eruption [13] and nuclear detonation [14] also bear a striking
resemblance to the pulsed-mode photoacoustic excitation.

The photoacoustic theory in a fluid is described by an
inhomogeneous wave equation for pressure with a source term
proportional to the time derivative of the rate of heat depo-
sition per unit volume [15–17]. However, the photoacoustic
theory formulated in isotropic media cannot be directly ap-
plied to atmospheric pressure waves since the atmosphere
is stratified and the length scale of the pressure waves is
often comparable to or larger than the characteristic length
of the stratification [18]. In addition, the presence of the
gravitational field complicates the propagation of the pressure
disturbance. Apart from acoustic waves, there also exist low-
frequency gravity waves supported by the buoyant force [19].
The so-called acoustic-gravity wave has been explored before
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by geologists and is of primary interest for its effects on
atmospheric circulation and local surface turbulence [14,20].
However, the wave’s behavior unique to optical excitation and
its connection with the photoacoustic effect have not been sys-
tematically studied. Furthermore, photoacoustic remote sens-
ing of the marine environment and the possible photoacoustic
air-to-submarine communication can be expected to require
an airborne laser which as it traverses the atmosphere can
introduce pressure perturbations [21]. The interpretation of
such pressure waves requires the incorporation of atmospheric
stratification into the equations of linear acoustics.

The aim of this paper is to extend the photoacoustic theory
to the stratified atmosphere, investigate how the medium
anisotropy will affect the generation of pressure disturbances,
and examine the atmosphere’s response to several typical
methods of optical excitation. In particular, the acoustic com-
ponent of the pressure disturbances is studied as a direct
comparison with the ordinary photoacoustic effect. Section II
uses the equations of linear acoustics to give the governing
equation for pressure disturbances induced by optical excita-
tion in the atmosphere. A Green’s function is derived and the
effect of a boundary is discussed. Section III gives examples
of optically launched atmospheric waves including the cases
for a pulsed and low-frequency monopole radiator. In Sec. IV
the high-frequency approximation to the governing equation
is derived and applied to the cases of a vertically directed light
beam and a monopole source. Section V gives a summary of
the results.

II. GOVERNING EQUATION AND GREEN’S FUNCTION

A. Derivation of the governing equation

Consider a flat earth, taken to be a hard surface, and
an isothermal windless atmosphere as illustrated in Fig. 1.
The influence of earth’s rotation is neglected here since the
Rossby waves generated by the Coriolis forces are charac-
terized by extremely low frequencies and long wavelengths.
The excitation of such waves with significant amplitudes is
thus not expected [22]. Suppose the optically excited pressure
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FIG. 1. Geometry of the theoretical model with the gravitational
force antiparallel to the z axis and the earth taken to be a flat perfect
reflector.

disturbance is small enough so that the linearized conservation
equations are given by

ρ0
∂u1

∂t
= −∇p1 − ρ1g, (1a)

∂p1

∂t
+ u1z

∂p0

∂z
= c2

(
∂ρ1

∂t
+ u1z

∂ρ0

∂z

)
+ βc2

CP

H, (1b)

∂ρ1

∂t
= −u1z

∂ρ0

∂z
− ρ0∇ · u1, (1c)

where the subscript 0 indicates a hydrostatic variable, the
subscript 1 refers to small disturbance, ρ is the density, u =
(ux, uy, uz) is the particle velocity, p is the pressure, g =
(0, 0, g) is the gravitational field, β is the isothermal expan-
sion coefficient, CP is the specific heat capacity at constant
pressure, and H , the heating function, is the optical power
absorbed per unit volume. Equation (1a) is a vector differ-
ential equation that describes the conservation of momentum
along the x, y, and z directions. Equations (1b) and (1c) are
the conservation equations for energy and mass, respectively.

The distributions of hydrostatic pressure p0 and density ρ0

obey the relations

∂p0

∂z
= −gρ0, (2a)

∂ρ0

∂z
= −γg

c2
ρ0, (2b)

where γ is the ratio of specific heat capacities at constant
pressure and volume. Note that p0 and ρ0 are related via the
adiabatic sound speed c = √

γp0/ρ0, which, together with
Eqs. (2a) and (2b), gives

p0 = Pse
−z/h, ρ0 = �se

−z/h, (3)

where h is a characteristic height defined as h = c2/γg, which
in the earth’s atmosphere is roughly 8 km. Here Ps and �s are
the hydrostatic pressure and density at sea level.

Equations (3) can be used to eliminate the variables p0 and
ρ0 from Eqs. (1), leaving five unknowns u1x , u1y , u1z, p1, and
ρ1, which can then be decoupled by manipulation of the five
conservation equations. A partial differential equation for the

pressure perturbation p1 is accordingly obtained as[
∂4

∂t4
− c2 ∂2

∂t2
∇2 − γg∂3

∂t2∂z
− (γ − 1)g2

(
∂2

∂x2
+ ∂2

∂y2

)]
p1

= βc2

CP

(
∂3H

∂t3
− g

∂2H

∂t∂z

)
. (4)

Compared with the source term of the ordinary photoacoustic
wave equation for nonstratified fluids [15], Eq. (4) includes
an additional source term dependent on both the gravitational
acceleration and the vertical dependence of the heating func-
tion. It is easy to verify that Eq. (4) reduces to the well-known
photoacoustic wave equation for fluids [15] as g vanishes.

If a new variable � is defined as � = exp(z/2h)p1, Eq. (4)
can be reduced to[

1

c2

∂4

∂t4
− ∂2

∂t2
∇2 + ω2

2

c2

∂2

∂t2
− ω2

1

(
∂2

∂x2
+ ∂2

∂y2

)]
�

= βez/(2h)

CP

(
∂3H

∂t3
− g

∂2H

∂t∂z

)
, (5)

where ω1 = √
(γ − 1)g/γ h is the so-called Brunt-Väisälä

frequency [23] and ω2 = 1/2
√

γg/h. Their values in an
isothermal atmosphere are roughly 0.018 and 0.02 rad/s
corresponding to oscillations with periods around 5.8 and
5.2 min, respectively. It is noted that the substitution of p1

with � has some physical significance. Since the potential
energy associated with the fluid compression is proportional
to �2 with the prefactor 1/2c2�s being a constant, � is thus
required to be a square-integrable function and is a physically
more preferable variable to work with than p1.

Fourier transformation of Eq. (5) with the convention f̃ω =
1/

√
2π

∫
f (t ) exp(iωt )dt results in(

∂2

∂x2
+ ∂2

∂y2
+ ω2

ω2 − ω2
1

∂2

∂z2
+ ω2 − ω2

2

ω2 − ω2
1

ω2

c2

)
�̃

= iβωez/(2h)

CP

(
ω2 − ω2

1

)(
ω2H̃ + g

∂H̃

∂z

)
, (6)

where �̃ and H̃ are the Fourier transforms of � and H .
Equation (6) can be used to determine the frequency domain
solutions for various forms of the heating function. The result
can then be Fourier transformed to give time domain solutions
to Eq. (5).

B. Free-space Green’s function

In this section the Green’s function for Eq. (6) is derived
for free space without the presence of a reflecting surface.
The frequency domain Green’s function G̃ω(r; r0) for Eq. (5)
satisfies(

∂2

∂x2
+ ∂2

∂y2
+ ω2

ω2 − ω2
1

∂2

∂z2
+ ω2 − ω2

2

ω2 − ω2
1

ω2

c2

)
G̃ω(r; r0)

= δ(r − r0), (7)

where r and r0 refer to the positions of the observation
point and the source point, respectively. By taking the
Fourier transform of the z variable with the convention
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f̃kz
= 1/

√
2π

∫
f (z) exp(ikzz)dz, we have

(
∂2

∂x2
+ ∂2

∂y2
+ F 2

)
G̃ω,kz

(x, y; x0, y0)

= 1√
2π

eikzz0δ(x − x0)δ(y − y0), (8)

where

F =
√

α̂

(
β̂

α̂

ω2

c2
− k2

z

)
,

α̂ = ω2

ω2 − ω2
1

,

β̂ = ω2 − ω2
2

ω2 − ω2
1

.

Note that Eq. (8) is a two-dimensional Helmholtz equation
whose solution can be found as [24]

G̃ω,kz
(x, y; x0, y0) = − i

4
√

2π
eikzz0H

(1)
0 (Fd ), (9)

where d =
√

(x − x0)2 + (y − y0)2 and H 1
0 (z) is the Hankel

function of the first kind. Under the convention of the Fourier
transform used in this paper, Eq. (9) describes an outwardly
expanding wave.

Inverse Fourier transformation of Eq. (9) with respect
to kz gives

G̃ω(r; r0) = − i

4π

∫ ∞

0
H

(1)
0

⎡
⎣

√
α̂

(
β̂

α̂

ω2

c2
− k2

z

)
d

⎤
⎦

× cos[kz(z − z0)]dkz, (10)

where the parity symmetry of the F term with respect to kz is
used to write G̃ω as a Fourier cosine transform. The integral in
Eq. (10) can be found in standard integral tables [25], yielding

G̃ω(r; r0) = − 1

4π

√
1

α̂

1

R
eiω

√
β̂R/c, (11)

where R(r; r0) =
√

(x − x0)2 + (y − y0)2 + (z − z0)2/α̂. The
appearance of 1/α̂ within R suggests an anisotropic behavior
along the z direction which is discussed later. It is noted
that when ω � ω2 both α̂ and β̂ approach unity, making G̃ω

converge to the Green’s function for a three-dimensional wave
equation.

One interesting finding is that when the observation point
is directly above or below the impulsive source point, Eq. (11)
becomes

G̃ω(z; z0) = − 1

4π

1

|z − z0|e
i
√

(ω/c)2−(ω2/c)2|z−z0|, (12)

which is similar to the Green’s function for the frequency
domain Klein-Gordon equation, a relativistic version of the
Schrödinger equation whose solution has been widely stud-
ied. Inverse Fourier transformation of Eq. (12), according to

Ref. [24], yields

Ḡ(z, t ; z0, t0) = − 1

4π

{
δ(τ − |z − z0|/c)

|z − z0|

− ω2J1[ω2

√
τ 2 − (|z − z0|/c)2]

c
√

τ 2 − (|z − z0|/c)2

× u(τ − |z − z0|/c)

}
, (13)

where τ = t − t0, t0 is the time of initiation of the instanta-
neous point source, J1 is the first-order Bessel function of the
first kind, and u is the Heaviside function. Equation (13) de-
scribes a δ pulse followed by a wake which is a characteristic
feature for the acoustic-gravity wave.

Of particular note is that Eq. (13) cannot be simply re-
garded as the atmosphere’s response to an impulsive source
since the source term in Eq. (5) is not proportional to the
heating function but involves its temporal and spatial deriva-
tives. This fact can be exemplified by the phenomenon that
the photoacoustic response to an impulsive source in a three-
dimensional geometry is a bipolar acoustic wave, a compres-
sion followed by rarefaction, while the first term in Eq. (13) is
merely a unipolar wave. Furthermore, when calculating the
Green’s function for the time domain Eq. (5), the Green’s
function in the frequency domain should be divided by an-
other factor ω2 − ω2

1 before conducting the inverse Fourier
transformation, that is,

G(r, t ; r0, t0) = 1

2π

∫ ∞

−∞

G̃ω(r; r0)

ω2 − ω2
1

e−iωτ dω

= 1

π
Re

[∫ ∞

0

G̃ω(r; r0)

ω2 − ω2
1

e−iωτ dω

]
, (14)

where the second equality is derived based on the fact that
G̃ω(r; r0) is a Hermitian function with respect to ω, that is, it
satisfies G̃ω(r; r0) = G̃∗

−ω(r; r0). The solution to Eq. (4) can
be obtained by convoluting Eq. (14) with the source term in
Eq. (5) with the result multiplied by exp(−z/2h).

It is difficult to obtain a closed-form expression for the
integral in Eq. (14), but it is possible to determine some
properties of G(r, t ; r0, t0) by investigating the behavior of
the integrand in the complex ω plane. First note that there
exist six singularities for the integrand which are at ±ω1,
±ω2, and ±ω1 cos θ , where θ is the polar angle of the vector
r − r0 as depicted in Fig. 1. Importantly, no poles appear in
the upper complex plane, making Eq. (14) satisfy the causality
principle since it is then possible to close the integration
contour in the upper plane when t < t0, resulting in a value
of zero for the integral [24]. Second, in certain frequency
bands (0, ω1| cos θ |) and (ω1, ω2), the integrand behaves as an
exponentially decaying function instead of being progressive.
The second frequency band results from the fact that for a
pure gravity wave, or a wave with the oscillation frequency so
low that the rate of change of ρ1 barely affects the continuity
equation, the maximum frequency that the atmosphere can
support is the Brunt-Väisälä frequency ω1 [19]. The first
frequency band gives a hint of the radiation pattern for a
low-frequency point source. Suppose a point source located
at the origin oscillates in amplitude at an angular frequency
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FIG. 2. (a) Phase and (b) group velocities as a function of ωx =
ω sin θ and ωz = ω cos θ . The phase velocity varies from zero to
infinity, while its color plot is truncated at vp/c = 3 to make clear the
details of the distribution. Within the blank areas at the left bottom
corners, the velocities become imaginary, indicating evanescent wave
behavior.

ω0 (<ω1). Its radiation will be excluded from a head-to-head
cone-shaped region as illustrated in Fig. 4(b) with the cone
angle being π − 2 arccos(ω0/ω1), which is in striking contrast
to that from a photoacoustic monopole [15]. Third, it is also
worthwhile to investigate the anisotropic dispersion of the
phase and group velocities vp and vg along the direction of
r − r0 [19,26]. It can be shown from the exponent of Eq. (11)
that

vp = ω

k
= c√

β̂
(
1 − ω2

1 cos2 θ
/
ω2

) , (15a)

vg = ∂ω

∂k
=

c

√
β̂
(
1 − ω2

1 cos2 θ
/
ω2

)(
ω2 − ω2

1

)2

(
ω2 − ω2

1

)2 + ω2
1

(
ω2

2 − ω2
1

)
sin2 θ

, (15b)

where k is the magnitude of the wave number vector. The
anisotropic dispersion of vp and vg is plotted in Fig. 2. It is
clear that there exist two forbidden bands in which the wave

is evanescent. In the regime of ω1| cos θ | < ω < ω1, the phase
velocity decreases monotonically from infinity to zero and
the group velocity exhibits some concave behavior with the
maximum magnitude still being subsonic. When ω > ω2, both
velocities asymptotically approach the sound speed, which is
consistent with the fact that when ω � ω2, Eq. (4) converges
to a three-dimensional photoacoustic wave equation.

C. Inclusion of a reflecting surface

Reflection occurs when the pressure disturbance travels
to the earth’s surface where the vertical particle velocity uz

vanishes. From Eq. (1a), together with the relation for the
adiabatic sound speed c2 = p1/ρ1, the boundary condition for
p1 at z = 0 can be formulated as

∂p1

∂z
+ g

c2
p1 = 0, (16)

whose corresponding form in terms of � is given by

∂�

∂z
+ A� = 0, (17)

where A = (1/γ − 1/2)/h. Note that since the gravitational
field results in a pressure disturbance that is a combination
of longitudinal (acoustic) and transverse (gravity) waves, the
resulting velocity field is not purely irrotational and a velocity
potential cannot be defined.

To incorporate the effects of the boundary condition, a
generalized approach is to decompose the Green’s function
into the weighted summation or integral of its eigenfunctions
and then apply the boundary condition to each eigenfunction
or their weighting coefficients to make each eigenfunction
or their linear combination satisfy the boundary condition.
Here a more straightforward method introduced in Ref. [27] is
used. The idea is to define a Robin-to-Dirichlet operator T̂ =
∂/∂z + (1/γ − 1/2)/h. Since Eq. (6) is a linear equation with
all coefficients being constants, the function g = T̂ �̃ will
satisfy Eq. (6) with T̂ acting on the source term together with a
Dirichlet boundary condition. If the inverse operator T̂ −1 and
the function g can be found, the solution for �̃ can then be
derived as �̃ = T̂ −1g, a process called the Dirichlet-to-Robin
transform.

Following the above procedure, it is found that the Green’s
function for Eq. (6) with a reflecting earth ground can be
written as

G̃ω,R = G̃ω(z − z0) + G̃ω(z + z0) + T̂ −1
z G̃ω(z + z0), (18)

where only the z coordinate is written out for simplicity and
the last term is

T −1
z G̃ω(z + z0) =

∫ z

0
e−AεG̃ω[z + (z0 − ε)]dε

− e−2Az

∫ ∞

−z

e−AεG̃ω[z + (z0 + ε)]dε.

The first two terms in Eq. (18) constitute a Green’s function
for the Neumann boundary condition in which the second
term corresponds to an echo-type reflected wave from a hard
surface. The third term, which results from the presence
of a gravitational field, represents a ringing-type reflected
wave. It corresponds to the interference of waves emanating
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from a series of ghost sources lying along (−z0, z − z0) and
(−∞, z − z0). It is interesting to see that such a ringing wave
will disappear in a medium with γ = 2. Given Eq. (18),
numerical integration can then be carried out to obtain the
Green’s function and its convolution with specific source
terms.

III. RESPONSE TO VARIOUS OPTICAL SOURCES

It is of interest to investigate how the atmosphere will
respond to the pulsed or amplitude modulated, continuous
optical radiation. In this section, pressure waves resulting
from several methods of optical excitation are determined
and compared with the laboratory-scale photoacoustic waves.
In all calculations, the Green’s function for free space is
used. Pressure waves generated with the presence of the
ground surface can be obtained numerically by means of the
Dirichlet-to-Robin transform introduced above.

A. Gaussian point source

For a point source with a Gaussian time profile positioned
at rs = (0, 0, zs ), the heating function can be written as

H (r, t ) = E0√
πσ

δ(x)δ(y)δ(z − zs )e−(t−ts )2/σ 2
, (19)

where E0 is the deposited optical energy at the source posi-
tion, σ is the characteristic duration of the impulsive source,
and ts is the time when the source intensity reaches its
maximum. The method of the Green’s function yields

p(r, t ) = βe−z/(2h)

CP

∫ t

0

∫
G(r, t ; r0, t0)ez0/2h

×
(

∂3

∂t3
0

− g
∂2

∂t0∂z0

)
H (r0, t0)dr0dt0

= e−z/2h Re[p̂a (r, t ) + p̂b(r, t )], (20)

where

p̂a (r, t ) = ezs/(2h)�

∫ ∞

0

∫ t

0

G̃ω(r; r0)

ω2 − ω2
1

× ∂3e−(t0−ts )2/σ 2

∂t3
0

e−iω(t−t0 )dt0dω,

p̂b(r, t ) = �

∫ ∞

0

∫ t

0

g

ω2 − ω2
1

∂

∂z0
[G̃ω(r; r0)e

z0/2h

]z0=zs

× ∂e−(t0−ts )2/σ 2

∂t0
e−iω(t−t0 )dt0dω,

where � = βE0/π
√

πσCP . The t0 integration yields a func-
tion of ω that is compactly supported along the real axis which
enables a rapidly convergent numerical integration for the
ensuing ω integral.

Pressure waveforms corresponding to p̂a and p̂b are plotted
in Fig. 3. It can be seen that the pressure associated with the
first source term is dominated by an acoustic wave, which
results from the fact that the third-order time derivative cor-
responds to a weighting factor ω3 in the frequency domain,

P a (μ
Pa

)

t (s)
90 95 100 105 110

0

-0.5

-1.0

0.5

1.0
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)
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Acoustic wave dominant

Gravity wave dominant
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-0.2

FIG. 3. Pressure versus time for a Gaussian point source associ-
ated with the two source terms in Eq. (4). The source is positioned
at (0, 0, 100 m) with ts = 100 s, σ = 1 s, and E0 = 1 kJ. The
observation point is located 100 m below the source. Other physical
parameters are taken as g = 9.8 m/s2, γ = 1.4, β = 0.0034 K−1,
c = 340 m/s, and Cp = 1005 J/kg/K. Note that (a) the first source
term gives rise to an acoustically dominant wave with the waveform
resembling the three-dimensional photoacoustic wave for a pulsed
Gaussian point source [10], while (b) the second source term results
in a long-tailed, low-frequency wave that is gravity wave dominant.

which amplifies the contribution of high-frequency compo-
nents and weakens the contribution of the low-frequency
components of the wave. The second source term, on the other
hand, is related to the gravity wave which features a long tail
and a slowly varying waveform.

B. Low-frequency monochromatic monopole radiator

Consider a point source at rs = (0, 0, zs ) whose intensity
varies at an angular frequency ω0; its heating function can be
written as

H (r, t ) = P0[1 + cos(ω0t )]δ(x)δ(y)δ(z − zs ), (21)

where P0 is the absorbed energy per unit time. Since only the
time-varying part of the heating function contributes to the
pressure, it is preferable to write the heating function as

H (r, t ) = P0e
−iω0t δ(x)δ(y)δ(z − zs ) = e−iω0t H̃s (r) (22)

with the pressure corresponding to the real part of the solution.
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Owing to the assumed linearity of the system, the solution
to Eq. (5) can be written as � = �̃e−iω0t , where �̃ satisfies
Eq. (6) with the source term being

sω0 (r) = iβω0

CP

ez/(2h)

(
ω2

0H̃s + g
∂H̃s

∂z

)
. (23)

Convolution of Eq. (11) with Eq. (23) with the result multi-
plied by exp(−z/2h) and its temporal part yields

p = βe−z/2h

4πCP

Re

⎡
⎣− ie−iω0t√

ω2
0 − ω2

1

(p̂a + p̂b )

⎤
⎦, (24)

where

p̂a = ω2
0

∫
eiω0

√
β̂R/c+z0/2h

R
H̃sdr0,

p̂b = g

∫
eiω0

√
β̂R/c+z0/2h

R

∂H̃s

∂z
dr0.
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FIG. 4. (a) Pressure distribution on the yz plane with x = 20
km and (b) the radiation pattern for a low-frequency monochromatic
monopole radiator placed at the origin. The plot in (a) corresponds
to the pressure distribution from a point source with its intensity
oscillating at f0 = 2.6 mHz. The other parameters are the same as in
Fig. 3 except that P0 = 1 MW and t = 100 s. The plot in (b) shows
that for point sources with ω0 < ω1 the excited pressure wave will be
evanescent within the cones.

The above two integrals can be evaluated analytically as

p̂a (r, zs ) = ω2
0P0e

zs/2h eiω0
√

βR(x,y,z;0,0,zs )/c

R(x, y, z; 0, 0, zs )
,

p̂b(r, zs ) = − g

ω2
0

∂p̂a (r, zs )

∂zs

.

Equation (24) along with the radiation pattern for a
monochromatic monopole radiator is plotted in Fig. 4. When
the intensity of the source oscillates at a frequency lower
than ω1, as can be seen in Fig. 4(a), there exists a region
separated by the curved line on the left of which the wave is
evanescent. Outside the region the wave is progressive and its
amplitude decreases along the y direction due to the spherical
divergence and decreases exponentially along the z direction
mainly due to the density stratification. The curved line is
part of the intersection line between the observation plane
(xobs = 20 km) and the evanescent cone surface and it can be

described by z =
√

−α̂(y2 + x2
obs).

IV. HIGH-FREQUENCY APPROXIMATION

The high-frequency approximation can be carried out to
separate the acoustic wave component from the gravity wave.
The acoustic wave equation can then be written as

(
∇2 − 1

c2

∂2

∂t2

)
� = −βez/2h

CP

∂H (r, t )

∂t
, (25)

where � = exp(z/2h)p1. Note that since the wave equation
operator commutes with ∂/∂t , it is advantageous to evaluate
first the source term without the time differentiation obtaining
the variable ϕ, and then � can be found by � = −∂ϕ/∂t .

A. A cw laser beam directed along the z axis

Suppose a laser beam whose intensity is modulated at
an angular frequency ω0, located at x = y = 0, is directed
along the z axis. The heating function for this source can be
taken as

H (r, t ) = P0

2h
e−iω0t δ(x)δ(y)e−z/h. (26)

The heating function is taken to decay exponentially along the
z axis following the distribution of the hydrostatic density ρ0.

By using the Green’s function for the three-dimensional
wave equation in free space GWE(r, t ; r0, t0), ϕ is found as

ϕ = β

CP

∫ t

0
dt0

∫ ∞

−∞
ez0/2hGWE(r, t ; r0, t0)H (r0, t0)dr0

= − βP0

8πCP h
e−z/2h�ω0 (t ), (27)

where

�ω0 (t ) = e−iω0t

∫ √
(ct )2−d2

−
√

(ct )2−d2

eiω0

√
d2+q2

0 /c√
d2 + q2

0

e−q0/2hdq0 (28)
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beam pointing upwardly. The laser intensity is modulated at f0 = 10
Hz with P0 = 1 kW and t = 1 s. The other parameters are the same
as in Fig. 3.

and d =
√

x2 + y2. The pressure can then be calculated via
p = − exp(−z/2h)∂ϕ/∂t , which gives

p = βP0e
−z/h

8πCP h
Re

{
−iω0�ω0 (t )

+ c(e−
√

(ct )2−d2/2h − e
√

(ct )2−d2/2h)√
(ct )2 − d2

}
. (29)

As shown in Fig. 5(a), the wave described by Eq. (29) re-
sembles a two-dimensional cylindrical wave. It is well known
that two-dimensional waves exhibit anomalous dispersion,
that is, the wave changes its shape and forms a tail even if
the wave speed is frequency independent [28]. The geometric
explanation for this behavior is that the wave received at a
certain observation point can be regarded as the summation
of three-dimensional spherical waves coming from succes-
sively more distant point sources along the vertical source
line. Equation (28) describes such a consecutive summation
with the difference being that the spherical wave is weighted
by a factor exp(−q0/2h) arising from density stratification.
After the time differentiation, this extra factor results in a
nonoscillatory term appearing in Eq. (29). It is noted that
when the boundary condition is added, the magnitude of

the weighting factor will be limited by exp(zs/2h) and a
controlled exponential growth is expected.

B. High-frequency monochromatic monopole radiator

Consider the same heating function as Eq. (22) but with
ω0 � ω2; its convolution with the Green’s function GWE

yields

ϕ = β

CP

∫ t

0

∫ ∞

−∞
ez0/2hGWE(r, t ; r0, t0)H (r0, t0)dr0dt0

= −βP0e
zs/2h

4πCP

e−iω0(t−|r−rs |/c)

|r − rs | . (30)

The pressure is thus obtained as

p = − iω0βP0e
(zs−z)/2h

4πCP

e−iω0(t−|r−rs |/c)

|r − rs | . (31)

Equation (31) shows that the amplitude of the photoacous-
tic pressure will increase exponentially as it approaches the
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ground as a result of density stratification of the medium.
On the other hand, the wave experiences spherical divergence
as it moves away from the source. The competition between
the stratification increase and spherical divergence results in
the appearance of a local pressure maximum and minimum
when the observation line is close to the vertical line where
the source lies, which can be seen in Fig. 6(b). Specifically,
the locations of the local maximum and minimum can be
determined as

zmax = −h + zs +
√

h2 − d2,

zmin = −h + zs −
√

h2 − d2.

V. SUMMARY

This paper gives a general differential equation that as-
sociates the generation and propagation of the atmospheric
pressure perturbation with an optical driving force. Compared
with the ordinary photoacoustic wave equation, the optically
launched pressure perturbation in a stratified medium is re-
lated to not only the time derivative of the heating function

but also its distribution along the stratified direction. The
Green’s functions for the governing equation in the frequency
and time domains have been derived. Also, the reflection of
the pressure wave by the earth’s ground has been shown to
result in a ringing-type wave in addition to the echo wave
corresponding to the Neumann boundary condition. An atmo-
spheric response to pulsed and cw modulated radiation has
been investigated. In all cases reported, there is invariably an
exponential decrease in pressure upwardly along the vertical
direction in addition to the geometric divergence. In contrast,
the vertical velocity perturbation u1z will grow exponentially
as z increases to balance the decrease in the density ρ0 and
ensure that the vertical flux of horizontal momentum remains
constant [29]. It is expected that the calculations presented
here will aid in the understanding of the photoacoustic process
in an anisotropic medium and provide a quantitative descrip-
tion of waves launched in the atmosphere by high power
optical sources.
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